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Simple Summary: The low oxygen concentrations of high-altitude regions hinder their development
possibilities. In this investigation, we used lung tissue from the adopted Yorkshire sow and from the
Tibetan pig to analyze the occurrence and development mechanisms of high-altitude hypoxia using
dual expression omics. Seven key candidate genes (SELENBP1, MCC, CAPG, ASS1, ADH4, LYZ, and
CPS1) were screened from the lung tissues and found to be predominately involved in mitochondrial
function, blood particle regulation, glycolysis, ethanol oxidation, and the Wnt signaling pathway, as
well as other related hypoxia-adaptive regulatory mechanisms.

Abstract: Elevated environments such as plateaus are often classified as low oxygen environments.
The hypoxic adaptation mechanisms utilized by organisms in these conditions are not well under-
stood. To address this, the differentially expressed genes (DEGs) involved in hypoxia adaptation
were assessed using two pig breeds (Tibetan pig [TP] and Yorkshire sow [YY]). Genes related to lung
tissue responses to hypoxia were assessed using transcriptomic (using RNA-seq) and proteomic
(using iTRAQ) analysis. A total of 1021 DEGs were screened out. In the iTRAQ omics data, a total of
22,100 peptides were obtained and 4518 proteins were found after filtering. A total of 271 differentially
expressed proteins [DEPs] were screened using the conditions of p < 0.05; FC ≤ 0.833; and FC ≥ 1.2.
A total of 14 DEGs at the mRNA and protein levels were identified and found to be associated with
regulation of the inflammatory response; blood particles; and MAPK cascade response regulation.
Among the DEGs, six were associated with hypoxia adaptation function (mitochondria and glycol-
ysis) in pigs. The results of this study identify novel candidate genes involved in porcine hypoxia
adaptation mechanisms.

Keywords: plateau adaptation gene; transcriptomic; proteomic; Tibetan pigs; Yorkshire pigs

1. Introduction

Oxygen is required to sustain life for most living organisms [1]. However, the re-
sponses of different organisms to different oxygen environments are not uniform [2] and
hypoxia adaptability has been identified as a complex mechanism involving multiple genes
and regulatory networks. Understanding the effects of hypoxia to improve the adapt-
ability and improvement of livestock hereditary traits, the introduction of better adopted
individuals to high plateau environments, and the prevention and treatment of certain
plateau diseases is required [3–5]. The occurrence and development of hypoxia adaptation
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mechanisms and the specific complex network regulation mechanism has not yet been
explored [6]. The Tibet region of China is a natural plateau with a hypoxic environment [7].
Owing to the development of the Tibetan region, foreign pig breeds such as the Yorkshire
sow (YY) have been introduced in recent years to fulfill nutritive requirements. Endogenous
Tibetan pigs (TP) have good stability and genetic adaptability to the hypoxic environment of
the plateau and consequently they should be studied to better understand plateau hypoxia
adaptability [8–10].

The mechanisms of plateau hypoxia adaptation can be investigated using transcrip-
tomic, proteomic, and dual omics analyses to study differentially expressed genes (DEGs)
and differentially expressed proteins (DEPs) at different expression levels. In addition,
RNA-seq data analysis has been used to help identify genes and pathways related to alti-
tude hypoxia adaptability [11]. Isobaric tags for relative and absolute quantitation (iTRAQ)
omics data have been used to explore batches of differentially expressed proteins related to
the development of hypoxia and hypoxia adaptation mechanisms in tissues [12]. Integrated
dual-omics analysis [13] used DEGs and DEPs screened by two-omics analysis to identify
differences and common points in important candidate genes related to hypoxic adaptation
mechanisms. In the present study, we used adopted YY and TP pigs to analyze the occur-
rence and development of mechanisms for high altitude hypoxia using dual expression
omics of lung tissue.

2. Materials and Methods
2.1. Ethics Statement

In the present study, the experimental animals were domestic pigs that were not
endangered or protected. The rearing, slaughtering, and experimental conditions strictly
followed the guidelines approved by the Animal Welfare Committee of the State Key
Laboratory of Agricultural Biotechnology of China Agricultural University (Approval
number: XK257).

2.2. Animal and Sample Preparation

All experimental pigs were born and bred in the practice ranch of the Tibet Agriculture
and Animal Husbandry College, Tibet Autonomous Region (elevation: 2900 m). All pigs
were housed in standard conditions with natural, uncontrolled room temperature and light.
Complete formula meal feed was fed three times per day and pigs had ad libitum access to
water. At the age of 6 months, nine TP and nine YY were randomly selected to slaughter
and sample according to the guidelines approved by the Animal Welfare Committee of
the State Key Laboratory of Agricultural Biotechnology of China Agricultural University
(Approval number: XK257). Approximately 5 mg of lung tissue was collected from each
individual at the same site and placed in 2 mL cryopreservation tubes, with 2 tubes per
individual, immediately frozen in liquid nitrogen, and stored at −80 ◦C for total RNA and
total protein extract.

2.3. Total RNA and Protein Isolation from Lung Samples

Extraction of the total RNA from the lung tissues was performed using Trizol reagent
(Invitrogen, Carlsbad, CA, USA). The purity of the RNA samples was tested with a Nan-
odrop 2000 microspectrophotometer (Thermo Fisher Scientific Inc., West Palm Beach, FL,
USA). The concentration and integrity of the total RNA was investigated using a 2100 Bioan-
alyzer, RNA 6000 Nano Kit (Agilent, Carlsbad, CA, USA). The extraction of the total protein
from the lung tissue was done using the RIPA cracking method (Beyotime Ltd., Shanghai,
China). The quantification of protein was carried out using the BCA Protein Assay Kit
(Beyotime Ltd., Shanghai, China) and integrity was determined using polyacrylamide gel
electrophoresis.
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2.4. Library Preparation and RNA Sequencing

Prior to sequencing, samples of the same species were randomized into groups of
three. After enrichment and purification using magnetic beads with Oligo (dT), a cDNA
library was added to the fragmentation buffer to generate short fragments that were used
as a template. The first strand of the cDNA was synthesized with six base random primers
and the second strand of cDNA was synthesized by adding buffer, dNTPs, RNaseH, and
DNA polymerase I, purified using a QIAQuick PCR kit (QIAGEN, Hilden, Germany), and
eluted with EB buffer. The purified double-stranded cDNA was eluted and then subjected
to end repair, base A, and sequencing adapter treatment. Later, the target size fragments
were obtained by agarose gel electrophoresis and PCR amplification to complete the entire
library preparation.

After library construction, Qubit 3.0 (Life Technologies, Carlsbad, CA, USA) for pre-
liminary quantification was performed. The library was diluted to 1 ng/µL, and then the
Agilent 2100 (Agilent Technologies, Carlsbad, CA, USA) was used to detect the insert size
of the library. After the expected insert size was obtained, Bio-RAD CFX 96 (Bio-RAD,
Hercules, CA, USA) fluorescence quantitative PCR Bio-RAD Kit iQ SYBR GRN (Bio-RAD,
Hercules, CA, USA) performed q-PCR to accurately quantify the effective concentration of
the library (effective library concentration >10 nM) and to ensure the quality of the library.
The qualified libraries were sequenced using the Illumina platform and the sequencing
strategy was PE150. Illumina high-throughput sequencing was used for mapping and
alignment of the sequence reads. The results that originally existed in the image data file
were converted into sequenced reads using bcl2fastq, called raw data files. We obtained
a clean, high-quality sequence by removing the low-quality sequence from the original
sequence. Afterwards, HISAT2 was used to compare the obtained clean reads with the
reference genome Sus scrofa 11.1 to map it to the genome. Data analysis was performed
using SPSS Statistics 23 (International Business Machines Corporation, Armonk, NY, USA),
and heatmaps were drawn using the R language pheatmap package (1.0.12) [14].

2.5. Differential Gene Analysis Using RNA-seq

RNA-seq analysis was performed by counting the number of sequences (reads) located
in the genomic region or exon region and expressing them using FPKM (per million
fragments) to obtain the number of fragments per kilobase length in a gene. Screening
conditions |log2FoldChange| > 1 and p < 0.05 were used to identify DEGs. The functional
annotation and pathway enrichment of the key differentially expressed genes was carried
out using pathway analyses and literature studies. Correlations were later observed with
the hypoxic adaptation mechanisms.

2.6. Proteolysis and Labelling

The enzymatic digestion of the quantified protein was performed using FASP enzy-
matic technology. The iTRAQ Reagent-8Plex Multiplex kit (Sigma-Aldrich, St. Louis, MO,
USA) was used to label the enzymatic product according to the manufacturer’s instructions.
The protein samples were extracted from lung tissue and divided into three biological
replicates, each including three individuals, labeled as 113 (TP1), 114 (TP2), 117 (TP3),
118 (YY1), 119 (YY2), and 121 (YY3). High performance liquid chromatography (HPLC)
was used to classify the product on a C18 column under high pH conditions. Different
gradients were setup to elute the product, which was then freeze-dried under vacuum and
re-dissolved in 5 µL 0.5% FA. The flow rate was set to 700 nL/min and the eluent was A
(98% H2O, pH10) and B (98% ACN, pH10). The 60 collected components were combined
into multiple components for fractionation and each sample was separated using a nanoliter
flow rate HPLC liquid system. The column was equilibrated with 95% solution A (0.1%
FA, H2O). The sample was loaded from the autosampler to the pre-column of the mass
spectrometer, and the peptide was separated using the analytical column. The flow rate
was set to 600 nL/min, and the eluent was A (0.1% FA, H2O) and B (0.08% FA, 80%). After
separation by capillary HPLC, a mass spectrometer Orbitrap Fusion™ Lumos™ Tribrid™
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(Thermo Scientific™, Waltham, MA, USA) was used for mass spectrometry analysis. The
detailed steps for enzymolysis and iTRAQ labeling have been described previously [15,16].

2.7. Database Search, Protein Identification, and Quantification

The database search software Proteome Discoverer was used to search the obtained
data in the database Uniprot Sus_ = scrofa (downloaded from 2 January 2019, a total of
49,003 sequences). After filtering the obtained peptide data with a false discovery rate
(FDR) ≤ 0.01, the peptides were identified. Quantitative analysis of the peak intensity
values reported by peptides was performed. All identified proteins were screened under
fold change ratio (FC) conditions of ≥1.2 or ≤0.83, and p ≤ 0.05. The online website was
used to perform sysbal name conversion for the DEGs and DEPs (https://biodbnet-abcc.
ncifcrf.gov/db/db2dbRes.php, accessed on 10 January 2020). GO analysis was performed
on the genes after the name conversion and annotations of the KEGG pathway. The online
software Metascape (http://metascape.org/gp/index.html#/main/step1, accessed on
10 January 2020) was used to classify and annotate the differential genes and differential
proteins [17]. At this time, p < 0.05 was selected as the pathway with significant difference
for subsequent analysis.

2.8. RT-qPCR of Candidate Genes

The analysis was combined with dual-omics and the candidate genes screened. Real-
time fluorescence quantification methods were used to analyze gene mRNA expression to
determine whether the data from gene-specific expression patterns were reliable.

3. Results
3.1. Summary of RNA-seq Data

After removing the linker and low-quality sequences, each sample obtained
44.6–48.0 million clean reads; approximately 95% of the clean reads were mapped to the
Sus scrofa genome sequence. Taking the calculated FPKM value as the gene expression
level, a total of 19,826 expressed genes were observed in the lung tissue. Of the expressed
genes, 18,247 were co-expressed between the two groups (Figure 1A). A heat map of all
co-expressed genes showed the biological repeatability within each group, with differences
in the transcriptome patterns of the TP and YY (where red indicates a high expressed gene
and blue indicates a low expressed gene; Figure 1B). A volcano plot was used to clearly
reflect the obviously expressed unigenes using yellow and blue for the two groups. The
results showed that 1012 genes were up-regulated and 980 were down-regulated in the TP
groups when compared with those in the YY groups (Figure 1C). The top 20 significantly
different up-regulated and down-regulated genes in the two groups are listed in Table 1.
There were approximately 4200 (p < 0.1), 2988 (p < 0.05), and 1534 (p < 0.01) significant
DEGs identified between the TP and YY groups, including up-regulated (2171, 1543, and
820) and down-regulated (2029, 1445, and 714) UniGene IDs (Figure 1D).
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Figure 1. Cluster analysis of differentially expressed genes. Venn diagram of the number of genes
expressed in each group (A); heatmap of differentially expressed genes between the two groups
(B); volcano plot of differentially expressed genes (C); and differentially expressed genes (D). YY,
Yorkshire pig; TP, Tibetan pig.

Table 1. Detail information for the top 20 differentially expressed genes.

Gene ID Gene Name Log2 Fold Change p-Value Up/Down

ENSSSCG00000009738 GALNT9 7.689227 1.83 × 10−6

up

ENSSSCG00000033254 IFN-ALPHA-13 6.983059 1.02 × 10−6

ENSSSCG00000007859 UMOD 6.040727 0.009784
ENSSSCG00000033610 ZG16B 6.015486 0.024330
ENSSSCG00000037533 HIST2H2AB 5.656798 0.001126
ENSSSCG00000029516 SLC22A8 5.639100 0.020157
ENSSSCG00000034995 RF00017 5.098178 0.035442
ENSSSCG00000037202 CACNG4 4.860514 0.013594
ENSSSCG00000037225 RPRM 4.856914 0.016825
ENSSSCG00000008741 FGFBP1 4.832671 0.000081
ENSSSCG00000037535 SLC34A1 4.729766 0.013466
ENSSSCG00000037300 GRP 4.443211 0.005612
ENSSSCG00000035689 NEXMIF 4.430799 0.043955
ENSSSCG00000001906 CYP1A1 4.426375 0.000505
ENSSSCG00000003066 IRGC 4.404553 0.047451
ENSSSCG00000033193 TPO 4.400171 0.016735
ENSSSCG00000037534 OPCML 4.233214 4.60 × 10−16

ENSSSCG00000001613 TREML1 4.174212 0.003859
ENSSSCG00000028695 TMSB15A 4.032314 3.94 × 10−14

ENSSSCG00000022140 TMPRSS11E 4.005328 0.028356

ENSSSCG00000040910 APOH −4.214353 0.027279

down

ENSSSCG00000021767 TDH −4.268103 0.001937
ENSSSCG00000002479 SERPINA11 −4.286988 0.006838
ENSSSCG00000012711 F9 −4.323437 0.026465
ENSSSCG00000016159 CPS1 −4.326881 0.000381
ENSSSCG00000012517 TMSB15B −4.341481 5.88 × 10−7

ENSSSCG00000016856 C9 −4.466406 0.037223
ENSSSCG00000010431 A1CF −4.487968 0.017588
ENSSSCG00000003835 C8A −4.594111 0.000224
ENSSSCG00000020680 CLDN14 −4.631278 0.006969
ENSSSCG00000008998 FGA −4.729940 0.002310
ENSSSCG00000036158 TRAM1L1 −4.734145 0.003310
ENSSSCG00000037547 SLC17A3 −4.893193 0.000000
ENSSSCG00000006248 MOS −5.303923 0.006916
ENSSSCG00000002983 LGALS13 −5.369302 0.000084
ENSSSCG00000034429 PLA2G5 −5.410249 0.010311
ENSSSCG00000029449 PRG4 −5.667579 4.54 × 10−20

ENSSSCG00000016315 SPP2 −6.047557 0.000038
ENSSSCG00000008214 FABP1 −6.452786 0.000014
ENSSSCG00000037268 APCS −7.280566 2.05 × 10−7

If the genes expression level is higher in Tibetan pigs (TP) than in Yorkshire pigs (YY), it is up-regulated, otherwise
it is down-regulated.
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3.2. Functional Annotation of DEGs

Using the strict selection criteria of |log2 (fold change)| > 1 and q < 0.05, in order to
compare the TP and YY, 1021 DEGs were screened. The 1021 differential genes in the TP vs.
YY were mainly enriched on 1221 GO entries and 82 KEGG pathways. The GO terms for the
top 20 predominately included the regulation of the MAPK cascade, blood microparticles,
complement and coagulation cascades, and response to wounding (Figure 2A,B). The top
20 KEGG pathways mainly included the regulation of inflammatory responses, the IL-17
signaling pathway, the PPAR signaling pathway, insulin resistance, and thyroid hormone
synthesis (Figure 2C,D).
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genes [the top 20 most enriched pathway terms] (A); enriched KEGG pathway terms for the interaction
network in MCODE components (B); enriched GO terms for the DEGs [the top 20 most enriched
pathway terms] (C); and enriched GO terms for the interaction network in MCODE components (D).

3.3. RNA-seq Date Validation by RT-qPCR

Validation of the RNA-sequence data was performed using six genes selected for anal-
ysis by RT-qPCR. The expression level of the SELENBP1 gene in the TP was significantly
higher than that in YY (p < 0.05), while the expression level of the MCC gene was signifi-
cantly higher than that in YY (p < 0.01). The expression levels of the CAPG and ADH4 genes
in the TP were significantly lower (p < 0.05) than those in the YY. The expression levels of
the LYZ and CPS1 genes in the TP were significantly lower (p < 0.01) than those in the YY.
Two genes were up-regulated and four were down-regulated. The quantitative results of
the selected genes indicate their function and confirm the reliability of the omics data to
a certain extent (Figure 3A). The correlation was evaluated in R using the RNA-seq log2
fold-change values and relative expression levels quantified by RT-q PCR. The correlation
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coefficient (R = 0.7802; p = 0.0196) revealed that gene expression levels were correlated in
the data for the RT-qPCR and RNA-seq, which confirms the RNA-seq results (Figure 3B).
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Figure 3. Validation of the RNA-Seq approach using RT-qPCR (A); transcriptome confirmation using
real-time RT-qPCR [results represent means ± S.E.M.] (B); log2 fold changes in gene expression for
RT-qPCR and RNA-Seq data, which are closely correlated (R = 0.7802; p = 0.0196), confirming the
accuracy of the RNA-seq approach. * p < 0.05.

3.4. Protein Identification and Quantification

The total number of secondary spectra showed that a total of 72,991, and a total of
22,100 peptides matched in the proteome project. After filtering, a total of 4518 proteins
were obtained under the condition of FDR < 0.01. A heatmap of all co-expressed proteins
showed that the biological repeatability within each group was improved. There were
differences in the proteome patterns of the TP and YY (Figure 4A). The clustering plots of
all the expressed proteins showed that the biological repeatability of the two breeds was
improved. The TP are typical plateau-adaptive animals, and significantly different from the
YY. In terms of protein mass distributions, the proteins identified in the range of 10–70 kD
account for approximately 64.94% (2934/4518; Figure 4B) of the total identified proteins.
The volcano plot reflected the expressed uniproteins and showed that 88 proteins were
up-regulated and 189 were down-regulated in the TP group when compared with the YY
group (Figure 4C). The top 20 significantly up-regulated and down-regulated proteins in
the two groups are listed in Table 2. Overall, 1023 (p < 0.1), 582 (p < 0.05), and 107 (p < 0.01)
significant DEPs were identified between the TP and YY groups, including up-regulated
and down-regulated UniGene IDs (Figure 4D).
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D3GIN8 SLA-2 38.8 0.435303 0.022197 −1.199910
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3.5. Functional Annotation of DEPs

According to the screening conditions of FC ≥ 1.8, FC ≤ 0.833, and p < 0.05 for the TP
vs. YY, a total of 271 DEPs were identified. In the Metascape database, the 271 DEPs were
significantly enriched in 902 GO entries and 45 KEGG pathways. The enriched GO entries
mainly included the regulation of peptidase activity, regulation of Wnt signaling pathways,
and responses to extracellular stimulus (Figure 5A,B). The enriched pathways mainly
include MicroRNAs in cancer, hematopoietic cell lineage, and glycolysis/gluconeogenesis
(Figure 5C,D).

Animals 2022, 12, x FOR PEER REVIEW 10 of 15 
 

Figure 4. Cluster analysis of differentially expressed genes. Heatmap of differentially expressed 

proteins between two groups (A); distribution of identified proteins among the different molecular 

weight groups [in kDa] (B); volcano plot of differentially expressed proteins (C); and differentially 

expressed genes (D). 

3.5. Functional Annotation of DEPs 

According to the screening conditions of FC ≥ 1.8, FC ≤ 0.833, and p < 0.05 for the TP 

vs. YY, a total of 271 DEPs were identified. In the Metascape database, the 271 DEPs were 

significantly enriched in 902 GO entries and 45 KEGG pathways. The enriched GO entries 

mainly included the regulation of peptidase activity, regulation of Wnt signaling path-

ways, and responses to extracellular stimulus (Figure 5A,B). The enriched pathways 

mainly include MicroRNAs in cancer, hematopoietic cell lineage, and glycolysis/glucone-

ogenesis (Figure 5C,D). 

 

Figure 5. Function analysis of differentially expressed proteins (DEPs) between the two groups 

based on Gene Ontology and KEGG pathway analysis. KEGG enrichment analysis of the differen-

tially expressed genes [the top 20 most enriched pathway terms] (A); enriched KEGG pathway terms 

for the protein–protein interaction network (B); enriched GO terms of the different expression genes 

[the top 20 most enriched pathway terms] (C); and enriched GO terms for the protein–protein inter-

action network (D). 

Figure 5. Function analysis of differentially expressed proteins (DEPs) between the two groups based
on Gene Ontology and KEGG pathway analysis. KEGG enrichment analysis of the differentially
expressed genes [the top 20 most enriched pathway terms] (A); enriched KEGG pathway terms for
the protein–protein interaction network (B); enriched GO terms of the different expression genes [the
top 20 most enriched pathway terms] (C); and enriched GO terms for the protein–protein interaction
network (D).

3.6. Combined Analysis of DEGs in RNA-seq and DEPs in iTRAQ

The 1021 DEGs screened in the RNA-seq and the 271 DEPs screened in proteomics
iTRAQ overlap with 22 genes; of these, 14 genes were annotated with the same trend
(Figure 6A). A literature review and functional annotation of these 14 genes was performed.
Among them, there were differentially expressed genes (MCC) on the Wnt signaling path-
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way: ADH4 genes related to glycolysis/gluconeogenesis, ethanol oxidation, and quinone
reductase activity NADPH regulation; ASS1 genes related to mitochondrial function and
HIF-1 regulation; CPS1 and CAPG [18–21], the LYZ genes associated with inflammatory
responses and lysozyme activity; and the SELENBP1 gene associated with selenium bind-
ing function, which serves as a marker for myocardial hypoxia [22]. The correlation was
evaluated in R using the RNA-seq log2 fold-change values and relative expression levels
quantified by iTRAQ. The correlation coefficient (R = 0.6815; p = 0.0005) revealed that
gene expression was obtained by RT-qPCR and RNA-seq correlation and confirmed the
correctness and reproducibility of the RNA-seq results (Figure 6B).
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time RT-qPCR [results represent means ± S.E.M.] (A); log2 fold changes in gene expression for the
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4. Discussion

Studies have shown that the hypoxic adaptation mechanism is a complex regulatory
mechanism, and its occurrence and development are closely related to cardiopulmonary
function [23]. In previous reports, plateau hypoxia adaptation-related pathways were
analyzed in different types of pig lung tissue by combining RNA-seq and iTRAQ technology
to identify relevant genes, including A2M, COL3A1, CRYAB, DECR1, and PDLIM3 [13]. It
has also been found that the immune mechanisms and anti-inflammatory effects of the
pathway are also particularly important in hypoxic conditions [24]. The lungs are usually
well-oxygenated organs and are sensitive to changes in oxygen content. The correlation
between lung tissue and hypoxia adaptations has been widely observed. Controlled
transcriptional responses are essential to optimize alveolar epithelial glucose metabolism,
and thereby suppress lung inflammation during ALI [25]. TP, as a plateau-adapted breed,
are better at adapting to plateau hypoxia than YY [26]. Many scholars have also conducted
important comparisons between different breeds in order to investigate evolutionary
patterns and energy metabolism [27] and the important functional roles of the genes
between the different breeds [28]. The lung and cardiovascular tissues of TP have been
shown to have unique advantages against the low oxygen of the plateau [29,30]. In this
study, local TP and imported YY were selected as test subjects and their lung tissues were
obtained for analyses. Hypoxia may have a certain impact on the lungs, and the expression
of the key differentially expressed genes and proteins in lung tissue may also be related to
hypoxia.

A combination of transcriptomics, proteomics, and dual expression omics analysis
was used to screen and identify pathways and key genes related to hypoxia adaptations in
the TP lung tissue. Transcriptome analysis revealed that gene expression is at the mRNA
level and many complicated network mechanisms are involved in the expression of mRNA
levels and the translation into protein [31,32]. The proteomics study identified the DEPs
in the lung tissues of the two pig breeds at the protein level. The real-time fluorescence
quantification of the key genes analyzed using the dual-omics analysis also showed the
accuracy of transcriptomics data and the reliability of the identified genes. Consequently,
the combination of the two-omics could provide more comprehensive and accurate gene
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expression information and could provide a reliable indicator for adaptations to plateau
hypoxia.

A series of pathways and genes related to hypoxia adaptability from dual omics
were screened. Liu [33] obtained the co-expression of genes by studying the molecular
mechanisms of multiple myeloma (MM) and monoclonal gammopathy of undetermined
significance. The complement and coagulation cascade- and HIF-1-related genes were
significantly enriched in the network. Du [34] reported that complement and coagulation
cascades play a particularly prominent role in adaptation to hypoxia; hypoxia-induced
inflammation activation of JNK, and NF-κB signaling, lead to the phosphorylation of the
IRS-1 receptors by serine and impaired insulin signaling [35,36]. Hyperthyroidism can
induce elevated plasma levels of fibronectin (FN by activating the HIF-1 pathway) up-
regulation [37]; HIF-1 responds to hypoxic-ischemic injury by inducing a type 3 deiodinase
to reduce the regulation mechanism of local thyroid hormone signaling [38]. The cancer
cell environment is often anoxic; under the hypoxia environment of lung cancer cells,
changes in the B-catenin’s position in the nucleus enhance Wnt signaling activities, thereby
increasing the ability of lung cancer cells to induce chronic hypoxia [39–42].

Some studies have shown that the SLA protein family is closely related to stress
resistance; TP have good stress resistance, which is consistent with the results of this
study [43]. The expression level of the SELENBP1 gene in the body is closely related to the
duration of hypoxia and ischemia and is involved in myocardial hypoxia [44,45]. Earlier
studies determined that MCC is closely related to the Wnt signaling pathway, a novel
intracellular effector transducer, and to the regulation of cancer progression by the Wnt
signaling pathway [46–48]. Hypoxia can cause pulmonary hypertension (HPH), and CAPG
may promote or inhibit the proliferation of human pulmonary artery smooth muscle cells
(PASMCs). It grows to participate in the mechanism of pulmonary vascular remodeling in
HPH rats, and the expression of CAPG is also induced by hypoxia [49,50]. The arginine
succinate synthetase 1 (ASS1) is an arginine (Arg) biosynthesis process (key enzyme in
HIF-1) that controls the silencing of ASS1 and starves Arg, thereby inhibiting the growth
of Arg vegetative tumor cells [19,51]. The alcohol dehydrogenase 4 (ADH4) is involved in
ethanol oxidation and glycolysis and is related to hypoxia adaptation pathways [52,53].
During physiological changes when adapting to a hypoxic environment, the innate immune
response and other test results for the expression level of the LYZ gene increased with
prolonged hypoxia time [54]. Carbamoyl phosphate synthetase-1 (CPS; key mitochondrial
rate-limiting enzyme in urea cycle) in a hypoxic environment of tumor cells can reduce
cell growth and prevent the production of metabolites in the nucleic acid biosynthetic
pathway [55,56].

It is worth mentioning that an interesting phenomenon was found in this study. Some
genes that have been shown to be related to hypoxia stress response are up-regulated
in the RNA-seq omics of this study, but down-regulated in the proteomics, including
CRYAB [57] and HIF-1A [58], among others. We speculate that this may be due to a certain
modification during RNA translation into protein, which may also be due to the interaction
with other genes or proteins in the regulatory role. The specific regulatory mechanism
needs further study.

5. Conclusions

In total, approximately 1021 DEGs were identified in the lung tissues of the TP and
YY pigs using RNA-seq, and 271 DEPs were obtained using iTRAQ. Transcriptome, pro-
teome, and dual expression levels for six key candidate genes (SELENBP1, MCC, CAPG,
ADH4, LYZ, and CPS1) were screened from the lung tissues, and they were found to be
predominantly involved in mitochondrial function, blood particle regulation, glycolysis,
ethanol oxidation, and the Wnt signaling pathway, as well as other related hypoxia-adaptive
regulatory mechanisms.
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