Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement

Li-Sheng He¹, Ying Xu¹, Kiyotaka Matsumura¹, Yu Zhang¹, Gen Zhang¹, Shu-Hua Qi², Pei-Yuan Qian^{1*}

1 KAUST Global Collaborative Research Program, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China, 2 South China Sea Institute of Oceanography, Chinese Academy of Science, Guangzhou, China

Abstract

The barnacle Balanus (= Amphibalanus) amphitrite is a major marine fouling animal. Understanding the molecular mechanism of larval settlement in this species is critical for anti-fouling research. In this study, we cloned one isoform of p38 MAPK (Bar-p38 MAPK) from this species, which shares the significant characteristic of containing a TGY motif with other species such as yeast, Drosophila and humans. The activation of p38 MAPK was detected by an antibody that recognizes the conserved dual phosphorylation sites of TGY. The results showed that phospho-p38 MAPK (pp38 MAPK) was more highly expressed at the cyprid stage, particularly in aged cyprids, in comparison to other stages, including the nauplius and juvenile stages. Immunostaining showed that Bar-p38 MAPK and pp38 MAPK were mainly located at the cyprid antennules, and especially the third and fourth segments, which are responsible for substratum exploration during settlement. The expression and localization patterns of Bar-p38 MAPK suggest its involvement in larval settlement. This postulation was also supported by the larval settlement bioassay with the p38 MAPK inhibitor SB203580. Behavioral analysis by live imaging revealed that the larvae were still capable of exploring the surface of the substratum after SB203580 treatment. This shows that the effect of p38 MAPK on larval settlement might be by regulating the secretion of permanent proteinaceous substances. Furthermore, the level of pp38 MAPK dramatically decreased after full settlement, suggesting that Bar-p38 MAPK maybe plays a role in larval settlement rather than metamorphosis. Finally, we found that Bar-p38 MAPK was highly activated when larvae confronted extracts of adult barnacle containing settlement cues, whereas larvae pre-treated with SB203580 failed to respond to the crude adult extracts.

Citation: He L-S, Xu Y, Matsumura K, Zhang Y, Zhang G, et al. (2012) Evidence for the Involvement of p38 MAPK Activation in Barnacle Larval Settlement. PLoS ONE 7(10): e47195. doi:10.1371/journal.pone.0047195

Editor: Mikhail V. Matz, University of Texas, United States of America

Received April 2, 2012; Accepted September 12, 2012; Published October 24, 2012

Copyright: © 2012 He et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by an award from the King Abdullah University of Science and Technology (SA-C0040/UK-C0016) and grants (N-HKUST602/09 and AoE/P-04/04-II) from the Research Grants Council of the Hong Kong Special Administrative Region to PY Qian. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

It is well known that the barnacle Balanus amphitrite is a major fouling marine animal and is widespread throughout the world. The life cycle of this barnacle species consists of six nauplius stages and a non-feeding cyprid stage in the planktonic phase (Fig.1). Before transformation from the planktonic to the sessile phase, cyprids actively explore the surrounding environment with their paired antennules to search for a suitable site for settlement and metamorphosis. Though they also exist in nauplii, the antennules have been highly modified as attachment organs at the cyprid stage. Cyprids detect and examine the substrata for their chemical and physical natures with their antennules that are enriched with neuronal fibers. They then respond and decide whether to settle or not. During this exploration, cyprids temporarily attach to the surface by secreting temporary proteinaceous substances. Once the location is determined, cyprids permanently attach to the surface and then metamorphose into juveniles. Whether larvae can properly settle or not is important for the survival of both adults and subsequent generations [1]. Cyprids thus play a critical role in barnacle development.

Settlement-inducing protein complex (SIPC) has been identified as a pheromone that induces larval settlement [2]. SIPC is a highly glycosylated protein that was isolated from barnacle adult extracts [2]. SIPC is localized not only at the antennules but also in the footprints, which cyprids deposit on the substratum during settlement site exploration [3–5]. However, little is known about how SIPC induces larval settlement. Clare and coworkers (1995) demonstrated that adenylate cyclase activator increased the cyprid settlement rate and adenylate cyclase inhibitor prevented cyprid settlement, suggesting that altered endogenous cAMP level affects cyprid settlement. Whereas, radioimmunoassay results have indicated that cAMP level does not change when cyprids are induced to settle using crude adult extracts [6].

Mitogen activated protein kinase (MAPK) signaling transduction pathway displays critical roles in many cellular events, from cell proliferation to apoptosis, by responding to a wide variety of extracellular stimuli. Three classic groups of this pathway have been defined in eukaryotic systems: the extracellular signalregulated kinase (ERK), C-Jun N-terminal kinase (JNK) and p38 pathways [7–9]. The core unit of the MAPK pathway is composed of three enzymes: MAPK, MAPK kinase (MAP2K) and MAPKK kinase (MAP3K). The three-kinase cascade

^{*} E-mail: boqianpy@ust.hk

Figure 1. Lifecycle of *B. amphitrite*. Barnacle life is divided into a planktonic phase and a sessile phase. The planktonic phase consists of six nauplius stages and a non-feeding cyprid stage. A cyprid settles to a substratum and then metamorphoses into a juvenile. doi:10.1371/journal.pone.0047195.g001

module is activated by a series of phosphorylations. MAPK, which is a serine/threonine-specific kinase, is activated through dual phosphorylations at threonine and tyrosine residues in a conserved loop by MAP2K, which is activated by MAP3K via phosphorylation at serine and/or threonine residues [10].

Recently, Wang and Qian cloned an isoform of p38 from the polychaete *Hydroides elegans*, which shares about a 56% identity and 67% similarity to human p38 alpha. **RT-PCR** analysis showed that p38 MAPK was highly expressed in competent larvae but not in precompetent larvae. They also showed that SB203580, a specific p38 kinase inhibitor, inhibited the biofilm-induced larval settlement of *H. elegans*. All of these indicated the involvement of p38 MAPK in larval settlement of *H. elegans* [11]. Therefore, there is a large possibility of the involvement of p38 MAPK in barnacle larval settlement. If this is true, it is possible to say that p38 MAPK affects larval settlement by regulating the secretion of proteinaceous substances.

Results

Characterization of Bar-p38 MAPK

Based on the partial sequence from the barnacle transcriptome database and sequences of the 3' and 5' RACE products, the fulllength coding region of p38 MAPK was obtained from the barnacle cDNA and was named Bar-p38 MAPK, with 363 deduced amino acids. It has been deposited in GenBank (JQ277477). The alignment of Bar-p38 MAPK with those from other species is shown in Figure 2, with a high homology demonstrated. Two signature sequences - LL[KR]X[LIVM]X-HEN[LIVM]IXLLDVF[TS]P AVNEDCEL[KR][and LIVM LDF - which are distinct from other subfamilies [12], were located at subdomains III-IV and VIb-VII, respectively. Yeast HOG1, which belongs to the YSAPK subfamily, did not share the signature sequences. A global signature sequence [LIVM][TS]XX[LIVM]XT[KR][WY]YRXPX[LIVM][LIVM] [12] that is common to all MAPKs but different from other eukaryotic protein kinases was also found (Fig. 2). Among the three signature sequences, two were perfectly conserved in Bar-p38 MAPK but the first was not. Conserved dual phosphorylation motif TGY for p38 MAPK was also present within the activation loop in Bar-p38 MAPK, suggesting that Bar-p38 MAPK may be activated by MAP2K and share the same regulatory pathway that is conserved in other species. Another important residue, T103 in the ATP docking site, was also conserved in Bar-p38 MAPK (Fig. 2). This residue may interact with the 4-phenyl ring of a highly specific pyridinyl-imidazole inhibitor of human p38α MAPK [13]. This indicates that Bar-p38 MAPK is sensitive to this class of inhibitor, which includes SB203580. Four diagnostic residues consisting of S62, A158, E179, and T204 in *Cyprimus carpio* p38 MAPK have been shown to be particular to the SAPK2 subfamily [12]. All of these residues were conserved in Bar-p38 MAPK except for S62, which was replaced by threonine (Fig. 2).

Phylogenetic Relationship of Bar-p38 MAPK with Other Species

An overview of the complete sequences indicates that Bar-p38 MAPK shares a high percentage of identity and similarity at the amino acid level with other members of SAPK2, particularly with members of the phylum Arthropoda (Table S2). According to the alignment results, Bar-p38 MAPK has a 71–75% identity with and an 85–88% similarity to p38 MAPK sof ants, shrimps, mosquitoes, and *Drosophila* (Table S2). A relatively lower percentage of identity and similarity were found when Bar-p38 MAPK was compared to p38 MAPKs of humans and mice. Bar-p38 MAPK has the lowest percentage of identity and similarity, about 57% and 75%, respectively, with p38 MAPK of the polychaete *Hydroides elegans* among the species in this study.

From the rooted phylogenetic tree, YSAPK subfamilies branched out from the SAPK2 family and formed a separate group (Fig. 3). Two branches – SAPK2 α/β and SAPK2 γ – existed in the SAPK2 family. Bar-p38 MAPK was most homologous to *Drosophila*, shrimp, mosquito and ant MAPKs, and clustered with them in the phylogenetic tree. Bar-p38 MAPK was much closer to p38 MAPKs of invertebrates than to those of vertebrates (Fig. 3).

The Activation of Bar-p38 MAPK is Barnacle Lifecycle Dependent

To investigate the role of p38 MAPK in barnacles, protein extracts from different developmental stages, including the nauplius, cyprid, and juvenile stages, were prepared for Western blotting with antibodies against total Bar-p38 MAPK and pp38 MAPK, the active form of this kinase. The results showed that pp38 MAPK was highly expressed in the cyprid stage. The expression level of pp38 MAPK in cyprids was about two- to three-fold higher than that in the nauplius stage and there was a significant difference between these two stages (P<0.001). The expression of pp38 MAPK was extremely low in the juvenile stage, although the expression level of total Bar-p38 MAPK was almost the same in the nauplius, cyprid, and juvenile stages (Fig. 4A,B). The activation of Bar-p38 MAPK, as indicated by the phosphorylation level of this kinase, decreased dramatically and rapidly during the transition from cyprid to juvenile, suggesting the importance of Bar-p38 MAPK in the cyprid stage.

Bar-p38 MAPK is Localized at Cyprid Antennules

To further examine the role of p38 MAPK in the barnacle developmental process, cyprids were immunostained with the antibody against Bar-p38 MAPK. The results showed that Bar-p38 MAPK was highly expressed at the barnacle antennules, particularly at the third and fourth segments of the antennules

(Fig. 5). The control image, in which only secondary antibody was used, showed no significant localization pattern (Fig. 5). Higher magnification images were observed to further confirm the localization of pp38 MAPK, the active form of p38 MAPK, on the third and fourth segments using a pp38 antibody (Fig. 5).

Bar-p38 MAPK is Required for the Larval Settlement

SB203580, a specific p38 MAPK inhibitor, was used to examine the role of the kinase in larval settlement [14]. We observed that more than 50% of larvae settled in the control groups after 24 hours of incubation. However, less than 10% and 1% of larvae settled after treatment with 20 μ M and 40 μ M of SB203580, respectively, displaying a significant reduction in comparison to the control (P<0.001) (Fig. 6A). The numbers of dead larvae were less than 5% and there was no significant difference between the treated and untreated samples (P>0.05). This signifies the low toxicity of this inhibitor to the larvae (Fig. 6A). Interestingly, although most of the larvae in the treatment groups could not settle, they were still able to temporarily attach to the surface of the plate. This phenomenon suggests that treatment with SB203580 may result in metamorphosis impairment following settlement disruption.

Based on the inhibition mechanism of SB203580 on p38 MAPK, which reversibly competes for ATP binding site on p38 MAPK, we performed a recovery settlement bioassay to further examine whether the behavior that we observed was specific to Bar-p38 MAPK. The results showed that about 60% and 80% of larvae settled in 24 and 48 hours after removal of SB203580, respectively, for each concentration treatment (Fig. 6B). Taken together, the results indicate that SB203580, a p38 MAPK specific inhibitor, significantly and reversibly inhibits cyprid settlement in a dose-dependent manner.

The Activation of Bar-p38 MAPK may be Highly Related to Cyprid Settlement Rather than Metamorphosis

To further investigate the role of Bar-p38 MAPK in the cyprid settlement process, young cyprids (within 2 hours of molting from nauplius VI to cyprid) were placed in a polystyrene plate and the settled larvae were counted at various time points. Non-settled cyprids and early settled cyprids (before metamorphosis into juveniles) were harvested and proteins were extracted for the detection of the total Bar-p38 MAPK and pp38 MAPK by their particular antibodies. The results indicated that the pp38 MAPK level increased gradually from 0 to 24 hours (Fig. 7A). The expression level ratios of pp38 MAPK to total p38 MAPK at 9 and 16 hours were more than four-fold and six-fold than that at 0 hour, respectively, showing a significant difference between these time points (P<0.05) (Fig. 7B). The larval settlement rate also increased gradually. At 0 and 9 hours, no larvae had settled. About 10% of larvae had settled at 16 hours, and 50% had settled at 24 hours and there was a significant difference between these two time points (P<0.001) (Fig. 7C). Interestingly, pp38 MAPK levels decreased dramatically and rapidly in the early settled cyprids. At this stage, the cyprids have just finished settlement but have not completed metamorphosis. These results suggest the importance of Bar-p38 MAPK in larval settlement rather than metamorphosis.

p38 MAPK Inhibitor Impairs Adult Extract-induced Larval Settlement

Crude extracts of barnacle adults are well known to be a natural inducer of conspecific larval settlement [15]. However, how such extracts induce larval settlement is unclear. In this study, larvae were treated with three doses of adult extracts $-10 \ \mu g \ ml^{-1}$, 20 μg

Ba-p38				+	П	
Ha-p38	Ba-p38	RKPGFYSVELNKTRWEIPLF	YKELTPVGTGAYG	VCGALDTLTNTKVA:	IKKLAR?F: 5	56
Dep33	Hs-p38	MSQERPTFYRQELNKTI EVPER	YQNLSPVGSGAYGS	VCAAFDTKTGLRVA	V <mark>KKLSRPF: 5</mark>	59
S4-p38	Dm-p38	MSVSITKK <mark>FY</mark> KLDINR T EWEIPDI	YQDLQPVGSGAYGQ	V SKAVVRGTNMHVA	IKKLARPF: 6	50
Ce-p3 MFPOTTMOHILHETERGER VVELBESKNYVENESSENVYESTE FOR DATE OF GANGE DESCRIPTION FOR THE FULL KEPKEP 1999 FOR THE SECOND FOR T	Sd-p38	MAVQVLPENPAKPGYYKMELFKTVWEAPEP	YQDLSPIGTGAYGT	VCSAIDTRYNVRVA	L <mark>KKLA</mark> RPF: 6	56
He-p38 MIDGAORTLEHICLARGE WED WEYE DIVERSIGNED VCS AND SEE BIG STATEWARDAN F: 70 Sc-HOGI	Ce-p38	MFPQTTMDHILHPTPREGYYVVELNRSVWVVPNY	YINLTPIGTGAYGT	VCAAECTRSGTRVA	IKK <mark>FN</mark> RPF: 7	70
SG-HOGI	Не-р38	MADGAQRTLHRIELNKEVWEVPVK	YTDLVPIGSGAFGQ	VCSALNSESNTSVA	r <mark>kkls</mark> aaf: 7	70
Ba-p38 Div Vie CKRTYRELELLANDALADVIGLEG CHE	Sc-HOG1	MTTNEE <mark>F</mark> IRTQIFG <mark>TVFE</mark> ITNR	YNDLNPVGMGAFGI	VCSATDTLTSQPVA:	IKKIMKPF: 5	58
Ba-p38 Div Wild GRTYRE LELLEHMENDIVIGLEOTEN TO 3 V Ba-p38 OSIT HAARTYRE LELLEHMENDIVIGLEOTEN To 4 Div Wild Mild Colon Interdention (Colone) Ce-p38 OSIT HAARTYRE LELLEHMENDIVIGLEOTEN To 4 Div Wild Group (Colone) Div Wild Group (Colone) Schward Internet Colone (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Schward Internet Colone (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Schward Internet Colone (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Schward Internet Colone (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Schward Internet Colone (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Div Wild Group (Colone) Schward Internet Colone						
Ba-p38 DTV GIGKETYERLELDENKE NDVIGLED GENE		⁵⁶² + III + IV	+	$\mathbf{V}^{\mathrm{F103}}$ V	+	
Ha-p38 OST HIAKRYYRELKILLKIW KIENYIGLLÖYFEARSUBENDYYLOT HUMADINI KORKUPKI (2000) B4-p38 OST HIAKRYYRELKILLKIW KIENYIGLLÖYFEARSUBENDYYLOT HUMADINI KORKUPKI (2000) S4-p38 OST HIAKRYYRELKILLKIW HENNIGLLÖYFEARSUBENDYYLOT HUMADINI KORKUPKI (2000) S4-p38 OST HIAKRYYRELKILKIW HENNIGLLÖYFEARSUBENDYYLOT HUMADINI (2000) S4-p38 OST HIAKRYYRELKILKI (2000) S5-RAKGIYKE KIMUEHIN HENNIGLLÖYFERSUNDIE LÖYYVEN HUMADINI (2000) S5-RAKGIYKE KIMUEHIN HENNIGLÜYFESEDDDE UYYVEN HUMADINI (2000) S5-RAKGIYKE KIMUEHIN HENNIGLÜYFESEDDDE UYYVEN HUMADINI (2000) S5-RAKGIYKE KIMUEHIN HENNIGLÜYE (2000) S5-RAKGIYKE KIMUEHIN HENNIGLÜYE (2000) S5-RAKGIYKE KIMUEHIN HENNIGLÜYE (2000) S5-RAKGIYKE KIMUEHIN KINGA S5-RAKGIYKE KIMUEHINGKEN KIMUEHING (2000) S5-RAKGIYKE KIMUEHINGKEN KIMUEHINGKEN KIMUEHING S5-RAKGIYKE KIMUEHINGKEN KIMUEHING (2000) S5-RAKGIYKE KIMUEHINGKEN KIMUEHINGKEN KIMUEHING (2000) S5-RAKGIYKE KIMUEHINGKEN KIMUEHINGKEN KIMUEHING (2000) S5-RAKGIYKE KIMUEHINGKEN KIMUEHINGKEN KIMUEHINGKEN KIMUEHING (2000) S5-RAKGIYKE KIMUEHINGKEN KIMUEHINGKEN KIMUEHING (2000) S5-RAKGIYKE KIMUEHINGKEN (2000	Ba-p38	DTVVHGKRTYRELRLLRHMKHDNVIGLLDCFHP-	NTSYETFKDVYF	VT <mark>DLMGADLNNILK</mark>	r <mark>qsltdeh</mark> : 1	L23
Dm-38 GSAWARRTYRELELLKHUDENVIGLOFENHTANGSTENDOCYLLYTENDADENNITROGENSITENDES GSAWARRTYRELELLKHUREN GLUUFSGASTPEGOVYLWANKGGUNITROGSENDER GSIHAARTYRELELKENDENNIGLOVFNGNENWNDIGVYWYSMAMGADINIRIGOSUNDH He-38 GSIHAARTYRELELKENDENNIGLOVFNGNENWNDIGVYWYSMAMGADINIRIGOSUNDH He-38 GSIHAARTYRELELKENDENNIGLOVFNGNENWNDIFOVYWYSMAMGADINIRIGOSUNDH He-38 GSIHAARTYRELELKENDENNIGSDUFFNGSSLDDFDEDENFYTPEGADINILKOGSUNDH He-38 GSIHAARTYRELELKENDENNIGSDUFFNGSSLDDFDEDENFYTPEGADINILKOGSUNDH He-38 VOFUVILKGLKYHKAATHNENVIGIOUFNGSSLDDFDEDENFYTPEGADININI Ba-38 VOFUVILKGLKYHKAATHNENVIGIOUFNGSSLDDFDEDENFYTPEGADININ HS-39 VOFUVILKGLKYHKAATHNENVIGIOUFNGSSLDDFGLARHODGENT VOFUVILKGLKYHKAATHNENKENIAN HS-39 VOFUVILKGLKYHKAATHNENKENIAN HS-39 VOFUVILKGLKYHKAATHNENKENIAN HS-39 VOFUVILKGLKYHKAATHNENKENIAN HS-39 VOFUVILKGLKYHKAATHNENKENIAN HS-39 VOFUVILKGLKYHKAATHNENKENIAN HS-39 VOFUVILKGLKYHKAATHNENKENIAN HS-39 VOFUVILKGLKYHKAATHNENKENIAN HS-39 VOFUVILKGLKYHKAATHNENKENIAN HS-39 VOFUVILKGLKYHKAATHNENKENIAN HS-39 VOFUVILKGLKYHKAATHNENKENIAN HS-30 VOFUVILKGLKYHKAATHNENKENIA HS-30 VOFUVILKGLKYHKAATHNENKENIAN HS-30 VOFUVILKGLKYHKAATHNENKENIA HS-30 VOFUVILKGLKYHKAATHNENKENIA HS-30 VOFUVILKGLKYHKAATHNENKENIA HS-30 VOFUVILKGLKYHKAATHNENKENIA HS-30 VOFUVILKGLKYHKAATHNENKENIAN HS-30 VOFUVILKGLKYHKAATHNEN HS-30 VOFUVILKGLKYHKAA	Hs-p38	QS <mark>II</mark> HAKRTYRELRLLKHM <mark>K</mark> HENVIGLLDVF <mark>T</mark> P-	AR <mark>SLEE</mark> FNDVYI	VTHLMGADLNNIVK	CQKLTDDH: 1	126
Sd-p38 CPLAVERERT NELEY DELEMENT IGLLOV FBCAST PERODVYLWEMMOGDUS NIT ROSS FIDEL : 137 Ce-p38 CFLTAR TYRETER DELEGOLIEN IGLLOV FBCAST PERODVYLWEMMOGDUS NIT ROSS FIDEL : 137 Sc-H061 STAVIAKTYRETER DELEGOLIEN IGLLOV FBCAST PERODVYLWEMMOGDUS NIT ROSS FIDEN DI StavIAKTYRETER VELEX HERENDEC OF ELSPLEDIVEYTER OGDUNT IK ASE BODH : 137 Sc-H061 STAVIAKTYRETER VELEX HERENDEC OF ELSP	Dm-p38	QSAVHAKRTYRELRLLKHMDHENVIGLLDIFHPH	IPANG <mark>SLE</mark> NFQQVYI	VTHLMDADLNNIIR	MQHLSDDH: 1	L30
Ce-p38 GITHARTYREJERLIKGCEEN HOLDUVFTGNENVADIEDVYFYSMEMGADSNITKEGRUNDE: 137 SC-B01 STADIARTYREJERLIKGEMMENTIGUNDETDASGLDDEDEUVFYSMEMGADSNITKEGADSNITK	Sd-p38	QTAVHAKRTYRELRYLKHMKHENIIGLLDVFSP-	ASTFEEFQDVYI	VMHLMGSDLNNIIR	QQSLTDEH: 1	L33
He-p38 OS STARKEDIYKKERKEDEMNNERVIGLOVFEDAS BUDDEDELYFYUREUGADLINNIEKGARESDEH: 137 Sc-HG1 STAVLAKKTYRELKDLKHESKEVIGLOVFED-VEDELOVFED	Ce-p38	QSIIHARRTYRELRLLRCMCHENIIDLLDVFTP-	NENVNDIEDVYF	V <mark>SMLMGADLS</mark> NILK	IQRLNDDH: 1	L37
SC-HOGI STANDAKRYRELKILKHURMENL HODOT ISSPLEDTYPVER HOT DIHRLMOTRPERKER (EKOF: 120 VIa VIb A158 VII +E179 VIII Ba-p38 VOPLYVOILROLKYIHSAGIIHRDLKPSNIAVNEDOELKILDFGLAR PEDBENGYVATRWYRAPEININ: 193 Sd-p38 VOPLYVOILROLKYIHSAGIIHRDLKPSNIAVNEDOELKILDFGLAR PEDBENGYVATRWYRAPEININ: 203 Sd-p38 VOPLYVOILROLKYIHSAGIIHRDLKPSNIAVNEDOELKILDFGLAR PEDBENGYVATRWYRAPEININ: 203 Sd-p38 VOPLYVOILROLKYIHSAGIIHRDLKPSNIAVNEDOELKILDFGLAR PEDBENGYVATRWYRAPEININ: 203 Ce-p38 LQFLVYOILROLKYIHSAGIIHRDLKPSNIAVNEDOELKILDFGLAR PEDBENGYVATRWYRAPEININ: 203 Sc-HOGI VOFLYVOILROLKYIHSAGIIHRDLKPSNIAVNEDOELKILDFGLAR PEDBENGYVATRWYRAPEININ: 207 Sc-HOGI VOYFLYOILROLKYIHSAGIIHRDLKPSNIAVNEDOELKILDFGLAR PEDSENGYVATRWYRAPEININ: 207 Sc-HOGI VOYFLYOILROLKYIHSAGIIHRDLKPSNIAVNEDOELKILDFGLAR PEDSENGYVATRWYRAPEININ: 207 Sc-HOGI VOYFLYOILROLKYIHSAGIIHRDLKPSNIAVNEDOELKILDFGLAR PEDSENGYVATRWYRAPEININ: 207 Sc-HOGI VOYFLYOILROLKYWSKOCIMAELLTRFTFFFTDIHDLKNININENGYTEN FASELKKISSESARNIOLTOWP: 266 Dm-p38 WHYNOTVDIWSVOCIMAELLTRFTFFFTDIHDLKNININENGYTEN FASESARNIOLTOWP: 267 Sd-p38 MHYNOTVDIWSVOCIMAELLTRFTFFFTDIHDLKNININENGYTEN FASESARNIOLTOWP: 273 Sc-HOGI VOYFLYOINSVOCIMAELLTRFTFFFTDIHDLKKIKTEN FASESARNIOLTOWP: 273 Sc-HOGI WOKWYNENGYNTERAFTFFTFFTDIHDLKKIKISSESARNIOLTOWP: 273 Sc-HOGI WOKWYNENGYNTERAFTFFTFFTDIHDLKKINININENGYTEN FERSENKISSESARNIOLTOWP: 273 Sc-HOGI WOKWYNENGYNTERAFTFFTFFTDIHDLKKNINGESDEFLKKISSESARNINGEGT: 277 Sc-HOGI WOKWYNENGYNTERAFTFFTFFTDIHDLKKINGYSTEN FERSENSESARNINGEGT: 277 Sc-HOGI WOKWYNENGYNTERAFTFFTFFTDIHDLYNNNENGESDEFLKKISSESARNENYTENEFWE: 273 Sc-HOGI WOKWYNENGYNTERAFTFFTFFTDIHDLYNNNENGESDEFLKKISSESARNENYTENEFWE: 273 Sc-HOGI WOKWYNENGYNTERAFTFFTFFTHIDLYNNNNENGESDEFLKISSESARNENYTENEFWE: 273 Sc-HOGI WOKWYNENGYNTERAFTFFTFFTHIDLYNNNNENGESDEFLKISSESARNENYTENEFWE: 273 Sc-HOGI WOKWYNENGYNTENEFTFFTHIDLYNNNNENGESDEFTHKISSENGENTENINGEGT: 277 Sc-HOGI WOKWYNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN	Не-р38	QSSVRAKQIYRKLKMLEHMNHENVIGLLDVFTP-	AS <mark>S</mark> LDDFDELYF	VTPLLGADLNNILK	QAELSDDH: 1	L37
Via Vib A158 Vii E179 Viii Ba-p38 VQFLYVQILRGLKYIHSAGTIHRDLKPSNLANNEDCELKILDPGLAR PTEHENTGYVATRWKRAPEIMLN: 193 Dm-p38 VQFLYQILRGLKYIHSAGTIHRDLKPSNLANNEDCELKILDPGLAR TDEEMTGYVATRWKRAPEIMLN: 196 Dm-p38 VQFLYQILRGLKYIHSAGTIHRDLKPSNLANNEDCELKILDPGLAR TDEEMTGYVATRWKRAPEIMLN: 203 Ce-p38 VQFLYQILRGLKYIHSAGTIHRDLKPSNLANNEDCELKILDFGLAR TDEEMTGYVATRWKRAPEIMLN: 203 Ce-p38 VQFLYQILRGLKYIHSAGTIHRDLKPSNLANNEDCELKILDFGLAR TDEEMTGYVATRWKRAPEIMLN: 203 Sc-Hogi VQFTYQLRGLKYIHSAGTIHRDLKPSNLANNEDCELKILDFGLAR TDEEMTGYVATRWKRAPEIMLN: 203 Sc-Hogi VQFTYQLRGLKYHSAGTIHRDLKPSNLANNEDCELKILDFGLAR TDEEMTGYVATRWKRAPEIMLN: 203 Sc-Hogi VQFTYQLRGLKYHSAGTIHRDLKPSNLANNEDCELKILDFGLAR TOPGATGYVATRWKRAPEIMLN: 203 Sc-Hogi VQFTYQLLRCLKYHSAGTIHRDLKPSNLANNEDCELKILDFGLAR TOPGATGYVATRWKRAPEIMLN: 203 Sc-Hogi VQFTYQLLRCLKYHSAGTIHRDLKPSNLANNEDCELKILDFGLAR TOPGATGYSKIKYKRAPEIMLN: 203 Sc-Hogi TYCHYGLKSLKYKRAPEIMLNEDKEN	Sc-HOG1	STAVLAKRTYRELKLLKHLRHENLICLQDIFLSF	9 LEDIYE	VTELQGTDLHRLLQ	FRPLEKQF: 1	L20
Via Vib V		A158		E179		
Ba-p38 VQFLVYQILKGLKYIKSACI THADLKPSNLAVNEOCEJKILDFGLARHEDDEWTGYTATNWYKAPETNIN 195 Hs-p38 VQFLYQILRGLKYIKSACI THADLKPSNLAVNEOCEJKILDFGLARHEDDEWTGYTATNWYKAPETNIN 196 Dm-p38 VQFLYQILRGLKYIKSACI THADLKPSNLAVNEOCEJKILDFGLARHEDEWTGYTATNWYKAPETNIN 200 Sd-p38 VQFLYQILRGLKYIKSACI THADLKPSNLAVNEOCEJKILDFGLARHEDEWTGYTATNWYKAPETNIN 200 Sd-p38 VQFLYQILRGLKYIKSACI THADLKPSNLAVNEOCEJKILDFGLARHEDEWTGYTATNWYKAPETNIN 200 Sc-H0G1 VQFFLYQILRGLKYIKSACI THADLKPSNLAVNEOCEJKILDFGLAR DEWTGYTATNWYKAPETNIN 200 Sc-H0G1 VQFFLYQILRGLKYIKSACI THADLKPSNLAVNEOCEJKILDFGLAR DEWTGYTATNWYKAPETNIN 200 Sc-H0G1 VQFFLYQILRGLKYIKSACI THADLKPSNLAVNEOCEJKILDFGLAR DEWTGYTATNWYKAPETNIN 200 Sc-H0G1 VQFFLYQILRGLKYIKSACI THADLKPSNLAVNEOCEJKILDFGLAR DEWTGYTATNWYKAPETNIN 200 Sc-H0G1 VQFFLYQILRGLKYKSACI TALLTGRTLFFGTDHIJQIKLIN 100 SC-P38 WMHYNGTVDIWSVGCIMAELLTGRTLFFGTDHIJQIKLILLFWGTFGALLKKISSESAR NIGLTONF 200 Sc-H0G1 VQFFLYQIVASVGCIMAELLTGKLFFGSDHIJQITRLUUTGFPARFFLKKISSESAR VIGLTONF 200 Sc-H0G1 VQFVDIWSVGCIMAELLTGKLFFGSDHIJQITRLUUTGFPARFFLKKISSESAR VIGLTONF 200 Sc-H0G1 VQFVDIWSVGCIMAELLTGKLFFGSDHIJQITRLUUTGFPARFFLKKISSEAR VIGLTSEDWE 200 SC-H0G1 VQFVDIWSACI FACHIEGKPLFFGSDHIJQITRLUUTGFPARFFLKKISSEAR VIGNE 200 SC-H0G1 VQFVDIWSACI FACHIEGKPLFFGSDHIJQITRLUUTGFPARFFLKKISSEAR VIGNE 200 SC-H0G1 VQFVDIWSACI FACHIEGKPLFFGSDHIJQITRLUUTGFPARFFLKSSEDEWTKISSEAR VIGNE 200 SC-H0G1 VQFVDIWSACI FACHIEGKPLFFGSDHIJCISSE 200 SC-H0G1 VQFVDIWSACI FACHIEGKPLFFGSDHIJCISSE 200 SC-H0G1 VQFVDIWSACI 200	-	Vla – Vlb V=			VIII	
Ha-p38 VQEL PVOLINGLKYTH SADTI HRD KPSNIA AN BEOCLATIDEG LAR PTDBEWG YVAR KWRAPETNI. 1 200 Sd-p38 VQELVYQILRGLKYTH SADTI HRD KPSNIA V BEOCLATIDEG LAR PTDBEWG YVAR KWRAPETNI. 200 Sd-p38 VQELVYQILRGLKYTH SADTI HRD KPSNIA V BEOCLATIDEG LAR PTDBEWT GYVAR KWRAPETNI. 200 Ce-p38 VQELVYQILRGLKYTH SADTI HRD KPSNIA V BEOCLATIDEG RAPCED SEMT GYVAR KWRAPETNI. 200 Sc-HOGI VQYE LYQILRGLKYTH SADTI HRD KPSNIA V BEOCLATIDEG RAPCED SEMT GYVAR KWRAPETNI. 200 Sc-HOGI VQYE LYQILRGLKYTH SADTI HRD KPSNIA V BEOCLATIDEG RAPCED SEMT GYVAR KWRAPETNI. 201 Sc-HOGI VQYE LYQILRGLKYTH SADTI HRD KPSNIA V BEOCLATIDEG RAPCED SEMT GYVAR KWRAPETNI. 201 Sc-HOGI VQYE LYQILRGLKYTH SADTI HRD KPSNIA V BEOCLATIDEG RAPCED SEMT GYVAR KWRAPETNI. 201 FT204 IX TAPETNIA TO THE SEMT GYVAR KWRAPETNIA TO THE SEMT GYVAR KWRAPETNIA TO THE SEMT GYVAR WRAPETNIA TO THE SEMT STATE Y	Ba-p38	VQFLVYQILRGLKYIHSAGIIHRDLKPSNLAVNE	DCELKILDFGLARF	TEHEMTGYVATRWY	RAPEIMLN: 1	193
Dm-538 VOELVYOLEKCLKYTHSAG INKDLKPSNIANNEOCELEUDFGLARATDEENGYVATKWYRAPEINLE 203 Ce-p38 IOFLYYOLIKGLKYTHSAG IVEKLKPSNIANNEOCELEUDFGLARATDEEWTGYVATKWYRAPEINLE 203 Ce-p38 IOFLYYOLIKGLKYTHSAG IVEKLKPSNIANNEOCELEUDFGLARATDEEWTGYVATKWYRAPEINLE 203 Sc-HOGI VOFFLYOLIKGLKYTHSAG IVEKLKPSNIANNEOCELEUDFGLARIODFGLARATDEEWTGYVATKWYRAPEINLE 203 Sc-HOGI VOFFLYOLIKGLKYTHSAG IVEKLKPSNIANNEOCELEUDFGLARIODFGLARATDEEWTGYVATKWYRAPEINLE 203 Sc-HOGI VOFFLYOLIKGLKYTHSAG IVEKLKPSNIANNEOCELEUDFGLARIODFGLARIODFOXTGYVATKWYRAPEINLE 207 Sc-HOGI VOFFLYOLIKGLKYTHSAG IVEKLKPSNIANNEOCELEUDFGLARIODFOXTGYVATKWYRAPEINLE 207 Sc-HOGI VOFFLYOLIKGLKYTHSAG IVEKLYPSNIANNEOCELEUDFGLARIODFOXTGYVATKWYRAPEINLE 207 Sc-HOGI VOFFLYOLIKGLKYTHSAG IVEKLYPSNIANNEOCELEUTT Ba-p38 MMHYOTVDINSVGCIMAELTGRTLFPGTDHIHOLNKI LIKUGTFGABLIKKISSESARAYIRSLEPMK 263 Sd-p38 MMHYOTVDINSVGCIMAELTGRTLFPGTDHIHOLNKI LIKUGTFGABLIKKISSESARAYIRSLEPMK 270 Sd-p38 MMHYOTVDVSVGCIMAELTGRTLFPGTDHIHOLNKI LIKUGTFGABLIKKISSESARSYIOSLEPMK 270 Sc-HOGI WOTVDVSVGCIMAELTGRTLFPGTDHIHOLTKKUGLVGKESDSCHKKISSESARNYIRSLERMT 277 Sc-HOGI WOHNOKVDIWSVGCIMAELTGRTLFPGTDHIHOLTKKUGLVGKESDSCHKKISSEANNYIRNLEKMT 277 Sc-HOGI WOHNOKVDIWSVGCIHAELTGKPLFPGKDHVHOFSTITDLIGSEPKKVINTTCSENTLKFTSEHRD 260 HANNEAVDIGSCHFREMTEGRPFFGKDHVHOFSTITDLIGSEPKDVINTTCSENTLKFTSEHRD 260 HANNEAVDIGSCHFREMTEGRPFFGKDHVHOFSTITDLIGSEPKDVINTTCSENTLKFTSEHRD 260 HANNEAVDIGSDFFRGNPLAVDLLEKNLVLDEDKRIFAAGALAHAYFAOYHDPDEPKPFSPL-FDECFENVOLPTE 322 Hs-p38 KKDEKGPRGAPELATDLLEKNLELDAEKRIFAAGALAHAYFAOYHDPDEFVSPL-VDSFESRDLLID 335 Dm-p38 GRSEKNVEKNNPLATDLLEKNLELDAEKRIFAAGALAHAYFAOYHDPDEFVSPL-VDSFESRDLLID 335 Dm-p38 KKDEGYPPNGSPEATNLLEHILTLDPERFFAEGALAHPYFAKYODTKDEESSE-VDHSPKKJDDLPV0 330 Ba-p38 HANDENDENTDFHLEHILTLDPERFFAEGALAHPYFAKYODTKDEESSE-VDHSPV0 330 Ba-p38 HANDENDENGVILLEKNLEDPERFFAEGALAHPYFAKYODTKDEESSE-VDHSPKKJDDLPV0 330 Ba-p38 HANDENDENGFYFFFGXDYLLEXNLEFFFERKENGEYFAEGALAHPYFAKYODTKDEESSE-VDHSPV0 330 Ba-p38 KKBETNDEVISFYPPPI 355 HSF708 KKBETNDEVISFYPPPI 355 HSF708 KKBETNDENGSFTDFHLENGGSDGOTDU 355	Hs-p38	VQFLLYQILRGLKYIHSADIIHRDLKPSNLAVNE		TDDEMTGYVATRWY	RAPEIMLN: 1	196
SG-p36 VOF UV OLLEGLEN WESAAU HERDLERSN TANE DE LEN LDECLAR, DE SMICY VARTEN APPENDE HE-p38 VOF UV OLLEGLEN WESAAU HERDLERSN TANE DE LEN LDECLAR, DE SMICY VARTEN FAR PENDE SC-H061 VOY FLY OLLEGLEN WESA UNDER LEN DE LEN DE LEN DE LAR, DE SMICY VARTEN FAR PENDE T204 IX X I IN DE DLEN DE LEN DE LEN DE LEN DE LEN DE LEN DE LEN SE SARAYIRS LEPME : 207 SC-H061 VOY FLY OLLEGLEN WESAGU HERDLERSN TANE DE LEN DE LEN DE LEN DE DE LEN SE SARAYIRS LEPME : 207 Sc-H061 VOY FLY OLLEGLEN WESAGU HERDLERSN TANE DE LEN DE DLEN DE DE LEN SE SARAYIRS LEPME : 263 Ba-p38 WHYN OT VOI WSVGCIMAELLT RETLEPETDHIH DUN THIE LOG SEBD DE LEKTISSE SARAYIRS LEPME : 264 Dm-p38 WHYN OT VOI WSVGCIMAELLT RETLEPETDHIH DUN THIE LOG SEBD DE LEKTISSE SARAYIRS LEPME : 277 Sc-p38 WHYN OT VOI WSVGCIMAELLT GOVLEPETDHIH DUN THILLEN UT PERSETEKTISSE SARASTIOST. PMK : 277 Sc-H061 WOY VOI WSVGCIMAELLT GOVLEPETDHIH DUT THIN SVITET PERSETEKTISSE SARANYIRS THE PEME : 277 Sc-H061 WOY VOU WSVGCIMAELLT GOVLEPETDHIH DUT THIN SVITET PERSETEKTISSE SARANYINTEN DE GWT : 277 Sc-H061 WOY VOU WSVGCIMAELLT GOVLEPETDHIH DUT THIN SVITET PERSETEKTISSE SARANYINT SMEGWT : 277 Sc-H061 WOY VOU WSVGCIMAELLT GOVLEPET SCHID DUT THIN SVITET PERSETEKTISSE SARANYINT SMEGWT : 277 Sc-H061 WOY VOU WSVGCIMAELLT DE VOU TO THE STITT DULES PERD VINT THE SENTLER WIT SLEHKT : 260 THE STATE SANDAN WE TAND LAKEN UND SKRIT PAADALAHAN FAQH PE DE PTONINT THE SENTLE WIT SLEHKT : 277 Sc-H061 WOY VEVOIWSACT FAMM TE GER LEFECK DUT THE ACALAHAN FAQH PE DE PTONINT THE SENTLE WIT SLEHKT : 260 THE STATE SANDAN WE TAND LAKEN DE DREN FARE PAALAHAN FAQH PE DE PTONINT THE SENTLE WOU PTE : 332 Dm-p38 GRESSEN WENN AND LAT DLLEKMLY DE SKRIT PAADALAHAN FAQH PE DE PTONINT THE SENTLE WIT SLEHKT : 260 SC-H061 PIPSSERSKIVEN AND LAND LEVELLE MED PERFITISE CALAHEYFN MADO DE PVADE FERKED DE VON SES SKRITTE SANDAN WE NO ADD LEVEL : 353 DM-p38 KKDEN TYDE TEDWEKKQOAAKRAAG : 357 HS-p38 ENKENT NE RETREVENDEN SKRITT DE STATE SANDAN HENDADLEVEL : 366 SC-H061 PIPSSERSKIT VE DAVID LEKMLY FDE KKR A SANDAN SANDAN H	Dm-p38	VQFLVYQILKGLKYTHSAGVIHKDLKPSNIAVNE	DCELRILDFGLARP	TENEMTGYVATRWY	RAPEIMLN: 2	200
CG-p33 WHY TOTVOLKSGUNT THAD THAD THAD THAD THAD THAD THAD THA	5a-p38	VQFLVYQILRGLKYVHSAAIVHRDLKPSNIAVNE		TDEEMTGYVATRYNI	CAPEIMLN · 2	203
Me-p33 VowFLYGLERGENTYMENSAGY THEORY ANALOGUENTIDEGED FOR DALDAD STOP AND RAPPOINT 1000 Sc-HOGI VOWFLYGLERGENTYMENSAGY THEORY NAMENOLULATIDEGED FOR DALDAD STRY (RAPPEIND 1000) MHYNOTVDIWSVGCIMAELLTRETLEFGEDHIHON THEEDOSPSDDELKKISSESARAYIRSLEPMK: 263 MHYNOTVDIWSVGCIMAELLTRETLEFGEDHIHON THEEDOSPSDDELKKISSESARAYIRSLEPMK: 263 MHYNOTVDIWSVGCIMAELLTGETLEFGEDHIHON THEEDOSPSDDELKKISSESARAYIRSLEPMK: 270 Sd-p38 WHHYNOTVDIWSVGCIMAELLTGETLEFGEDHIHON THEEDOSPSDDELKKISSESARAYIOSLEPMK: 270 Sd-p38 WHYTOTVDWSVGCIMAELLTGETLEFGEDHIDOUTRILGUVGTPCAE WMHYNOTVDIWSVGCIMAELLTGETLEFGENDHIDOUTRILGUVGTPDEFLKKISSESARSYIOSLEPMK: 277 Sc-HOGI WOKNOKVDIWSVGCIMAELLTGETKEFFGENDHIDOUTRIMSVTGPEDEFLKKISSEARNIRNERKOF: 277 Sc-HOGI WOKNOKVDIWSVGCIMAELLTGEREFFGKDHHOFTSITTDLESPRKOVINTECSENTLKEVTSLEHRD: 260 MMYNOVVDIWSVGCIMAELLTGENUTGKALFFGKDHHOFTSITTDLESPRKOVINTECSENTLKEVTSLEHRD: 260 MOHNOKVDIWSVGCIMAELLTGEREFFGKDHHOFTSITTDLESPRKOVINTECSENTLKEVTSLEHRD: 260 MOHNOKVDIWSVGCIMAELLTGKEREFGKDHYNOVARATIK MOHNOKVDIWSVGCIMAELTERKTERSENTERCHIPTSITTDLESPRKOVINTECSENTLKEVTSLEHRD: 260 MOHNOKVDIWSVGCIMAELTERKTERSENTERCHIPTS Ba-p38 AKDFKOFKARANDINDALDUNAKINGUDARARAAG Sd-p38 RMENNERANDIATDLEKMINGUDARARAAG Sd-p38 RADFSKFVGANPLATDLEKMINGUDARARAAG Sd-p38 RADFSKFVGANPLATDLEKMINGUDARARAG	ue-pse			ALDAMDCYWATRWII	CAPEIMLN · 2	207
3C-HOSI WHEN DEVENDENT JUSTICE INTERVENTION TO POINT OF WHENT OF	Re-P30	VOLI A LOUINGIKI LUSAGI AUNDI KOSUTI UNI			DADETMIT · 1	190
Hardson T204 IX X Ba-p38 WMHYN OTVDIWSVGCIMAELLT RKTLFPGTDHIHOTNIIIELOGS SDDFLKKISSESARAYIRSLPWK: 263 Ms-p38 WMHYN OTVDIWSVGCIMAELLT RKTLFPGTDHIHOTNIIIELOGS SDDFLKKISSESARAYIRSLPWK: 266 Dm-p38 WMHY DOTVDIWSVGCIMAELLT RKTLFPGTDHIHOTNIIIELOGS SDDFLKKISSESARYIOSLPWK: 270 Sd-p38 WMHY OTVDIWSVGCIMAELLT RKTLFPGTDHIDOLT RILOUTGEDKEFLKKISSESARYIOSLPWK: 270 Sd-p38 WMHY OTVDWSVGCIMAELLT CVIFPGSDHIDOLT RIMSVTGT DEEFLKKISSESARYINK PMFF: 277 Sc-p38 WMOHN OKVDIWSVGLYHGRVLTGKALFPGNDHIDOLT RIMSVTGT DEEFLKKISSEANARNYT SMPGWT: 277 Sc-H061 WOKNOKVDIWSVGLYHGRVLTGKALFPGNDHIDOLT RIMSVTGT DEEFLKKISSEANARNYT SMPGWT: 277 Sc-H061 WOKNOKVDIWSAGCT FAEMIECKPLFPGSCHUPG STITDULGSEPKDVINTTIC SENTLKFVTSLPHRD: 260 Ba-p38 AKDEKOPSRANELAIDLEKMLVLDSDKRIFAAQALAHAYFAOYHDPDDEPNSPL-YDDSESRDLID: 335 Dm-p38 GRSENVEKNANELAIDLEOULSMEPKPKELAIHPYENNAAPADPDEPNSPL-YDDTFEKLEQUDI: 342 Ce-p38 RDBKKLEAQATEOAIDLEOULSMEPKPKEFAEQALAHEYFENAAPATEAHHETOEPNSPL-YDDTFEKLEQUDI: 342 Sc-H061 PIPESER KTVEDAVDLLEKMLHLDPDRRFAKEAMHET	20-11001		NCDIKICDIGIAKI	QDEQNIGIVSIRI	ALLIND 1 . 1	250
Ba-p38 WMHYNOTVDIWSVGCIMAELLTRKTIFPGTDHIHQUNIIIEGOGSPSDDFLKKISSESARAYTRSLPPMK: 263 Hs-p38 WMHYNOTVDIWSVGCIMAELLTRRTIPGTDHIQUKLIIREVGTPGAELLKKISSESARAYTRSLPPMK: 266 Dm-p38 WMHYDOTVDIWSVGCIMAELTRRTIPGTDHIQUNIMEMIGTPAEFLKKISSESARAYTOSLPPMK: 270 Sd-p38 WMHYGTVDIWSVGCIMAELTGQVLPPGTDHIQUTRILQIVGTPDKEFLDKITSETARTFESMPRPF: 273 Ce-p38 WMHYTOTVDWSVGCIMAELTGQVLPPGTDHIQUTRILQIVGTPDKEFLDKITSETARTFESMPRPF: 277 Sc-H0G1 WOKVDUWSVGCIMAELTGKALPPGNDHIQUTRIMOUVGKESDSFLHKISSEARNYIRNLEKMT: 277 Ba-p38 AKDFKQFFRGANPLAIDLEKKLUGKALPPGNDHIQUTKIMOUVGKESDSFLHKISSEARNYIRNLEKMT: 277 Sc-H0G1 WOKVDVEVDIWSAGCIFAEMTEGKPLPFGKDHVHOFSITTDELGSPFKDVINTTCSENTLKFVTSLPHRD: 260 WOKVDVEVDIWSAGCIFAEMTEGKPLPFGKDHVHOFSITTDELGSPFKDVINTTCSENTLKFVTSLPHRD: 260 Ba-p38 AKDFKQFFRGANPLAIDLEKKLUDSDKRITAAQALAHAYFAQYHDDDDEDVADP-VDQSFESRDLIID: 335 Dm-p38 GSEKNVEKNANPLAIDLEKKLUDSDKRITAAQALAHAYFAQYHDDDDEDVADP-VDQSFESRDLIID: 335 Dm-p38 GSEKNVEKNANPLAIDLEKKLUDSDKRITAAQALAHAYFAQYHDDDDEDVADP-VDQSFESRDLID: 332 Ce-p38 RRDFKKIFAOATPQAIDLEKKLUDDBRRPAEALSHPYLEKYABSVEOTSPP-VDNFFEKLEQOL: 342 Ce-p38 RRDFKKIFAOATPQAIDLEKKLUDDBRPARPTAKEALSHPYLEKYABSVEOTSPP-VDFFEKLEQOL: 342 Ce-p38 RRDFKKIFAOATPQAIDLEKKLUDDBRPARPTAKEALSHPYLAAYHDETDEDIAEE-MDLNDDVRADTID: 346 He-p38 KKDFGEYPNGSPEATNLEHILTLDPEERFTAEQALAHPYFSAPYHDPTDEPVADAKFDWHFNDADLPVD: 330 Ba-p38 HNRQLWYDEISFVPPPI: 353 Dm-p38 GKKLUIDEITAFQTDPTYQQSL-: 366 Ce-p38 GKKLUIDEITAFQTDPTYQQSL-: 366 Ce-p38 GKKLUIDEITAFQTDPTYQQSL-: 366 Ce-p38 GKKLUIDEITAFQTDPTYQQSL-: 366 Ce-p38 GKKLUIDEITAFQTDPTYQQSL-: 366 Ce-p38 GKKLUIDEITAFQTDPTYQQSL-: 366 Ce-p38 GKKLUIDEITAFQTDPTYQQSL-: 355		$+$ T_{204} IX $+$	X			
Hs-p38 WMHYNCTVDIWSVGCIMAELLTGRTLFPGTDHIDQLKLILFBVGTPGAELLKKISSESARNYICSLTOMP: 266 Dm-p38 WMHYDOTVDIWSVGCIMAELTTRTLFPGTDHIHQLNIIMEMIGTPAEFLKKISSESARNYICSLPPMK: 270 Sd-p38 WMHYGKVDIWSVGCIMAELTGRTLFPGSDHIDQLTRILOUVGTPDEFLDKITSETARTFESMPNFF: 273 Ce-p38 WMHYTCTVDWSVGCIMAELTGKTLFPGSDHIDQLTRINGVGTPDEFLKKISSESARSYICSLPPMK: 277 He-p38 WMQHNCKVDIWSVGLYHGRVLTGKALFPGNDHIDQLTKIMOLVGKESDSFLHKISSANARNYITSMEGKT: 277 Sc-H061 WQKVDVEVUNSAGCIFAEMIECKPLFPGKDHVHQFSIITDLLGSPFKDVINTTCSENTLKFVTSLPHRD: 260 Hs-p38 AKDFKOFFRGANPLAIDLLEKMLQLDADLRPTAEEALAHPYLSQYSDETDEFTSPL-DEGFBMVQLPTE: 332 Hs-p38 KMNEANVFIGANPLAYDLLEKMLVLDSDKRIFAAQALAHAYFAQYHDPDDEBVADP-VDOSFBSRDLLID: 335 Dm-p38 GRSEKNVFKNANPLAIDLLEKMLVLDSDKRIFAAQALAHAYFAQYHDPDDEBVADP-VDOSFBSRDLLID: 339 Sd-p38 RRDFSKFFVGANPDAVNLLEQILSMDPDRRPTAKEALAHPYLSQYSDETDEFTSPL-DEGFBMVQLPTE: 342 Ce-p38 RRDFSKFFVGANPDAVNLLEDISKRIFAAQALAHAYFAQYHDPDDEBVADP-VDOSFBSRDLLID: 339 Sd-p38 RRDFSKFFVGANPDAVNLLEDISKRIFAAQALAHAYFAQYHDPDDEBVADP-VDDFFKLEQDOL: 342 Ce-p38 RRDFSKFVGANPDAVNLLEDISKRIFAAQALAHAYFAQYHDPTDEPTAEE-MDLDDVRADTTD: 346 Sc-H061 PIPFSERFKVEPDAVDLUEKMLVDPDRRPTAKEAMEHEYLAAYHDETDEFTAEE-MDLDDVRADTTD: 346 Sc-H061 SC-H061 SKKEPTNEFTAEQALAHPYSAPYHDPTDEPVADAKFDWHFNDADLPVO: 330 Hs-p38 KKEPTNEFTAFTFFTFFTFFTFFTFFTFFTFFTFFTFFTFFTFFTFF	Ba-p38	WMHYNOTVDIWSVGCIMAELLTRKTLFPGTDHIH	OLNITIELOGSPSD	DFLKKISSESARAY:	IRSLPPMK: 2	263
Dm-p38 NMHYDQTVDIWSVGCIMAELITRRILFPGTDHIHQUNIIMEMLGTPPAEFLKKISSESARSYIQSLPPMK: 270 Sd-p38 WMHYGMKVDIWSVGCIMAELLTGVLFPGTDHIDQLTRILQIVGTPDKEFLDKITSETARTFTESMPNFF: 273 Ce-p38 WMHYTQTVDWSVGCIMAELLTGKTLFPGSDHIDQLTRIMSVTGTPDEEFLKKISSEARNYIRNLPKWT: 277 He-p38 NMOHNQKVDIWSVGLYHGRVLTGRAFPGNDHIDQLTRIMOUVGKPSDSELHKISSANARNYITSMEGWT: 277 Sc-H0G1 WOKYDVEVDIWSAGCIFABMIEGKPLFPGKDHVHQFSTITDLLGSPFKDVINTIGSENTIKFVTSLPHRD: 260 VOKYDVEVDIWSAGCIFABMIEGKPLFPGKDHVHQFSTITDLLGSPFKDVINTIGSENTIKFVTSLPHRD: 260 MMNFANVBIGANPLAVDLLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPTSPL-FDEGFEMVQMPTE: 332 Hs-p38 GRSFKNVBKNANPLAIDLLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPVADP-YDQSFESRDLID: 335 Dm-p38 GRSFKNVBKNANPLAIDLLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPNADF-YDDSFESRDLID: 339 Sd-p38 RRDFSKFFVGANPDAVNLLEQLSMDPDRRFTAEEALAHPYFVWYADPDDEPNSP-YDDTFEKLEQDQL: 342 Ce-p38 RRDFKRLFAQATEQAIDLEKMLHLDPDRRFTAKEAMEHEYLAAYHDETDEPIAEE-MDLNDVRADTID: 346 He-p38 KKDFGEYBPNGSPEATNLLEHLLTLDPEERFTAEQALAHPYFAKYQDTKDEPSSKE-YDHSFEKKDJDLF: 330 Dm-p38 GKKKLIYDEVISFVPPPL: 353 Dm-p38 GKKKLIYDEVISFVPPPL: 353 Dm-p38 GKKKLIYDEJITAEQTDPTYQQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYQQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYQQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYQQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYQQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYQQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYYQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYYQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYYQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYQSL-: 366 Ce-p38 GKKKLVDEJITAEQTDPTYQSL-: 366 Ce-p38 GKKKLVEETQNEKPHIPNTGM: 368 Sc-H0G1 TREVMMKSTLDHKJGSDG0DIDI: 355	Hs-p38	WMHYNQTVDIWSVGCIMAELLTG <mark>R</mark> TLFPGTDHID	QLKLILRLVGTPGA	ELLKKISSESARNY	IQSLTQMP: 2	266
Sd-p38 WMHYGMKVDIWSVGCIMAELLTGVLFPGTDHIDQLTRTLQIVGTPDKEFLDKITSETARTFIESMENFF: 273 Ce-p38 WMHYTOTVDWSVGCILAELTGKTLFPGSDHIDQLTRMSVTGTPDEEFLKKISSEARNYIRNLEKMT: 277 He-p38 WMQHNOKVDIWSVGLYHGRVLTGKALFPGNDHIDQLTKIMQLVGKBSDSFLHKISSANARNYITSMEGWT: 277 Sc-H0G1 WQKDVEVDIWSAGCTFAEMIEGKPLFPGKDHVHOFSITTDLLGSEPKDVINTTCSENTLKFVTSLEHRD: 260 He-p38 AKDFKQFFRGANPLAIDLEKMLQDDADLRPTAEEALAHPYLSQNSDPTDEPTSPL-FDEGFEMVQUPTE: 322 Ba-p38 AKDFKQFFRGANPLAIDLLEKMLQDDADLRPTAEEALAHPYLSQNSDPTDEPTSPL-FDEGFEMVQUPTE: 332 Bm-p38 KMNGANVFIGANPLAVDLLEKMLVDSDKRITAAQALAHAYFAQMHDPDDEPVADP-VDQSFESRDLID: 335 Dm-p38 GRSEKNVEKNANPLAIDLEKMLUDSDKRITAAQALAHAYFAQHDPDDEPVADP-VDQSFESRDLID: 339 Sd-p38 RRDFSKFFVGANPDAVNLLEQLSMDPDRPTAKEAMEHEYLAAHDETDEIAEE-MDLNDUVADTID: 346 He-p38 KKDFGEYFFNGSPEATNILEHLUTUDPERFTAEQALAHPYFAKAQDTKDEPSSKP-VDHSFEKKDIDLF: 346 Sc-H0G1 PIPESERFKTVEPDAVDLLEKMLVFDPKKRITAADALAHPYSAPYHDPTDEPVADAKFDWHFNDADLPVD: 330 Ba-p38 HWRQLVYDEIEDWGKKQQAAKRAAG: 357 Hs-p38 EWKSLTYDEVISFVPPLI: 353 Dm-p38 EWKSLTYDEVISFVPPLI: 353 Dm-p38 EWKSLTYDEVISFVPPLI: 353 Dm-p38 EWKSLTYDEVISFVPPLI: 353 Dm-p38 EWKSLTYDEVIS	Dm-p38	WMHY <mark>D</mark> QTVDIWSVGCIMAEL <mark>IT</mark> RRTLFPGTDHIH	QLNLIMEMLGTPPA	EFLKKISSESARSY.	IQSLPPMK: 2	270
Ce-p38 WMHYTOTVDVWSVCCILAELTTGKTLFPGSDHIDQLTRIMSVTGTPDEEFLKKISSEARNYIRNLPKMT: 277 He-p38 WMQHNOKVDIWSVCLYHGRVLTGKALFPGNDHIDQLTKIMQLVGKPSDSFLHKISSANARNYITSMPGWT: 277 Sc-H0G1 WQKYDVEVDIWSAGCIFAEMIEGKPLFPGKDHVHQFSIITDLLGSPKDVINTICSENTLKFVTSLPHRD: 260 MQKYDVEVDIWSAGCIFAEMIEGKPLFPGKDHVHQFSIITDLLGSPKDVINTICSENTLKFVTSLPHRD: 260 MQKYDVEVDIWSAGCIFAEMIEGKPLFPGKDHVHQFSIITDLLGSPKDVINTICSENTLKFVTSLPHRD: 260 MQKYDVEVDIWSAGCIFAEMIEGKPLFPGKDHVHQFSIITDLLGSPKDVINTICSENTLKFVTSLPHRD: 260 MQKYDVEVDIWSAGCIFAEMIEGKPLFPGKDHVHQFSIITDLLGSPKDVINTICSENTLKFVTSLPHRD: 260 Sd-p38 RKDFKNANPIGANPLAIDLLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPVADE-YDQSFESRDLLID: 335 Dm-p38 GRSEKNVFKNANPLAIDLLEKMLELDAEKRITAEALSHPYLEKYAEPSVEQTSPE-YDHSFEDMDLPVD: 339 Sd-p38 RRDFSKFFVGANPDAVNLLEQLISMDPDRPTAEEALAHPYFNYADPDDEPSPF-YDDTFEKLEQDL: 342 Ce-p38 RKDFKKFVGANPDAVNLLEQLISMDPDRPTAKEAMEHYLAAYHDETDEPIAE-MDLNDDVRADTID: 346 Sc-H0G1 PIPSERFKTVEDDAVDLLEKMLVFDPKKRITAADALAHPYSAPYHDPTDEPVADAKFDWHFNDADLPVD: 330	Sd-p38	WMHY <mark>GMK</mark> VDIWSVGCIMAELLTG <mark>Q</mark> VLFPGTDHIC	QLTRILQIVGTPDK	EFLDKITSETARTF	IESMPNFP: 2	273
He-p38 WMQHNQKWDIWSVGLYHGRVLTGKALFPGNDHIDQLTKIMQLVGKPSDSFLHKISSANARNVITSMPGWT: 277 Sc-H0G1 WQKYDVEVDIWSAGCIFAEMIEGKPLFPGKDHVHQFSIITDLLGSPPKDVINTICSENTLKFVTSLPHRD: 260 ————————————————————————————————————	Ce-p38	WMHYTQTVD <mark>V</mark> WSVGCILAELITGKTLFPG <mark>S</mark> DHID	QLTRIMSVTGTPDE	EFLKKISSEEARNY	IRN <mark>LP</mark> KMT: 2	277
Sc-HoG1 NOKYDVEVDIWSAGCI FAEMIEGKPLFPGKDHVHQFSIITDLLGSEPKDVINTICSENTLKFVTSLPHRD: 260 H XI - Ba-p38 AKDFKQFFRGANBLAIDLLEKMLQLDADLRPTAEEALAHPYLSQYSDPTDEPTSPL-FDEGFEMVQLPTE: 332 Hs-p38 KMNBANVFIGANPLAVDLLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPVADP-YDQSFESRDLLID: 335 Dm-p38 GRSEKNVFKNANPLAIDLLEKMLELDAEKRITAEEALSHPYLEKYAEPSVEQTSPP-YDHSFEDMDLPVD: 339 Sd-p38 RRDFSKFFVGANPDAVNLLEQLSMDPDRPTAEEALAHPYFVNYADPDDEPNSPP-YDDTFEKLEQDQL: 342 Ce-p38 RRDFKRLFAQATPQAIDLEKMLHLDPDRRPTAKEAMEHEYLAAYHDETDEPIAEE-MDLNDDVRADTID: 346 He-p38 KKDFGEYFPNGSPEATNLLEHLLTLDPERFTAEQALAHPYFAKYQDTKDEPSSKP-YDHSFEKKDLDLP: 346 Sc-HoG1 PIPFSERFKTVEPDAVDLLEKMLVDPDKKRITAADALAHPYSAPHHDPTDEPVADAKFDWHFNDADLPVD: 330 Ba-p38 HMRQLVYDEIEDWGKKQQAKKRAG: 357 Hs-p38 EWKSLTYDEVISFVPPPL: 353 Dm-p38 KMKELIYKEVTNEKPPSYAQVLKD: 364 Sd-p38 GWKKUVLBITAEQTDTHYQSL-: 366 Ce-p38 EWKSLTYDEVISFVPPPL: 353 Dm-p38 KWKELIYKEVTNEKPPPSYAQVLKD: 364 Sd-p38 GWKKUVLBITAEQTDTHYQSL-: 366 Ce-p38 EWK-KIIWEISDFQKNVAFADEE: 370 He-p38 AWKKUVEETQNEKPHIPNTGM: 368 Sc-HoG1 TWEVMYSETLDEHKKGSDEOUDI: 355	Не-р38	WMQHNQKVDIWSVGLYHGRVLTGKALFPGNDHID	QLTKIMQLVG <mark>K</mark> PSD	SFLHKISSANARNY:	IT <mark>S</mark> MPGWT: 2	277
Ba-p38 AKDEKQFERGANPLAIDLLEKMLOLDADLRPTAEEALAHPYLSQYSDPTDEPTSPL-FDEGFEMVQLPTE: 332 Hs-p38 KMNEANVPIGANPLAVDLLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPVADP-YDQSFESRDLLID: 335 Dm-p38 GRSFKNVBKNANPLAIDLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPVADP-YDQSFESRDLLID: 335 Sd-p38 RRDFSKFFVGANPDAVNLLEQLLSMDPDRPTAEEALAHPYLEKYAEPSVEQTSPP-YDHSFEDMDLPVD: 339 Sd-p38 RRDFKLBAQATPQAIDLEKMLHLDPDRRPTAEEALAHPYFVNYADPDDEPNSPP-YDDTFEKLEQDQL: 342 Ce-p38 RRDFKLBAQATPQAIDLEKMLHLDPDRRPTAKEAMEHEYLAAYHDETDEPIAEE-MDLNDDVRADTID: 346 He-p38 KKDEGEYFPNGSPEATNLEHLLTDPEERFTAEQALAHPYFAKYQDFKDEFSSKP-YDHSFEKKDIDDF: 346 Sc-HOG1 PIPESERFKTVEPDAVDLEKMLVFDPKKRITAADALAHPYSAPYHDPTDEPVADAKFDWHFNDADLPVD: 330 Ba-p38 HWRQLVYDEIEDWGKKQQAAKRAAG: 357 Hs-p38 EWKSHTYDBVISFVPPPL: 353 Dm-p38 KWKEVIDEITAFQTDPTLYQQSL-: 366 Ce-p38 EWKSHTYDBVISFVPPL: 353 Dm-p38 KWKEVINFKPYPSYAQVLKD: 364 Sd-p38 GWKKLVIDEITAFQTDPTLYQQSL-: 366 Ce-p38 EWK-KIIWEEISDFQKNVAFADEEE: 370 He-p38 AWKKLVWETQNFKPHIPNTGM: 368 Sc-HOG1 TWRVMWSETLDEHKIGSDGOUDI: 355	Sc-HOG1	WQKYDVEVDIWSAGCIFAEMIEGKPLFPGKDHVH	IQFSIITDLLGSPPK	DVINTIC <mark>SE</mark> NTLKF	VT <mark>SLP</mark> HRD: 2	260
Ba-p38 AKDEKOFERGANELAIDLLEKMU OLDADLRPTAEEALAHPYLSQYSDPTDEPTSPL-FDEGFEMVQLPTE: 332 Hs-p38 KMNFANVFIGANPLAVDLLEKMUVLDSDKRITAAQALAHAYFAQYHDPDDEPVADP-YDQSFESRDLLID: 335 Dm-p38 GRSFKNVFKNANPLAIDLLEKMUVLDSDKRITAAQALAHAYFAQYHDPDDEPVADP-YDQSFESRDLLID: 339 Sd-p38 RRDFSKFFVGANPDAVNLLEQILSMDPDRRPTAEEALAHPYFVNYADPDDEPNSPP-YDDTFEKLEQDQL: 342 Ce-p38 RRDFKRLFAQATPQAIDLLEKMUHLDPDRRPTAEEALAHPYFVNYADPDDEPNSPP-YDDTFEKLEQDQL: 342 Ce-p38 RRDFKRLFAQATPQAIDLLEKMUHLDPDRRPTAKEAMEHEYLAAYHDETDEPIAEE-MDLNDDVRADTID: 346 He-p38 KKDFGEYFPNGSPEATNLLEHIUTLDPERFTAEQALAHPYFAKYQDTKDEPSSKP-YDHSFEKKDIDLF: 346 Sc-H0G1 PIPFSERFKTVEPDAVDLLEKMUVFDPKKRITAADALAHPYSAPYHDPTDEPVADAKFDWHENDADLPVD: 330 Ba-p38 HWRQLVYDEIEDWGKKQQAAKRAAG: 357 Hs-p38 EWKSLTYDEVISFVPPPL: 353 Dm-p38 KWKELIYKEVTNFKPPPSYAQVLKD: 364 Sd-p38 GWKKLVLDEITAFQTDPTLYQQSL-: 366 Ce-p38 EWK-KIIWEEISDFQKNVAFADEEE: 370 He-p38 AWKKLVYEETQNFKPHIPNTGM: 368 Sc-H0G1 TWRVMMYSEILDEHKIGGSDGOTDT: 355						
Ba-p38AKDFKQFFRGANPLAIDLLEKMLQLDADLRPTAEEALAHPYLSQYSDPTDEPTSPL-FDEGFEMVQLPTE: 332Hs-p38KMNEANVEIGANPLAVDLLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPVADP-YDQSFESRDLLID: 335Dm-p38GRSEKNVEKNANPLAIDLLEKMLELDAEKRITAEEALSHPYLEKYAEPSVEQTSPP-YDHSFEDMDLPVD: 339Sd-p38RRDFSKFFVGANPDAVNLLEQLSMDPDRRPTAEEALAHPYFVNYADPDDEPNSPP-YDDTFEKLEQDQL: 342Ce-p38RRDFKRLFAQATPQAIDLLEKMLHLDPDRRPTAEEALAHPYFVNYADPDDEPNSPP-YDDTFEKLEQDQL: 346He-p38KKDFGEYFPNGSPEATNLLEHLLTLDPEERFTAEQALAHPYFAKYQDTKDEPSSKP-YDHSFEKKDLDLP: 346Sc-H0G1PIPESERFKTVEPDAVDLLEKMLVFDPKKRITAADALAHPYSAPYHDPTDEPVADAKFDWHFNDADLPVD: 330Ba-p38HWRQLVYDEIEDWGKKQQAAKRAAG: 357Hs-p38EWKSLTYDEVISFVPPPL: 353Dm-p38KWKELIYKEVTNFKPPSYAQVLKD: 364Sd-p38GWKKLVLDEITAFQTDPTLYQQSL-: 366Ce-p38EWK - KIIWEEISDFQKNVAFADEEE: 370He-p38AWKKLVYEETQNFKPHIPNTGM: 368Sc-H0G1TWRVMMYSEILDEHKIGGSDGOIDI: 355		-+ XI	-			
HS-p38 KMNFANVFIGANPLAVDLLEKMLVLDSDKRITAAQALAHAYFAQYHDPDDEPVADF-YDQSFESRDLLID: 335 Dm-p38 GRSFKNVFKNANPLAIDLLEKMLELDAEKRITAEEALSHPYLEKYAEPSVEQTSPP-YDHSFEDMDLPVD: 339 Sd-p38 RRDFSKFFVGANPDAVNLLEQLLSMDPDRRPTAEEALAHPYFVNYADPDDEPNSPP-YDDTFEKLEQDQL: 342 Ce-p38 RRDFKRLFAQATPQAIDLLEKMLHLDPDRRPTAKEAMEHEYLAAYHDETDEPIAEE-MDLNDDVRADTID: 346 He-p38 KKDFGEYFPNGSPEATNLLEHILTLDPEERFTAEQALAHPYFAKYQDTKDEPSSKP-YDHSFEKKDLDLP: 346 Sc-H0G1 PIPFSERFKTVEPDAVDLLEKMLVFDPKKRITAADALAHPYSAPYHDPTDEPVADAKFDWHFNDADLPVD: 330 Ba-p38 HWRQLVYDEIEDWGKKQQAAKRAAG: 357 Hs-p38 EWKSLTYDEVISFVPPPL: 353 Dm-p38 KWKELIYKEVTNFKPPPSYAQVLKD: 364 Sd-p38 GWKKLVLDEITAFQTDPTLYQQSL-: 366 Ce-p38 EWK-KIIWEEISDFQKNVAFADEEE: 370 He-p38 AWKKLVYEETQNFKPHIPNTGM: 368 Sc-H0G1 TWRVMMYSEILDFHKIGGSDGOIDT: 355	Ва-р38	AKDFKQFFRGANPLAIDLLEKMLQLDADLRPTAE	EALAHPY <mark>LSQ</mark> YSDP	TDEPTSPL-FDEGF1	EMVQLPTE: 3	332
Dm-p38 GRS FKNVFKNANPLAIDLLEKMLELDAEKRITAEEALSHPYLEKYAEPSVEQTSPP-YDHSFEDMDLPVD: 339 Sd-p38 RRDFSKFFVGANPDAVNLLEQLSMDPDRRPTAEEALAHPYFVNYADPDDEPNSPP-YDDTFEKLEQDQL: 342 Ce-p38 RRDFKRLFAQATPQAIDLLEKMLHLDPDRRPTAKEAMEHEYLAAYHDETDEPIAEE-MDLNDDVRADTID: 346 He-p38 KKDFGEYFPNGSPEATNLLEHLLTLDPEERFTAEQALAHPYFAKYQDTKDEPSSKP-YDHSFEKKDLDLP: 346 Sc-HOG1 PIPFSERFKTVEPDAVDLLEKMLVFDPKKRITAADALAHPYSAPYHDPTDEPVADAKFDWHFNDADLPVD: 330 Ba-p38 HWRQLVYDEIEDWGKKQQAAKRAAG: 357 Hs-p38 EWKSLTYDEVISFVPPPL: 353 Dm-p38 KWKELIYKEVTNFKPPPSYAQVLKD: 364 Sd-p38 GWKKLVLDEITAFQTDPTLYQQSL-: 366 Ce-p38 EWK-KIIWEEISDFQKNVAFADEEE: 370 He-p38 AWKKLVYEETQNFKPHIPNTGM: 368 Sc-HOG1 TWRVMMYSEILDFHKIGGSDGOTDT: 355	Hs-p38	KMNFANVFIGANPLAVDLLEKMLVLDSDKRITAA	QALAHAYFAQYHDF	DDEPVADP-YDQSF1	ESR <mark>DL</mark> LID: 3	335
Sd-p38 RRDFSKFFVGANPDAVNLLEQLLSMDPDRRPTAEEALAHPYFVNYADPDDEPNSPP-YDDTFEKLEQDQL: 342 Ce-p38 RRDFKRLFAQATPQAIDLLEKMLHLDPDRRPTAKEAMEHEYLAAYHDETDEPIAEE-MDLNDDVRADTID: 346 He-p38 KKDFGEYFPNGSPEATNLLEHLLTLDPEERFTAEQALAHPYFAKYQDTKDEPSSKP-YDHSFEKKDLDLP: 346 Sc-H0G1 PIPFSERFKTVEPDAVDLLEKMLVFDPKKRITAADALAHPYSAPYHDPTDEPVADAKFDWHFNDADLPVD: 330 Ba-p38 HWRQLVYDEIEDWGKKQQAAKRAAG: 357 Hs-p38 EWKSLTYDEVISFVPPPL: 353 Dm-p38 KWKELIYKEVTNFKPPPSYAQVLKD: 364 Sd-p38 GWKKLVLDEITAFQTDPTLYQQSL-: 366 Ce-p38 EWK-KIIWEEISDFQKNVAFADEEE: 370 He-p38 AWKKLVYEETQNFKPHIPNTGM: 368 Sc-H0G1 TWRVMMYSETLDEHKIGGSDGOTDT: 355	Dm-p38	GRSFKNVFKNANPLAIDLLEKMLELDAEKRITAE	EALSHPYLEKYAEF	SVEQTSPP-YDHSFI	EDMDLPVD: 3	339
Ce-p38 RRDFKRLFAQATPQAIDLLEKMLHLDPDRRPTAKEAMEHEYLAAYHDETDEPIAEE-MDLNDDVRADTID: 346 He-p38 KKDFGEYFPNGSPEATNLLEHLLTLDPEERFTAEQALAHPYFAKYQDTKDEPSSKP-YDHSFEKKDLDLP: 346 Sc-H0G1 PIPFSERFKTVEPDAVDLLEKMLVFDFKKRITAADALAHPYSAPYHDPTDEPVADAKFDWHFNDADLPVD: 330 Ba-p38 HWRQLVYDEIEDWGKKQQAAKRAAG: 357 Hs-p38 EWKSLTYDEVISFVPPPL: 353 Dm-p38 KWKELIYKEVTNFKPPPSYAQVLKD: 364 Sd-p38 GWKKLVLDEITAFQTDPTLYQQSL-: 366 Ce-p38 EWK-KIIWEEISDFQKNVAFADEEE: 370 He-p38 AWKKLVYEETQNFKPHIPNTGM: 368 Sc-H0G1 TWRVMMYSEILDFHKIGGSDGOIDT: 355	Sd-p38	RRDFSKFFVGANPDAVNLLEQLLSMDPDRRPTAE	EALAHPYFVNYADP	DDEPNSPP-YDDTF1	KLEQDQL: 3	342
He-p38 KKDFGEYFPNGSPEATNLLEHLLTLDPEERFTAEOALAHPYFAKYQDTKDEPSSKD-YDHSFEKKDLDLP: 346 Sc-H0G1 PIPFSERFKTVEPDAVDLLEKMLVFDPKKRITAADALAHPYSAPYHDPTDEPVADAKFDWHFNDADLPVD: 330 Ba-p38 HWRQLVYDEIEDWGKKQQAAKRAAG: 357 Hs-p38 EWKSLTYDEVISFVPPPL: 353 Dm-p38 KWKELIYKEVTNFKPPPSYAQVLKD: 364 Sd-p38 GWKKLVLDEITAFQTDPTLYQQSL-: 366 Ce-p38 EWK-KIIWEEISDFQKNVAFADEEE: 370 He-p38 AWKKLVYEETQNFKPHIPNTGM: 368 Sc-H0G1 TWRVMMYSEILDFHKIGGSDGOIDI: 355	Ce-p38	RRDFKRLFAQATPQAIDLLEKMLHLDPDRRPTAK	EAMEHEYLAAYHDE	TDEPIAEE-MDLNDI	DVRADTID: 3	346
SC-HOG1 PIPESEREKTVEEDAVDLLEKMLVFDEKKRITAADALAHPYSAPYHDETDEPVADAKFDWHENDADLPVD: 330 Ba-p38 HWRQLVYDEIEDWGKKQQAAKRAAG: 357 Hs-p38 EWKSLTYDEVISFVPPPL: 353 Dm-p38 KWKELIYKEVTNEKPPPSYAQVLKD: 364 Sd-p38 GWKKLVLDEITAEQTDPTLYQQSL-: 366 Ce-p38 EWK-KIIWEEISDFQKNVAFADEEE: 370 He-p38 AWKKLVYEETQNEKPHIPNTGM: 368 Sc-HOG1 TWRVMMYSEILDEHKIGGSDGOIDI: 355	Не-р38	KKDFGEYFPNGSPEATNLLEHLLTLDPEERFTAE	QALAHPYFAKYQDI	KDEPSSKP-YDHSF1	EKKDLDLP: 3	346
Ba-p38HWRQLVYDEIEDWGKKQQAAKRAAG: 357Hs-p38EWKSLTYDEVISFVPPPL: 353Dm-p38KWKELIYKEVTNEKPPPSYAQVLKD: 364Sd-p38GWKKLVLDEITAEQTDPTLYQQSL-: 366Ce-p38EWK-KIIWEEISDFQKNVAFADEEE: 370He-p38AWKKLVYEETQNEKPHIPNTGM: 368Sc-H0G1TWRVMMYSEILDEHKIGGSDGOIDI: 355	Sc-HOG1	PIPFSERFKTVEPDAVDLLEKMLVFDPKKRITAA	DALAHPYSAPYHDP	TDEPVADAKFDWHFI	NDADLPVD: 3	330
Ba-p38HWRQLVYDEIEDWGKKQQAAKRAAG: 357Hs-p38EWKSLTYDEVISFVPPPL: 353Dm-p38KWKELIYKEVTNEKPPPSYAQVLKD: 364Sd-p38GWKKLVLDEITAEQTDPTLYQQSL-: 366Ce-p38EWK-KIIWEEISDFQKNVAFADEEE: 370He-p38AWKKLVYEETQNEKPHIPNTGM: 368Sc-H0G1TWRVMMYSEILDEHKIGGSDGOIDI: 355						
Ba-p38HWKQLVYDETEDWGKKQQAAKRAAG:SS7Hs-p38EWKSLTYDEVISFVPPPL:353Dm-p38KWKELIYKEVTNEKPPPSYAQVLKD:364Sd-p38GWKKLVLDEITAFQTDPTLYQQSL-:366Ce-p38EWK-KIIWEEISDFQKNVAFADEEE:370He-p38AWKKLVYEETQNEKPHIPNTGM:368Sc-H0G1TWRVMMYSETLDEHKKIGGSDGOTDT:355	Da					
INS-P30 EWKSETTDEVISFVPPPL . 333 Dm-p38 KWKELIYKEVTNEKPPPSYAQVLKD : 364 Sd-p38 GWKKLVLDEITAEQTDPTLYQQSL- : 366 Ce-p38 EWK-KIIWEEISDFQKNVAFADEEE : 370 He-p38 AWKKLVYEETQNEKPHIPNTGM : 368 Sc-H0G1 TWRVMMYSETLDEHKIGGSDGOIDT : 355	ва-рзе	RWKQLVYDDIEDWGKKQQAAKRAAG: 357				
Sd-p38 GWKKLVLDEITAEQTDPTLYQQSL-: 366 Ce-p38 EWK-KIIWEEISDFQKNVAFADEEE: 370 He-p38 AWKKLVYEETQNEKPHIPNTGM: 368 Sc-H0G1 TWRVMMYSEILDEHKIGGSDGOIDI: 355	ns-pso					
Ce-p38 EWK-KIVEEISDFQKNVAFADEEE: 370 He-p38 AWKKLVYEETQNFKPHIPNTGM: 368 Sc-H0G1 TWRVMMYSEILDFHKIGGSDG01DI: 355	our-poo	CUKKIVIDUTUJODUTUJOOSI - 366				
He-p38 AWKKLVYEETQNFKPHIPNTGM: 368 Sc-HOG1 TWRVMMYSETLDFHKIGGSDGOIDI: 355	Ce-238	EMK-KITWBEISDEOKNVAFADEFE · 370				
Sc-HOG1 TWRVMMYSETLDEHKIGGSDGOIDT: 355	He-p38	ATTWEETSDEQKNVAFADEEE . 370				
	11-11-10					

Figure 2. Alignment of the barnacle p38 MAPK sequence with that of other species. *Balanus amphitrite* p38 (Ba-p38, JQ277477) was aligned with human p38α (Hs-p38, Q16539.3), Drosophila melanogaster p38α (Dm-p38, NP_477163.1), Suberites domuncula p38 (Sd-p38, CAC80141.1),

Caenorhabditis elegans p38 (Ce-p38, AAB00664.1), *Hydroides elegans* p38 (He-p38, ADC54265.1) and *Saccharomyces cerevisiae* HOG1 (Sc-HOG1, AAA34680.1). The positions of the subdomains I-XI are indicated. The signature sequences are underlined and diagnostic amino acids are indicated by black arrowheads. Kinase interaction motif and substrate binding sites are shown by red and green colored squares, respectively. Conserved dual phosphorylatable residues are indicated with asterisks. doi:10.1371/journal.pone.0047195.q002

ml⁻¹, and 40 μ g ml⁻¹. Untreated larvae and larvae treated with BSA at 20 and 40 μ g ml⁻¹ were used as controls. Settled larvae were counted and unsettled larvae were collected for Western blotting. The results showed that more than 60% of the larvae settled after 8 hours of treatment with the adult extracts. There was no significant difference between the different protein doses of the extracts (P>0.05). However, less than 5% of the larvae settled in the controls, which is a significant difference compared to that in the treated larvae with adult extracts (P<0.05) (Fig. 8A). The

quantification of pp38 MAPK levels after blotting revealed that pp38 MAPK increased about two-fold after treatment with the adult extracts compared with the controls and there was a significant difference between them (P<0.05) (Fig. 8B,C). These results suggest that adult extract-induced larval settlement was achieved through activation with Bar-p38 MAPK. To further verify this hypothesis, larvae were pre-treated with p38 MAPK inhibitor and then treated with the crude adult extracts. The results showed that the adult extracts lost the ability to induce

0.2

Figure 3. Phylogenetic analysis of MAPKs from the SAPK2 and YSAPK subfamilies. Completed amino acid sequences from alignment plus the following sequences were used. Mm-p38 (mouse, AAA20888.1), Mm-p38b (mouse, BAA19741.1), Rn-p38 (rat, AAC71059.1), Cf-p38 (dog, AAC36131.1), Dm-p38b (*D. melanogaster*, AAC39032.1), Hs-ERK6 (human, CAA55984.1), Mm-SAPK3 (mouse, CAA73850.1), Dr-pSAPK3 (zebrafish, CAA73355.1), Ca-HOG1 (yeast, CAA62214.1), Cc-p38 (*C. carpio*, BAA11881.1), Sp-STY1 (yeast, CAA61537.1), Hs-p38b (human, Q15759.2), Hss-p38 (*H. saltator*, EFN89763.1), Aa-p38 (*A. aegypti*, XP_001653240.1), Mj-p38 (*M. japonicus*, BAK78916.1) and Pf-MAPK1 (*P. falciparum*, AAC47170.1). The numbers at the note indicate the occurrences of a branch point over 500 replications. The scale bar indicates the phylogenetic distances. Pf-MAPK1 was used as an outgroup protein. SAPK2: stress activated protein kinase 2. YSAPK: yeast stress activated protein kinase. Ba-p38 was indicated by a black arrow.

doi:10.1371/journal.pone.0047195.g003

Figure 4. Bar-p38 kinase activation was barnacle lifecycle dependent. (A) pp38 was highly expressed in the cyprid stage. Equal amounts of extracts (60 μ g) from NIII-IV, NV-VI, cyprids and juveniles at Day 1 were prepared and blotted with anti-pp38 and anti-total p38 antibodies, respectively. A representative of three experiments is shown. (B) Ratio of pp38 to total p38. The ratio of pp38 to total p38 for NIII-IV represents 1 unit. NIII-IV: nauplii III-IV; NV-VI: nauplii: V-VI. a,b,c, means with different letters are significantly different, P<0.001. doi:10.1371/journal.pone.0047195.g004

larval settlement when the larvae had been pre-treated with p38 MAPK inhibitor (Fig. 8D).

Discussion

We cloned one isoform of p38 MAPK from the barnacle *Balanus* amphitrite that shares a conserved TGY phosphorylation motif with other organisms such as, *Drosophila*, and humans. The bioassay with the p38 MAPK inhibitor indicated the involvement of p38 MAPK in larval settlement. The results also suggested that a natural inducer, SIPC, which is included in crude adult extracts, induces larval settlement via the mediation of the p38 MAPK pathway. These findings give us a new vision in the mechanism of larval settlement.

The cyprid stage plays a critical role in the transition from the planktonic to the sessile phase of barnacles (Fig. 1). However, the molecular mechanism that controls larval settlement remains largely unknown. The dual phosphorylation in the TGY motif was detected with a pp38 MAPK antibody, which indicated the active form of p38 MAPK [16]. In this study, we found that pp38 MAPK was highly expressed in the cyprid stage, especially in aged cyprids that were highly competent to settle (Figs. 4 and 7), suggesting a close relationship between the activation of Bar-p38 MAPK and cyprid settlement. This is consistent with other studies, which have shown that aged cyprids generally have a higher settlement rate

than younger cyprids [17,18]. Given the importance of cyprid antennules for larval settlement during exploration [19], the localizations of Bar-p38 MAPK and pp38 MAPK, the active form of p38 MAPK, at the antennules also indicates a linkage between Bar-p38 MAPK and larval settlement (Fig. 5). This hypothesis was further supported by a settlement bioassay using the p38 MAPK inhibitor SB203580 (Fig. 6).

The barnacle changing from planktonic to sessile phase is very complicated, including settlement and metamorphosis processes. However, it is difficult to separate these two processes clearly (Fig.1). After SB203580 treatment, most of the cyprids could not settle and metamorphose but were still capable of exploring (temporary attachment) (Fig. 7 and Movie S1). From this result, we can deduce that the larval settlement is somehow affected by SB203580. There are two possible explanations for the defect in metamorphosis. One is that SB203580 affects metamorphosis directly. Metamorphosis is a very close following step after settlement. During the normal physiological process of settlement and metamorphosis, directly after or towards the end of settlement, there should be some internal signals to trigger the subsequent metamorphosis. So the second possibility is the indirect effect of p38 MAPK on cyprid metamorphosis. This means that there was no metamorphosis due to the lack of settlement. In our experiments, one result in Fig.7A showed that pp38 level decreased after settlement, which supports the second theory. Therefore, the defective metamorphosis is perhaps a secondary effect following settlement impairment due to SB203580 treatment.

SIPC is a well defined pheromone that induces larval settlement in barnacles [2]. However, its perception and signal transduction mechanisms have not been clarified. Although an altered cAMP level may change the larval settlement rate, endogenous cAMP level in cyprids does not change after treatment with crude adult extracts [6]. In this study, we found that pp38 MAPK obviously increased after treatment with adult extracts for 3 hours in comparison to the controls (data not shown). After 8 hours of treatment, the settlement rate was about 80%, whereas in the control group it was less than 5%. The pp38 MAPK level was about two times higher than that in the controls, suggesting that adult extracts induce larval settlement through the activation of Bar-p38 MAPK. We used adult extracts instead of purified SIPC to induce larval settlement. Although adult extracts acting as a common natural settlement inducer have been used in many experiments [6,15,20], the increase in pp38 MAPK due to exposure to adult extracts may not be mediated by SIPC, or at least not by SIPC alone. To further investigate whether SIPC induces larval settlement through the p38 MAPK pathway, larvae were pre-treated with SB203580 to block phosphorylation events catalyzed by Bar-p38 MAPK and were then exposed to adult extracts. The results showed that larvae pre-treated with SB203580 failed to respond to the adult extracts. This suggests that the p38 MAPK pathway is downstream of the larval settlement signaling transduction pathway stimulated by SIPC.

Three types of MAPK pathways – p38 MAPK, ERK, and JNK – are conserved from yeast to humans [16]. We also examined phosphorylated ERK (pERK) and phosphorylated JNK (pJNK) using antibodies against pJNK or pERK on dual phosphorylated residues in a TXY motif. Equal amount of extracts from nauplii, cyprids and juveniles were prepared and blotted against pp38, pERK and pJNK to understand the expression patterns of these three active forms in different developmental stages. Similar levels of pERK were detected in the nauplius and cyprid stages, and were much higher than that in the juvenile stage. The protein level of pJNK was similar in the cyprid and juvenile stages, but a little

Figure 5. Localization of Bar-p38 in cyprids. Cyprids were fixed with 4% PFA and were then stained with antibody against Bar-p38 and pp38, respectively. Samples stained with only secondary antibody were used as controls. For (a)-(e), 10X objective was used, scale bar: 100 μm; for (f) to (h), 40X objective was used, scale bar: 25 μm. The fourth segments were indicated by black arrows. doi:10.1371/journal.pone.0047195.g005

higher than that in the nauplius stage. In contrast, pp38 MAPK was more highly expressed in the cyprid stage than that in the nauplius and juvenile stages. The different expression patterns of the phospho-MAPKs indicate their distinct functions during barnacle development (Fig. S1).

Our data clearly show the involvement of bar-p38 MAPK in barnacle larval settlement. However, how Bar-p38 MAPK regulates larval settlement remains unknown. Immunostaining showed that Bar-p38 MAPK is mainly localized at the antennules, which are important sensory organs responsible for settlement site exploration during larval settlement. Although they also exist in nauplii, the antennules are highly modified as attachment organs at the cyprid stage [19]. Cyprid antennules are composed of four segments. The first and second segments are responsible for

Figure 6. Bar-p38 kinase was required for larval settlement. (A) Cyprids were treated with p38 kinase inhibitor SB203580 at two concentrations, as indicated in the figure, to perform the settlement bio-assay. Settled, swimming, dead and exploring larvae were counted after one day of treatment. *P<0.05 vs. control groups. (B) After one day of treatment, the experimental medium was replaced with FSW and incubated for another two days. Settled, swimming and dead larvae were counted. The data shown is the mean \pm S.E. All of the bioassays were performed with three replicates and at least three batches. doi:10.1371/journal.pone.0047195.q006

antennule movement during bi-pedal walking on a surface [21]. The third segment is covered with cuticular villi, which increase the area between the surface and the antennules during walking. Numerous duct terminals open to the disk of the third segment,

Figure 7. Bar-p38 kinase activation may be highly related to cyprid settlement rather than metamorphosis. (A) Fresh cyprids (time 0) were placed in polystyrene (PS) containers and collected at different time points, as indicated. Non-settled cyprids from different time points and early settled cyprids were collected and prepared for blotting with antibodies against pp38, p38 and actin, respectively. (B) The ratio of pp38 to total p38 presented as the mean \pm S.E. of three replicates. The ratio of pp38 to total p38 for time 0 represents 1 unit. a,b,c, means with different letters are significantly different, P<0.05. (C) Settlement rate at different time points. The data shown is the mean \pm S.E. of three replicates. a,b, means with different letters are significantly different, P<0.001. hr: hour. Settled: early settled cyprids. doi:10.1371/journal.pone.0047195.g007

Figure 8. p38 kinase inhibitor impaired inducement of larvae settlement by adult extracts. (A) Fresh cyprids were placed in PS containers and treated with BSA or crude adult extracts. Settled larvae were counted after treatment for 8 hours. (B) Non-settled cyprids were collected after treatment for 8 hours and prepared for blotting with antibodies against actin, p38 and pp38, respectively. (C) The ratio of pp38 to p38 was presented as the mean \pm S.E. of three replicates for each batch (at least three batches). For (A) and (C), Two-Way ANOVA was performed. The result indicated that adult extracts significantly affected larval settlement and pp38 level (P<0.05). Different doses used in this assay have no significant difference (P>0.05). (D) Cyprids were treated with only 20 µg ml⁻¹ of adult extracts or 20 µM of SB203580, respectively, or pre-treated with 20 µM of SB203580 for 24 hours and then plus 20 µg ml⁻¹ of adult extracts (double treatment). Settled cyprids were counted after treatment with adult extracts for 24 hours. a,b,c, means with different letters are significantly different, P<0.001. doi:10.1371/journal.pone.0047195.q008

where proteinaceous substances are secreted for adhesion. The fourth segment stretches out from outside of the third segment and is filled with neuronal fibers [21]. A liquid proteinaceous substance from the cement gland is thought to play a critical role during temporary and permanent attachment. For temporary adhesion, the adhesive originates from specialized hypodermal glands in the second segment. In contrast, the permanent adhesive is directly excreted from paired cement glands within the cyprid body [22]. This adhesive is delivered through the antennular cement duct and deposited in a globular disc that is close to the surface of the antennular adhesive disk in a settled cyprid [23,24]. These indicate the different regulation pathways of temporary and permanent attachment. In this study, SB203580 treatment disrupted larval permanent adhesion but not temporary adhesion. The larvae still had the ability to explore on the substratum surface after SB203580 treatment. We further found that Bar-p38 MAPK was localized at the third and fourth segments of the antennules. All of these findings suggest that Bar-p38 MAPK may regulate larval settlement by controlling the secretion of permanent proteinaceous substances. The composition of the temporary and permanent adhesives should be different based on their distinct functions. Therefore, to further prove the role of p38 in this process, both of cement proteins could be examined after the treatment of SB203580.

The core unit in the MAPK pathway is made up of three main members: MAPK, MAP2K and MAP3K. In the p38 MAPK pathway, MAPKK3 and MAPKK6 are specific to p38 MAPK phosphorylation and activation [25]. Bar-p38 MAPK shares all of the common characteristics with other members of the SAPK2 family, including distinct sequences, diagnostic residues and a dual phosphorylatable TGY motif. The common properties between Bar-p38 MAPK and the p38 MAPKs of other species indicate that they may share similar regulation pathways. In our barnacle transcriptome database [26], we found a partial sequence that is similar to MAPKK3/MAPKK6 (data not shown), which indicates that Bar-p38 MAPK may be regulated by conserved MAPKK3/MAPKK6.

In conclusion, p38 MAPK is involved in larval settlement and the p38 kinase inhibitor SB203580 impaired adult extract-induced larval settlement.

Materials and Methods

Ethics Statement

The barnacle of *Balanus amphitrite* is a common species of marine invertebrate. It is a biofouling species and not endangered or protected. Adult barnacles of *Balanus amphitrite* were collected from populations growing on a concrete pole at Pak Sha Wan in Hong Kong $(22^{\circ}21'45''N, 114^{\circ}15'35''E)$. No specific permits were required for the adult barnacle collection. The dock does not belong to any national parks, protected areas, or privately owned places. The field studies did not involve any endangered or protected species.

Larval Culture

Larvae were released and cultured in the laboratory according to the procedure of Zhang et al (2010). In brief, the released larvae were maintained at a density of 1 larva ml^{-1} in 0.22 μm filtered seawater (FSW) at 28°C and fed with *Chaetoceros gracilis* [27]. Nauplii became cyprids on day 4 after six molts from nauplius I to cyprid.

p38 cDNA Isolation

RNA extraction and cDNA synthesis were performed according to the methods of Chen et al (2011). Briefly, the total RNA was extracted by using TRIzol reagent (Invitrogen, USA), and cDNA was then prepared from the total RNA using M-MLV reverse transcriptase (Ambion, USA) with the oligo dT primer [26]. Based on the partial sequence of p38 in the barnacle transcriptome database [26], primers were designed together with rapid amplification of cDNA ends (RACE) reactions to obtain the fulllength coding sequence of p38 [11]. The primers that were used to obtain the full-length sequence of p38 are listed in Table S1. The full-length cDNA of p38 was further confirmed by sequencing (BGI Company, China).

Sequence Comparison

Multiple alignments were performed with the CLUSTAL W version 1.83 program and were graphically presented with the software BioEdit 7.0.0. The rooted phylogenetic tree was constructed with amino acid sequences by the Maximum Likelihood statistical method with the MEGA software (version 5.05). The degree of support for internal branches was further assessed by bootstrap analysis with 500 replications.

Plasmid Construction, Recombinant Protein Overexpression and Antibody Generation

One fragment derived from the p38 sequence – from a.a.15 to a.a.101– was used to generate the antibody. The fragment was cloned into pGEX4T and pet21b vectors, respectively, and then overexpressed in *E. coli* BL21 (DE3). Recombinant proteins containing GST or His₆ were isolated according to a previous publication [28] and the manufacture's protocol using GST-Sepharose (Sigma, USA) or Ni²⁺ -nitrilotriacetic acid beads (Qiagen, USA), respectively. The procedure for the injection and purification of the antibody were performed according to a previous publication [29]. In brief, His_6 tagged recombinant proteins were used as antigens to immunize New Zealand white rabbit with Freund's adjuvant (Sigma, USA). Serum was collected after four injections. GST-tagged recombinant protein was used as bait to isolate the antibody.

Antibodies against pp38 (Thr180/Tyr182), phospho-ERK (Thr202/Tyr204), phospho-JNK (Thr183/Tyr185), and antirabbit and mouse HRP labeled secondary antibodies were purchased from Cell Signaling Technology (USA). Anti-rabbit Alexafluor488 was purchased from Invitrogen (USA), and antiactin antibody was from Millipore (USA).

Protein Extraction and Western Blot Analysis

Larvae from different stages or time points, as indicated in the figures, were collected and then lysed in lysis buffer (25 mM Tris-HCl pH 7.5, 300 mM NaCl, 1% sodium dodecyl sulfate (SDS), 1% Triton X-100, and 1 mM dithiothreitol (DTT) plus protease inhibitors and phosphatase inhibitors (Roche, Germany)). After sonication (Branson Digital Sonicator 250, Danbury, CT), the samples were centrifuged at 20 k×g to pellet the debris and to collect the supernatants. The protein concentration was measured by the Bradford and RC-DC methods (Bio Rad, USA). Crude extracts (60 μ g of proteins) were subjected to SDS-PAGE gel and then transferred to a 0.22 μ m-PVDF membrane (Millipore, USA) for Western blotting with various antibodies, as indicated in the figures.

For the Western blot quantification, images of anti-total p38 and pp38 were acquired by using a ChemiDoc XRS system (Bio-Rad, USA) and analyzed with the Quantity One software (Bio-Rad, USA).

Immunofluorescence Imaging

After washing with FSW once, the cyprids were fixed with 4% paraformaldehyde (PFA) in phosphate-buffered saline (PBS) overnight at 4°C. For permeabilization, all of the samples were sonicated in the same buffer five times at an output level of 2 and a cycle level of 2, and then incubated with 0.5% Triton X-100 in PBS for 30 minutes at room temperature. After blocking with 5% bovine serum albumin (BSA) in PBS, the cyprids were subjected to immunostaining with the p38 and pp38 antibodies, respectively. Primary and secondary antibodies were diluted in 5% BSA in PBS buffer with 1:300 and 1:1000 dilution, respectively. Fixed cyprids were incubated with primary and secondary antibodies overnight at 4°C. Between these two incubations, washing with PBS was performed 3 times between 15-minute intervals. Cyprids stained only with anti-rabbit secondary antibody served as the controls. Images were observed under a laser scanning confocal microscope (Zeiss, LSM 710, ZEN 2009 software, USA).

Live Imaging

For live imaging, larvae were treated with 20 μ M of p38 kinase inhibitor SB203580 for 24 hours, and an EMCCD camera (SPOT BOOST BT2100; Diagnostic instruments) was used to capture the images of their behavior at one picture every 5 seconds for 5 minutes. TIF image stacks were exported as MOV files using MetaMorph software (Molecular Devices, Sunnyvale, CA). The playback rate was six frames a second.

Settlement Bioassay

Cyprid larvae (at 2 hours or 1 day after molting from nauplius VI to cyprid) were collected and placed in sterile 24-well or 6-well polystyrene Petri dishes (NUNC, Denmark) to perform the larval

settlement assay. Fifteen to 20 cyprids were placed into each well of a 24-well plate (50 to 55 for a 6-well plate), and incubated at 25°C with or without SB203580 (LC Laboratory, Woburn, MA). SB203580 was dissolved in dimethylsulfoxide (DMSO) at 50 mM as a stock solution. One day after the treatment, the larvae were observed under a dissecting microscope.

For the recovery assay, the experimental solution containing p38 kinase inhibitor was removed after one day of treatment. After washing with FSW once, the samples were re-incubated with FSW for another two days. Daily observations were performed under a dissecting microscope.

For the assay in the presence of settlement cues, crude adult extracts were prepared according to the procedure in a previous study [15]. Briefly, the adult barnacles were crushed and homogenized in FSW. The supernatant was collected after centrifugation at 20 k×g. The cyprids were treated with different doses of crude adult extracts or BSA as indicated in Figure 8. Settled cyprids were counted after 8 hours of treatment and unsettled cyprids were collected for Western blotting.

For the inducing settlement assay with p38 kinase inhibitor, the cyprids were pre-treated with 20 μM of SB203580 for 24 hours, and the crude adult extracts were then added at 20 μg ml $^{-1}$ as a final concentration. Settled cyprids were counted after one day. All of the bioassays were performed for at least two batches of larvae with three replicates each.

Statistics

Statistical analysis was performed by SPSS 16.0 using One-Way ANOVA followed by Tukey's post hoc test for comparison among multiple groups and using Student's unpaired two tails t tests for comparison between two groups except the indication. For all comparisons, P<0.05 was considered statistically significant.

Supporting Information

Figure S1 Temporal expression patterns of three MAPKs in *B. amphitrite*. (A) Equal amounts of extracts

References

- Nasrolahi A (2007) Larval settlement of the barnacle, *Balanus improvisus* Darwin (1854) under different food concentration, substratum, light period, salinity, cyprid density and cyprid age. Pak J Biol Sci 10(13): 2231–2236.
- Matsumura K, Nagano M, Fusetani N (1998) Purification of a larval settlementinducing protein complex (SIPC) of the barnacle, *Balanus amphitrite*. J Exp Zool 281: 12.
- Dreanno C, Kirby RR, Clare AS (2006) Locating the barnacle settlement pheromone: Spatial and ontogenetic expression of the settlement-inducing protein complex of *Balanus amphitrite*. Proc Biol Sci 273(1602): 2721–2728.
- Dreanno C, Kirby RR, Clare AS (2006) Smelly feet are not always a bad thing: The relationship between cyprid footprint protein and the barnacle settlement pheromone. Biol Lett 2(3): 423–425.
- Matsumura K, Nagano M, Kato-Yoshinaga Y, Yamazaki M, Clare AS, et al. (1998) Immunological studies on the settlement-inducing protein complex (SIPC) of the barnacle *Balanus amphitrite* and its possible involvement in larvalarva interactions. Proc Biol Sci 265(1408): 1825–1830.
- Clare AS, Thomas RS, Rittschof D (1995) Evidence for the involvement of cyclic AMP in the pheromonal modulation of barnacle settlement. J Exp Biol 198: 655–664.
- Chen Z, Gibson TB, Robinson F, Silvestro L, Pearson G, et al. (2001) MAP kinases. Chem Rev 101(8): 2449–2476.
- Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773(8): 1358–1375.
- Davis RJ (1999) Signal transduction by the c-Jun N-terminal kinase. Biochem Soc Symp 64: 1–12.
- Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: Conservation of a three-kinase module from yeast to human. Physiol Rev 79(1): 143–180.
- Wang H, Qian PY (2010) Involvement of a novel p38 mitogen-activated protein kinase in larval metamorphosis of the polychaete *Hydroides elegans* (Haswell). J Exp Zool B Mol Dev Evol 314(5): 390–402.

(60 µg) from nauplii III-IV, cyprids and juveniles were prepared and blotted with anti pp38, pERK and pJNK antibodies, respectively. (B) The ratio of pp38, pERK and pJNK to actin from nauplii III-IV, cyprids and juveniles are presented as the mean \pm S.E. of three replicates. For pp38 and pERK, the ratio from juveniles represents 1 unit; for pJNK, the ratio from nauplii III-IV represents 1 unit. P values are indicated. (TIF)

Table S1Primers used for isolation full-length bar-p38.(TIF)

Table S2Identity and similarity between bar-p38 andother SAPK2.

(TIF)

Movie S1 Cyprid larvae were treated with 20 μM of SB203580 for 24 hours. Images were recorded at one picture every 5 seconds for 5 minutes with a camera attached to a microscope and stacked into a movie with the rate of six frames a second. The live images showed that cyprid larvae could still move and explore on the surface but lost the ability of permanent attachment and metamorphosis after SB203580 treatment, indicating the involvement of p38 MAPK in the larval permanent attachment.

(ZIP)

Acknowledgments

We thank Dr. On-on Lee for providing comments on early draft of the manuscript, Ms. Cherry Kwan and Ms Soumaya Belkharchouche for proof reading the full text.

Author Contributions

Conceived and designed the experiments: LSH YX KM. Performed the experiments: LSH YX. Analyzed the data: LSH GZ. Contributed reagents/materials/analysis tools: LSH YZ GZ. Wrote the paper: LSH SHQ PYQ.

- Kultz D (1998) Phylogenetic and functional classification of mitogen- and stressactivated protein kinases. J Mol Evol 46(5): 571–588.
- Tong L, Pav S, White DM, Rogers S, Crane KM, et al. (1997) A highly specific inhibitor of human p38 MAP kinase binds in the ATP pocket. Nat Struct Biol 4(4): 311–316.
- Kumar S, Jiang MS, Adams JL, Lee JC (1999) Pyridinylimidazole compound SB 203580 inhibits the activity but not the activation of p38 mitogen-activated protein kinase. Biochem Biophys Res Commun 263(3): 825–831.
- Matsumura K, Mori S, Nagano M, Fusetani N (1998) Lentil lectin inhibits adult extract-induced settlement of the barnacle, *Balanus amphitrite*. The Journal of Experimental Zoology 280: 213–219.
- Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68(2): 320–344.
- Satuito CG, Shimizu K, Fusetani N (1997) Studies on the factors influencing larval settlement in *Balanus amphitrite* and *Mytilus galloprovincialis*. Hydrobiologia 358: 275–280.
- Satuito CG, Shimizu K, Natoyama K, Yamazaki M, Fusetani N (1996) Agerelated settlement success by cyprids of the barnacle *Balanus amphitrite*, with special reference to consumption of cyprid storage protein. Marine Biology 127: 125–130.
- Nott JA, Foster BA (1969) On the structure of the antennular attachment organ of the cypris larva of balanus balanoides (L.). Phil Trans B 256: 115–134.
- Kato-Yoshinaga Y, Nagano M, Mori S, Clare AS, Fusetani N, et al. (2000) Species specificity of barnacle settlement-inducing proteins. Comp Biochem Physiol A Mol Integr Physiol 125(4): 511–516.
- Lagersson NC, Hoeg JT (2002) Settlement behavior and antennulary biomechanics in cypris larvae of *Balanus amphitrite* (crustacea: Thecostraca: Cirripedia). Marine Biology 141: 513–526.
- Aldred N, Clare AS (2009) Mechanisms and principles underlying temporary adhesion, surface exploration and settlement site selection by barnacle cyprids: A short review. Functional Surfaces in Biology Vol 2: 43.

- Phang IY, Aldred N, Clare AS, Callow JA, Vancso GJ (2006) An in situ study of the nanomechanical properties of barnacle (*Balanus amphitrite*) cyprid cement using atomic force microscopy (AFM). Biofouling 22(3–4): 245–250.
- Walker G (1971) A study of the cement apparatus of the cypris larva of the barnacle Balanus balanoides. Marine Biology 9: 205.
- Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26(22): 3100–3112.
- Chen ZF, Matsumura K, Wang H, Arellano SM, Yan X, et al. (2011) Toward an understanding of the molecular mechanisms of barnacle larval settlement: A comparative transcriptomic approach. PLoS One 6(7): e22913.
- Zhang Y, Xu Y, Arellano SM, Xiao K, Qian PY (2010) Comparative proteome and phosphoproteome analyses during cyprid development of the barnacle *Balanus* (= *Amphibalanus*) amphitrite. J Proteome Res 9(6): 3146–3157.
- He L, Zhang Z, Yu Y, Ahmed S, Cheung NS, et al. (2011) The neuronal p35 activator of Cdk5 is a novel F-actin binding and bundling protein. Cell Mol Life Sci 68(9): 1633–1643.
- Fong KW, Choi YK, Rattner JB, Qi RZ (2008) CDK5RAP2 is a pericentriolar protein that functions in centrosomal attachment of the gamma-tubulin ring complex. Mol Biol Cell 19(1): 115–125.