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The catechol-O-methyltransferase (COMT) enzyme is critical for the catabolic regulation of
synaptic dopamine, resulting in altered cortical functioning.The COMT Val158Met polymor-
phism has been implicated in human mental illness, with Met/Met homozygotes associated
with increased susceptibility to posttraumatic stress disorder (PTSD). Our primary objective
was to examine the intermediate phenotype of fear inhibition in PTSD stratified by COMT
genotype (Met/Met, Val/Met, and Val/Val) and differential gene regulation via methylation
status at CpG sites in the COMT promoter region. More specifically, we examined the
potential interaction of COMT genotype and PTSD diagnosis on fear-potentiated startle
during fear conditioning and extinction and COMT DNA methylation levels (as determined
using genomic DNA isolated from whole blood). Participants were recruited from medical
and gynecological clinics of an urban hospital in Atlanta, GA, USA. We found that individ-
uals with the Met/Met genotype demonstrated higher fear-potentiated startle to the CS−
(safety signal) and during extinction of the CS+ (danger signal) compared to Val/Met and
Val/Val genotypes. The PTSD+ Met/Met genotype group had the greatest impairment in
fear inhibition to the CS− (p=0.006), compared to Val carriers. In addition, the Met/Met
genotype was associated with DNA methylation at four CpG sites, two of which were asso-
ciated with impaired fear inhibition to the safety signal.These results suggest that multiple
differential mechanisms for regulating COMT function – at the level of protein structure via
the Val158Met genotype and at the level of gene regulation via differential methylation – are
associated with impaired fear inhibition in PTSD.

Keywords: catechol-O-methyltransferase, fear-potentiated startle, posttraumatic stress disorder, epigenetic, methy-
lation, trauma

INTRODUCTION
Posttraumatic stress disorder (PTSD), a debilitating psychiatric
illness precipitated by exposure to a traumatic event, occurs in
approximately one-fourth of traumatized individuals (Institute
of Medicine, 2008). As such, there is a compelling rationale for
examining candidate risk and resilience factors for developing this
disorder after experiencing trauma. Recent reviews in the literature
have identified a number of candidate gene variants as potential
contributors to PTSD risk and resilience (Amstadter et al., 2009;
Jovanovic and Ressler, 2010; Skelton et al., 2012).

An intriguing, well-described candidate is the gene that encodes
catechol-O-methyltransferase (COMT ), an enzyme that catab-
olizes catecholamines such as norepinephrine, epinephrine, and
dopamine. COMT is primarily expressed in the prefrontal cor-
tex (Gogos et al., 1998; Tunbridge et al., 2004a) and hippocampus
(Matsumoto et al., 2003), regions that are critically associated with

inhibition of fear responses. The COMT enzyme represents the
principal synaptic dopamine clearing mechanism in these brain
regions that are largely devoid of dopamine transporter expres-
sion (Sesack et al., 1998; Lewis et al., 2001). The COMT gene
is located on chromosome 22q11 and possesses several com-
mon single nucleotide polymorphisms (SNPs), including a G/A
substitution (rs4680) at codon 158 in membrane bound COMT
(MB-COMT) and codon 108 in soluble COMT (S-COMT). This
SNP results in a valine (Val) to methionine (Met) substitution
that affects the thermostability and activity of COMT. Met/Met
homozygotes exhibit 35–50% less activity compared to Val/Val
homozygotes (Chen et al., 2004); a decrement believed to increase
brain dopamine levels in Met158 allele carriers (Bilder et al., 2004;
Chen et al., 2004; Tunbridge et al., 2004b), and presumably, down-
stream alterations in dopamine receptor (primarily D1 in cortical
regions) availability (Slifstein et al., 2008).
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From a psychiatric perspective, Met allele carriers, and espe-
cially Met/Met homozygote individuals, may be more susceptible
to anxiety disorders (Enoch et al., 2003; Woo et al., 2004; Ols-
son et al., 2005). This susceptibility is believed to be associated
with greater responsiveness and increased connectivity between
limbic brain regions such as the amygdala, hippocampus, and
prefrontal cortex (Heinz and Smolka, 2006), and this has been
supported by empirical data. For example, fMRI studies have
reported greater limbic and prefrontal activation in Met allele
carriers when exposed to negative imagery (Smolka et al., 2005;
Drabant et al., 2006). In addition, the acoustic startle response,
a reflexive contraction of the facial musculature (e.g., orbicu-
laris oculi) in response to a sudden acoustic stimulus, may be
enhanced in Met/Met homozygotes as compared to Val carriers.
This enhancement has been observed upon exposure to aversive
imagery (Montag et al., 2008), but also across negative, positive,
neutral, and baseline conditions (Armbruster et al., 2011). Finally,
a recent study that examined fear conditioning and extinction of
fear-potentiated startle in healthy volunteers found less fear extinc-
tion in Met/Met homozygous individuals relative to Val carriers
(Lonsdorf et al., 2009).

The potential contribution of genetic variation in COMT to
PTSD susceptibility is being increasingly investigated. Recent work
has implicated the COMT Val158Met polymorphism in reduced
resilience (Armbruster et al., 2012), and the development of PTSD
following repeated traumatic exposure (Kolassa et al., 2010). A
recent study by Valente et al. (2011) of urban violence in Brazil
identified a significant relationship between the Met158 allele and
the development of PTSD following a violent encounter.

Interestingly, the Val158Met polymorphism also influences
DNA methylation patterns at the COMT locus. Methylation of
CpG sites, or genomic regions in which a phosphodiester bond
links cytosine and guanine base pairs, can subsequently influence
gene expression patterns and protein function (Jones and Takai,
2001). Indeed, stress-related methylation of the Val158Met poly-
morphism has already been linked to brain activity (Ursini et al.,
2011). The regulation of COMT expression by both genetic and
epigenetic factors may represent a potential mechanism underly-
ing reported interactions between this polymorphism and envi-
ronmental factors and warrant further attention. The purpose of
the present study was to examine fear conditioning and extinc-
tion in a traumatized urban population with the study sample
stratified by COMT genotype (Met/Met homozygotes, Val/Met
heterozygotes, andVal/Val homozygotes) using an established fear-
potentiated startle paradigm (Norrholm et al., 2011). In addition,
we sought to examine methylation status at CpG sites in the
promoter region of the COMT gene.

Our previous studies with fear-potentiated startle in PTSD have
indicated that the fear-related symptoms of PTSD are associated
with impaired fear inhibition (see Jovanovic and Norrholm, 2011).
Although COMT has been extensively investigated in the literature,
there are no studies that have specifically examined the relationship
between the COMT genotype and methylation using psychophys-
iological measures of fear inhibition in PTSD. Based on our work
in PTSD populations and previous studies of COMT genetic
variation in fear extinction (Lonsdorf et al., 2009), we hypothe-
sized that COMT Met158 homozygotes would display increased

fear-potentiated startle to a safety signal and during extinction,and
that this deficit in fear inhibition would be associated with PTSD.

MATERIALS AND METHODS
PARTICIPANTS
Participants were recruited as part of a larger study investigating
the genetic and environmental factors that contribute to PTSD
in a primarily African American, low socioeconomic, inner-city
population in Atlanta, GA, USA as well as from the Emory Uni-
versity community. Exclusion criteria included active psychosis
and major medical illnesses as assessed by history and physical
examinations, as well as hearing impairment assessed with an
audiometer (Grason-Stadler, GS1710). Prior to their participation,
all participants provided written informed consents approved by
the Emory University Institutional Review Board and the Grady
Health Systems Research Oversight Committee. Participants were
assessed for demographic data, trauma history (using the Trau-
matic Events Interview, TEI, see Table 2), and PTSD symptoms
(using the modified PTSD Symptom Scale, PSS). These mea-
sures have all been validated previously in this population (Binder
et al., 2008). PTSD diagnosis was based on DSM-IV criteria using
the PSS.

FEAR-POTENTIATED STARTLE ASSESSMENT
Startle response data were acquired at a 1000 Hz sampling
frequency using the electromyography (EMG) module of the
BIOPAC MP150 for Windows (Biopac Systems, Inc.,Aero Camino,
CA, USA). The eyeblink component of the acoustic startle
response was measured by EMG recordings of the right orbicu-
laris oculi muscle using two 5-mm Ag/AgCl electrodes filled with
electrolyte gel. One electrode was positioned 1 cm below the pupil
of the right eye and the other was placed 1 cm below the lateral
canthus. Impedance levels were less than 6 kΩ for each partic-
ipant. The acquired data were filtered, rectified, and smoothed
using the MindWare software suite (MindWare Technologies, Ltd.,
Gahanna, OH, USA) and exported for statistical analyses. The
EMG signal was filtered with low- and high-frequency cutoffs
at 28 and 500 Hz, respectively. The maximum amplitude of the
eyeblink muscle contraction 20–200 ms after presentation of the
startle probe was used as a measure of the acoustic startle response.
The startle probe was a 106-dB (A) SPL, 40-ms burst of broad-
band noise with near instantaneous rise time, delivered binaurally
through headphones.

The startle session began with a habituation phase to reduce
startle reactivity and familiarize the subjects to the CSs. The fear
conditioning phase immediately followed habituation and con-
sisted of three blocks with four trials of each type (a reinforced
conditioned stimulus, CS+; a non-reinforced conditioned stimu-
lus, CS−; and the 40 ms, 108 dB noise probe alone (noise alone,
NA), for a total of 36 trials. As expected, the CS+ acquires excita-
tory properties, signals the presence of an aversive outcome, and
is termed a danger signal whereas the CS− acquires inhibitory
properties, signals the lack of an aversive outcome, and is termed a
safety signal (Norrholm et al., 2006). The use of this type of differ-
ential conditioning allows investigators to determine one’s ability
to discriminate between danger and safety, most notably in patient
populations with anxiety disorders (e.g., Norrholm et al., 2011).
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Figure 1 shows the schematic diagram of the stimuli in the exper-
iment. Both CSs were colored shapes presented on a computer
monitor for 6 s. The US was a 250 ms air blast with an intensity of
140 p.s.i. directed at the larynx. This US has been used in several
of our previous studies and consistently produces robust fear-
potentiated startle (Jovanovic et al., 2010b; Norrholm et al., 2011).
For CS+ trials, a colored shape was displayed for a total of 6790 ms.
A startle probe (40 ms duration) was administered 6000 ms after
onset of the shape. The airblast US (250 ms duration) was then
administered 500 ms after the startle probe. The shape display
then co-terminated with the offset of the airblast. For CS− tri-
als, a colored shape was displayed for a total of 6040 ms. A startle
probe (40 ms duration) was administered 6000 ms after onset of
the shape. The shape display then co-terminated with the offset
of the startle probe. The inter-trial intervals were randomized to
be 9–22 s in duration. The extinction session was administered
10 min after fear conditioning, and consisted of six blocks with
four trials of each type (CS+, CS−, and NA), for a total of 72
trials. The stimuli were same as above, except that the CS+was no
longer reinforced with the airblast. The 10-min interval between
the acquisition and extinction sessions was based on our previ-
ous work with healthy controls (Norrholm et al., 2008) and PTSD
patient populations (Norrholm et al., 2011) and is consistent with
similar work from other laboratories examining fear extinction
and PTSD (Milad et al., 2008). Our data have shown that fear
extinction performed 10 min after fear acquisition, as opposed to
longer durations such as 72 h, does not affect extinction learning
(Norrholm et al., 2008).

US-EXPECTANCY
A response keypad (SuperLab, Cedrus Corp., San Pedro, CA, USA)
was used during each acoustic startle session to record the partic-
ipants’ expectancy of the US on each CS presentation (Jovanovic
et al., 2006). Participants rated their expectancy of the airblast US
by pressing one of three buttons: a button marked “+” if they
expected the US on a given CS trial, a button marked “−” if they

did not expect the airblast US, or a button marked “0” if they
were uncertain. For data analysis purposes, responses of “+” were
scored as 1, responses of “−” were scored as −1, and responses of
“0” were scored as 0.

GENOTYPING
DNA was extracted from saliva in Oragene collection vials (DNA
Genotek Inc, ON, Canada) using the DNAdvance kit (Beckman
Coulter Genomics, Danvers, MA, USA). The COMT Val158Met
SNP, rs4680, was genotyped using the Sequenom iPlex chemistries
and the MassARRAY system (Sequenom Inc., San Diego, CA,
USA). The assay call rate was 97.6%. Within and across plate dupli-
cates were used for quality control. All duplicates were concordant.
Genotypes for control samples (identified as those without PTSD)
were in Hardy–Weinberg Equilibrium (p > 0.05).

METHYLATION
Genomic DNA was isolated from whole blood stored in EDTA
tubes using the Gentra Puregene Kit (Qiagen, Hilden, Ger-
many). DNA was quantified using PicoGreen (Invitrogen, Carls-
bad, CA, USA), and the quality was checked on an agarose gel.
CpG sites in COMT were selected from the HumanMethylation
450K BeadChip (Illumina, San Diego, CA, USA). Briefly, 1 µg of
DNA converted with sodium bisulfite, amplified, fragmented, and
hybridized on the HumanMethylation 450K BeadChip (Illumina,
San Diego, CA, USA) according to the manufacturer’s instruc-
tions. Beta values were generated with Beadstudio. Samples with
probe detection call rates <90% and those with an average inten-
sity value of either <50% of the experiment-wide sample mean
or <2000 arbitrary units (AU) were excluded from further analy-
sis. One sample of male DNA was included on each BeadChip
as a technical control throughout the experiment and assessed
for reproducibility using the Pearson correlation coefficient. For
each individual sample and CpG site, the signals from methylated
(M) and unmethylated (U) bead types were used to calculate a
beta value as β=M/(U+M). The methylation differences were

FIGURE 1 | Schematic illustration of fear-potentiated startle paradigm and the conditioned stimuli.
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calculated using generalized linear models in R adjusting for batch
and position effects.

DATA ANALYSES
For the analyses of fear conditioning, the independent variables
in the analyses were COMT Genotype (three levels: Met/Met,
Val/Met, Val/Val) and PTSD Diagnosis (two levels: PTSD−,
PTSD+). The dependent variables were fear-potentiated startle
and US-expectancy ratings. Fear-potentiated startle was calcu-
lated by subtracting the startle response magnitude during each
CS presentation from the startle magnitude to the NA trials, in
order to control for individual differences in startle magnitude.
Repeated measures analyses of covariance (RM ANCOVA) were
used to test the effect of Block (three levels) and Trial Type (two
levels: CS+, CS−) during acquisition as within-subjects variables
and Genotype and PTSD Diagnosis as between-subjects variables
while co-varying for age, sex, race, and trauma history. Interac-
tion effects of Block and Trial Type were followed up with RM
ANCOVAs for comparing Trial Type within the last two Blocks
of acquisition, when the fear conditioned effects are largest, as
in our previous work (Norrholm et al., 2011). Further interac-
tions with Trial Type were followed up by univariate analyses of
covariance (ANCOVA) separately for each CS. Contingency aware-
ness was analyzed by comparing US-expectancy ratings of each
Trial Type with a Repeated Measures ANCOVA with Genotype
and PTSD as between-groups factors. Extinction was analyzed the
same way using RM ANCOVA, but with Block [three levels: early,
mid, late, diving the six blocks into three bins consistent with
our previous work (Norrholm et al., 2011; Glover et al., 2012)] as
a within-subjects variable and Genotype and PTSD Diagnosis as
between-group variables, using the above covariates. For the analy-
ses of methylation, we first examined which CpG sites were most
associated with genotype using a regression analysis in R correct-
ing for multiple comparisons with a Bonferroni adjustment. Due
to our previous findings of impaired fear inhibition to the CS−, we
also completed a regression analysis of CpG sites were associated
with fear-potentiated startle to the CS−. We then also examined
the association between methylation of genotype-associated CpG
sites and fear-potentiated startle to the CS−. Methylation was
then also analyzed in an ANCOVA with genotype and PTSD a
between-groups factors. Finally, in order to examine the asso-
ciation of methylation level and fear inhibition, we categorized
individuals into High or Low methylation groups using a median
split of the methylation beta values, and examined the effect of
methylation level and PTSD diagnosis on fear-potentiated star-
tle to the CS−. We also performed a step wise regression analysis
with demographics, trauma history, PTSD, and continuous levels
of methylation, to examine the independent contributions of each
variable to fear inhibition.

RESULTS
PARTICIPANT CHARACTERISTICS
The study included 270 unrelated participants with varying
degrees of trauma exposure (Table 1), of which 98 met crite-
ria for PTSD (PTSD+ group), and 172 did not meet criteria
for PTSD (PTSD− group). Of the total sample, 30 participants
had the Met/Met genotype (21 without PTSD, 9 with PTSD), 94
participants had the Met/Val genotype (62 without PTSD, and 32

with PTSD), 145 had the Val/Val genotype (89 without PTSD, 57
with PTSD), χ2

= 0.55, ns. The demographic information is pre-
sented in Table 1. As expected, the PTSD+ and PTSD− groups
were different in level of trauma exposure and PTSD symptoms;
however, the genotype groups were matched on PTSD symp-
toms, although the Val/Met group reported slightly higher levels
of trauma. Demographic data and trauma levels were entered as
covariates in univariate analyses of variance. Table 2 shows the
percent of different types of traumas experienced by individuals
within each genotype group. The Val/Met genotype group had a
greater likelihood of experiencing a serious injury, being attacked
without a weapon, and having forced sexual contact after age 17.

FEAR-POTENTIATED STARTLE
Repeated measures analyses of covariance of fear-potentiated star-
tle with Block and Trial Type as within-subject factors and Geno-
type and PTSD Diagnosis as between-groups variables, with age,
sex, race, and trauma history as covariates, revealed a signifi-
cant main effect of Block [F(2,514)= 18.24, p < 0.001], main
effect of PTSD Diagnosis [F(1,257)= 6.45, p= 0.01], a signif-
icant two-way Block×Trial Type interaction [F(2,514)= 3.15,
p < 0.05], and a significant two-way Genotype×Trial Type inter-
action, F(2,257)= 3.23, p < 0.05. We then performed another
RM ANCOVA during late acquisition, with Trial Type as the
within-subjects variable, and Genotype and PTSD Diagnosis as
the between-groups variables. We found a significant main effect
of PTSD Diagnosis, F(2,258)= 6.80, p= 0.01, and an interac-
tion effect of Genotype×Trial Type, F(2,258)= 3.13, p < 0.05
(see Figure 2). A follow-up RM ANCOVA analysis of Trial
Type within each Genotype revealed significantly higher fear-
potentiated startle to the CS+ than the CS− in the Val/Met
group, F(1,93)= 17.47, p= 0.00007, and the Val/Val group,
F(1,145)= 21.58, p= 0.000008, but not in the Met/Met group,
F(1,29)= 0.05, ns. As seen in Figure 2, the lack of discrimina-
tion between CS+ and CS− in the Met/Met group was largely
due to the PTSD+ individuals. In order to ensure that this lack
of discrimination was not due to impaired cognitive learning of
the CS contingencies in the Met/Met group, we repeated the above
analyses with US-expectancy ratings as the dependent variable. We
conducted RM ANCOVA of US-expectancy across Block and CS+
vs. CS−, with Genotype and PTSD as between-groups factors. This
analysis revealed a significant interaction of Block and Trial Type,
F(2,310)= 4.08, p < 0.05. Looking at late acquisition, we found
significantly higher US expectancies on the CS+ than the CS−
across all groups after controlling for age, sex, race, and trauma
history, F(1,157)= 24.60, p < 0.00001, but no main or interac-
tion effects with Genotype or PTSD Diagnosis. This suggests that
all groups were equally able to discriminate, at a conscious level,
between the CS+ vs. CS− shapes.

We also followed up the above Genotype×Trial Type interac-
tion effect by analyzing the effects of Genotype and PTSD Diagno-
sis within each Trial Type separately, while controlling for potential
covariates. A univariate ANCOVA of fear-potentiated startle to
the CS+ (danger signal), with sex, age, race, and trauma levels
entered as covariates did not show any main or interaction effects.
However, the same analysis of fear-potentiated startle to the CS−
revealed a significant main effect of Genotype, F(2,258)= 5.94,
p= 0.003, a main effect of PTSD Diagnosis, F(1,258)= 13.39,
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Table 1 | Demographic characteristics, trauma level, and PTSD symptom severity across PTSD and COMT genotype groups.

PTSD diagnosis COMT rs4680 genotype

PTSD+ (n=98) PTSD− (n=172) Met/Met (n=30) Val/Met (n=94) Val/Val (n=146)

DEMOGRAPHICS

Sex (% female) 67.3 60.7 73.3 54.3 66.4

Race (% AA) 90.8 87.9 80.0 79.8 96.6

Age (M, SD) 40.3 (11.4) 37.6 (12.9) 38.2 (12.1) 38.3 (12.2) 38.8 (12.7)

TRAUMA EXPOSURE

TEI (M, SD) 4.6 (2.5)** 2.4 (2.2) 2.7 (2.3) 3.8 (2.9)* 3.0 (2.2)

PTSD SYMPTOMS

PSS total (M, SD) 27.4 (9.5)** 7.1 (7.0) 12.8 (12.4) 13.6 (12.2) 14.0 (13.6)

PSS re-experiencing 7.0 (3.8)** 1.7 (2.5) 3.0 (3.7) 3.3 (3.7) 3.5 (4.2)

PSS avoidance 11.3 (4.3)** 2.8 (3.4) 5.9 (6.0) 5.3 (5.3) 5.6 (5.8)

PSS hyper-arousal 9.2 (3.6)** 2.8 (3.1) 3.8 (4.2) 5 (4.8) 4.9 (4.7)

* p < 0.05; ** p < 0.01.

Table 2 | Percent exposure to different trauma types across the COMT genotypes.

Type of trauma exposure Met/Met N (%) Val/Met N (%) Val/Val N (%) X 2

Natural disaster 9 (34.6) 32 (38.6) 42 (31.6) 1.11, ns

Serious accident or injury 11 (45.8) 48 (59.3) 53 (40.2) 7.38, p=0.025

Sudden life-threatening illness 4 (15.4) 14 (17.5) 29 (21.6) 0.88, ns

Military combat 0 (0.0) 3 (3.8) 1 (0.7) 3.25, ns

Close friend or family member murdered 5 (19.2) 16 (20.3) 19 (14.2) 1.45, ns

Attacked with weapon 9 (34.6) 34 (44.7) 39 (30.7) 4.09, ns

Attacked without weapon 8 (30.8) 34 (43.0) 30 (22.7) 9.64, p=0.008

Violence between parents or caregivers 8 (30.8) 28 (35.4) 52 (39.1) 0.77, ns

Childhood physical abuse 6 (23.1) 28 (35.4) 38 (29.7) 2.42, ns

Sexual contact before age 13 7 (26.9) 20 (25.3) 37 (28.0) 0.19, ns

Forced sexual contact between 14 and 17 6 (23.1) 9 (11.4) 17 (12.9) 2.39, ns

Forced sexual contact after age 17 0 (0.0) 15 (19.0)* 17 (12.8) 6.17, p=0.046

* p < 0.05.

p= 0.0003, but no interaction effect between Genotype and PTSD,
F(2,258)= 2.10, p > 0.1. In all genotype groups, fear to the CS−
was higher in the PTSD+ group compared to the PTSD− group
(see Figure 3A). A Tukey HSD post hoc analysis of the main
effect of Genotype, showed that fear-potentiated startle to the
CS− was higher in the Met/Met group than either the Val/Met
group (p < 0.02), or the Val/Val group (p < 0.05). As there were
no significant differences between the two Val genotypes, the
Val/Met and Val/Val groups were collapsed in the further analy-
ses described below. When we examined fear-potentiated startle
to the safety signal within each diagnostic group with the Val/Met
and Val/Val genotypes collapsed, we found that it was highest in
the PTSD+ Met/Met genotype carriers compared to Val carri-
ers, F(1,92)= 8.01, p= 0.006 (see Figure 3A). In order to further
control for the effects of race, we stratified the sample by race and
repeated the significant analyses in only African American individ-
uals (n= 240); the main effect of Genotype was still significant,
F(2,229)= 6.22, p= 0.002. Furthermore, fear-potentiated startle
was again highest in the PTSD+Met/Met group compared to Val
allele carriers, F(1,84)= 7.91, p= 0.006.

These results indicate that Met158 homozygotes have higher
physiological fear responses to safety signals, and that this ele-
vation may be further enhanced in those with PTSD. In our
previous studies, fear-potentiated startle to the CS− during acqui-
sition predicted the degree of CS+ extinction (Norrholm et al.,
2011). Therefore, we examined extinction to the CS+ with a
RM ANCOVA of Extinction (three levels: Early, Mid, Late) with
Genotype (two levels: Met/Met, Val carriers) and PTSD Diag-
nosis (two levels; PTSD+, PTSD−) as between-subjects fac-
tors, with the same covariates as above. We found a signifi-
cant linear effect of Extinction, F(2,474)= 29.87, p < 0.00001,
and a significant interaction of Extinction and PTSD Diagno-
sis, F(2,474)= 10.36, p < 0.00001, an interaction of Extinction
and Genotype, F(2,474)= 3.54, p < 0.05, as well as a three-
way interaction of Extinction, Genotype, and PTSD Diagnosis,
F(2,474)= 3.98, p= 0.03. Figure 3B shows the extinction curves
for the Genotype and PTSD groups over time. The RM ANCOVA
also indicated a significant main effect of PTSD Diagnosis on
extinction, F(1,238)= 19.18, p= 0.00001 (see Figure 3C), and
an interaction effect of Genotype and PTSD, F(1,238)= 5.49,
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FIGURE 2 | Fear-potentiated startle during late fear acquisition across
COMT genotype, PTSD diagnosis, and trial type. There was a significant
main effect of PTSD Diagnosis, F (2,258)=6.80, p= 0.01, and an interaction
effect of Genotype×Trial Type, F (2,258)=3.13, p < 0.05. Covariates
included in the analyses were age, sex, race, and trauma history.
***p < 0.001, #p < 0.05.

p= 0.02, with the PTSD+Met/Met genotype group showing the
highest levels of fear during extinction (Figure 3C). These results
indicate that fear inhibition to the safety signal during acquisition
and extinction are impaired in Met/Met carriers with PTSD. As
in our previous work, we found a high correlation between fear-
potentiated startle to the CS− and extinction to the CS+ in this
data set (r = 0.56, p < 0.00001). Thus, we next examined COMT
methylation with respect to CS− only.

METHYLATION
The level of DNA methylation of 41 CpG sites that spanned the
COMT gene was available for 185 participants. The COMT geno-
type was associated with DNA methylation of four CpG sites in the
promoter region of COMT after correction for multiple compar-
isons and adjusting for batch effects, age, sex, and race (p < 0.0012,
Figure 4). Of these, two CpG sites were also independently asso-
ciated with fear-potentiated startle to the CS− (p < 0.029; see
Figure 4, black bars). In each of these cases, the Met/Met geno-
type was associated with increased methylation. A multivariate
ANCOVA of methylation levels of these two CpG sites with geno-
type and PTSD as between-groups variables, and age, sex, race,
and trauma as covariates, revealed a significant omnibus effect
of genotype, Wilks’ Lambda F(8,348)= 6.78, p= 0.00004, but no
effect of PTSD or interaction with PTSD. The main effect of geno-
type was significant at each site (cg23061416, F(2,174)= 13.25,
p= 0.000004 and cg04856117, F(2,174)= 10.30, p= 0.00006).
Tukey HSD post hoc tests showed an effect of Met allele number
on methylation at each site (i.e., Met/Met >Val/Met >Val/Val).

In order to examine the interaction between methylation and
PTSD with respect to fear inhibition, we used a median split
to divide the subjects into those with High and Low methyla-
tion levels at this same CpG site, and performed a univariate
ANCOVA with fear-potentiated startle to the CS− as the depen-
dent variable and age, sex, race, and trauma as covariates. We found
significant main effects of PTSD, F(1,176)= 9.66, p= 0.002, and

FIGURE 3 | Fear-potentiated startle during late acquisition and
extinction across COMT genotype and PTSD diagnosis. (A)
Fear-potentiated startle to the CS− (safety signal) in the Met/Met PTSD+
group was higher than the Val carriers with PTSD, F (1,92)=8.01, p=0.006.
Covariates included in the analyses were age, sex, race, and trauma history.
Sample sizes: Met/Met PTSD−=21; Val carriers PTSD−=151; Met/Met
PTSD+=9; Val carriers PTSD+=89. ***p < 0.001, *p < 0.01. (B)
Fear-potentiated startle to the CS+ (danger signal) during late acquisition
and early, mid, and late extinction across Genotype and PTSD Diagnosis.
We found a significant linear effect of Extinction, F (2,474)=29.87,
p < 0.00001, and a significant interaction of Extinction and PTSD Diagnosis,
F (2,474)=10.36, p < 0.00001, an interaction of Extinction and Genotype,
F (2,474)=3.54, p < 0.05, as well as a three-way interaction of Extinction,
Genotype, and PTSD Diagnosis, F (2,474)=3.98, p=0.03. Covariates
included in the analyses were age, sex, race, and trauma history. Sample
sizes: Met/Met PTSD−=18; Val carriers PTSD−=142; Met/Met
PTSD+=9; Val carriers PTSD+=80. ***p < 0.001, #p < 0.05. (C)
Fear-potentiated startle to the CS+ during extinction in the PTSD+ group
was higher than the control group (PTSD−) in both genotypes,
F (1,238)=19.18, p=0.00001. Covariates included in the analyses were
age, sex, race, and trauma history. Sample sizes: Met/Met PTSD−=18; Val
carriers PTSD−=142; Met/Met PTSD+=9; Val carriers PTSD+=80.
***p < 0.001.

methylation, F(1,176)= 11.73, p= 0.001, in that participants with
High methylation levels had greater levels of fear to the safety signal
compared to participants with Low methylation levels (Figure 5).
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FIGURE 4 | DNA methylation of the COMT gene. Plot of the CpG probes
(x -axis) vs. the negative log for the p-values for association with
genotype-dependent methylation. The genomic structure of across COMT is

indicated along with the location of the rs4680 SNP. Four CpG sites
associated with COMT genotype, and two of these (in black) were associated
with fear-potentiated startle to the CS−. Sample size: total N =185.

We again repeated the analysis in an exclusively African American
sample, and obtained the same results: those with High methy-
lation had higher levels of fear-potentiated startle to the CS−
compared to those with Low methylation levels, F(1,176)= 10.56,
p= 0.001.

Finally, in order to parse out the unique contribution of
methylation to impaired fear inhibition, we conducted a step-
wise regression analysis with fear-potentiated startle to the safety
signal as the outcome variable, entering demographics in the
first step, PTSD in the second step, and methylation at CpG
site cg23061416 in the third step. The overall model was sig-
nificant, F(5,180)= 5.354.57, p < 0.0001, with methylation alone
accounting for 4.2% of the variance in startle to the safety signal
after controlling for PTSD, F change(1,180)= 8.68, p= 0.004. These
analyses suggest that higher methylation levels are associated with
higher fear to the safety signal, and impaired fear inhibition.

DISCUSSION
The current fear-potentiated startle study, based on previous stud-
ies of COMT genotype and fear, anxiety, and trauma, initially
explored the relationship between the COMT Val158Met polymor-
phism and conditioned fear responses in an inner-city population
of traumatized individuals. We hypothesized that COMT Met/Met
genotype, associated with less efficient COMT function in pre-
frontal cortex, would be related to impaired fear inhibition in
PTSD subjects. The main findings of this study are as follows:

FIGURE 5 | Association between COMT methylation, genotype, and
startle. Fear-potentiated startle to the CS− (safety signal) across high vs.
low methylation groups and PTSD diagnosis. There was a significant main
effect of methylation level, F (1,176)=11.73, p=0.001, and PTSD
F (1,176)=9.66, p=0.002, after co-varying for sex, age, race, and trauma
history. Sample sizes: low methylation PTSD−=54; high methylation
PTSD−=56; low methylation PTSD+=37; high methylation PTSD+=37.
**p < 0.01; ***p < 0.001.

(1) traumatized individuals with PTSD and the Met/Met geno-
type displayed higher fear to the CS− (safety signal) as compared
to carriers of the Val allele, (2) PTSD was associated with impaired
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fear extinction, which was most impaired in Met/Met subjects with
PTSD, (3) the Met/Met genotype-associated with DNA methyla-
tion at four CpG sites; methylation at two of these sites was also
associated with fear-potentiated startle to the CS−, and (4) step-
wise regression analysis with fear-potentiated startle to the CS−
as the outcome variable revealed that methylation accounted for a
significant degree of the variance in startle to the CS− after con-
trolling for trauma exposure. The results of this study suggest that,
in addition to COMT Val158Met genotype, higher methylation at
these CpG sites in the promoter region of COMT is associated
with impaired fear inhibition in an established fear conditioning
paradigm (Jovanovic et al., 2010b; Norrholm et al., 2011).

Fear inhibition may be a robust intermediate phenotype in
PTSD. These data suggest that altered COMT function, at the
genetic, epigenetic, and gene expression levels, may result in dis-
rupted catecholamine metabolism and thus disrupted regulation
of fear inhibition. Our current findings are consistent with pre-
vious reports suggesting an association between the Met/Met
genotype and greater limbic responsiveness (Smolka et al., 2005;
Drabant et al., 2006; Heinz and Smolka, 2006), susceptibility to
anxiety disorders (Enoch et al., 2003; Woo et al., 2004; Olsson
et al., 2005), response to trauma exposure, and the development
of PTSD (Kolassa et al., 2010; Valente et al., 2011).

We found that the Met/Met genotype was associated with
methylation at four CpG sites in the promoter region of COMT
and that two of these sites were associated with fear-potentiated
startle to the CS− (safety signal). In recent years, it has become
increasingly evident that the etiology of many psychiatric disor-
ders, including PTSD, involves the complex interaction between
genetic and environmental factors and that the latter can influence
epigenetic mechanisms including DNA methylation (Tsankova
et al., 2007). As noted by Jones and Takai (2001), methylation
of CpG sites in the promoter region of a gene represents a primary
form of epigenetic modification and an important mechanism
for influencing gene expression (Jones and Takai, 2001). It has
been suggested that DNA methylation serves as a critical substrate
upon which gene× environment interactions contribute to one’s
response to environmental stressors and, ultimately, risk for the
development of psychiatric illness (Abdolmaleky et al., 2004). This
is especially important to consider with regard to the current study.

Posttraumatic stress disorder is a psychiatric illness that is pre-
cipitated by exposure to a traumatic event (e.g., an environmental
stressor) and the development and severity of symptoms appears
to be strongly influenced by gene× environment interactions (Kil-
patrick et al., 2007; Koenen, 2007; Norrholm and Ressler, 2009;
Skelton et al., 2012). The present study demonstrates that the
presence of the Met/Met genotype (a putative PTSD risk factor)
coupled with CpG site methylation (an epigenetic mechanism) is
associated with impaired fear inhibition; a phenomenon that has
been linked to the fear-related symptoms of PTSD (Jovanovic et al.,
2009, 2010a). The association of the Met/Met genotype and risk
for PTSD has been found in studies with larger sample sizes (e.g.,
Kolassa et al., 2010), however, in the current study the genotype did
not appear to confer risk for the disorder per se given that approx-
imately a third of each genotype met criteria for PTSD, rather
this genotype was linked to a physiological phenotype previously

associated with PTSD. One of the benefits of using intermedi-
ate, neurobiological phenotypes such as fear inhibition is that the
genotypic risk can be assessed in a smaller sample size. It is impor-
tant to note that the impaired fear inhibition phenotype from our
earlier studies was replicated with both higher fear to the safety
signal and impaired fear extinction in a much larger sample of
PTSD patients in the current study. Therefore, the exaggerated
“fear load” in PTSD appears to be a robust physiological pheno-
type (Norrholm et al., 2011; Valente et al., 2011; Fani et al., 2012
#24384). As shown in Figure 3B, higher fear load in the Met/Met
PTSD+ group was associated with slower extinction, a finding that
is consistent with our previous research on extinction in PTSD
(Norrholm et al., 2011; Glover et al., 2012).

The COMT Val158Met polymorphism has been widely exam-
ined with regard to susceptibility and symptom expression of
psychiatric illnesses (Witte and Flöel, 2012). More recently, methy-
lation of CpG sites in the promoter region of COMT has been
linked to psychiatric diagnoses such as schizophrenia (Murphy
et al., 2005; Abdolmaleky et al., 2006), bipolar disorder (Abdol-
maleky et al., 2006), and nicotine dependence (Xu et al., 2010) as
well as prefrontal cognition and activity (Ursini et al., 2011). This
is the first report of an association between methylation of the
COMT promoter, fear responses, and PTSD symptoms. Our data
suggests that differential CpG methylation levels may be indepen-
dently associated with PTSD symptoms. Separately, at the post-
translational level, the Val158Met polymorphism is most associated
with the decreased COMT catabolic enzyme function. Together
these data suggest that for proteins that are particularly critical to
cognitive processing, understanding their differential regulation at
multiple biological levels may prove fruitful in determining risk
for psychiatric illness.

The COMT Val158Met polymorphism has attracted significant
interest in neuroscience and psychiatry, primarily because of the
enzyme’s key role in metabolizing dopamine and its robust asso-
ciation with function of the prefrontal cortex (Mier et al., 2010).
While much of the research regarding the contribution of this
polymorphism to the etiology of psychiatric illness has focused
on dopaminergic systems, one cannot discount the potential role
of COMT-mediated alterations in noradrenergic and adrenergic
signaling. For example, similar to its effect on dopamine signaling,
the low activity, homozygous Met genotype has been associated
with higher plasma concentrations (Jung et al., 2012) and higher
synaptic levels of norepinephrine (Tunbridge, 2010).

Similar to other studies of DNA methylation status, an inher-
ent limitation of the current study is the extraction of DNA from
peripheral blood as opposed to brain tissue and, as such, one can-
not completely rule out the possibility that divergent methylation
processes occur in peripheral lymphocytes vs. brain tissue. How-
ever,as discussed by Xu et al. (2010),numerous genetic studies have
employed peripheral blood samples and empirical evidence sug-
gests that there is a high correlation between expression patterns
observed in blood cells as compared to brain cells (Gladkevich
et al., 2004; Davies et al., 2012).

An advantage of the current study is the access to a large trau-
matized civilian population; a population size that exceeds many
of the extant studies in this area. However, due to the rarity of the
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Met/Met genotype, our relatively large sample size (270 partici-
pants) yielded 30 Met homozygotes with 9 also having a diagnosis
of PTSD. This frequency of Met allele carriers is consistent with
other studies of the COMT Val158Met polymorphism and anxiety
disorders (Montag et al., 2008; Lonsdorf et al., 2009; Kolassa et al.,
2010; Valente et al., 2011).

In summary, we have shown in a highly traumatized sample
at significant environmental risk for PTSD, that differential risk
vs. resilience is, in part, mediated by multiple levels of molecular
regulation on COMT function. Although our data do not directly
address the downstream mechanism, multiple lines of evidence
suggest that COMT regulates synaptic catecholamine levels, par-
ticularly dopamine, and that this can closely modulate cortical
functioning. Our data suggest that at the level of protein function,
as well as with differential epigenetic and transcriptional control,
COMT regulation may be an important mediator of fear pro-
cessing, particularly fear inhibition. Thus multiple mechanisms
of regulating neurotransmitter catabolism may interact in differ-
entiating cognitive processes underlying PTSD following trauma
exposure.
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