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Abstract

Objective: Childhood sexual abuse is the leading cause of posttraumatic stress disorder (PTSD) 

in women, and is a prominent cause of morbidity and loss of function for which limited treatments 

are available. Understanding the neurobiology of treatment response is important for developing 

new treatments. The purpose of this study was to assess neural correlates of personalized traumatic 

memories in women with childhood sexual abuse with and without PTSD, and to assess response 

to treatment.

Methods: Women with childhood sexual abuse with (N = 28) and without (N = 17) PTSD 

underwent brain imaging with High-Resolution Positron Emission Tomography scanning with 

radiolabeled water for brain blood flow measurements during exposure to personalized traumatic 

scripts and memory encoding tasks. Women with PTSD were randomized to paroxetine or placebo 

followed by three months of double-blind treatment and repeat imaging with the same protocol.

Results: Women with PTSD showed decreases in areas involved in the Default Mode Network 

(DMN), a network of brain areas usually active when the brain is at rest, hippocampus and 

visual processing areas with exposure to traumatic scripts at baseline while women without PTSD 

showed increased activation in superior frontal gyrus and other areas (p < 0.005). Treatment of 
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women with PTSD with paroxetine resulted in increased anterior cingulate activation and brain 

areas involved in the DMN and visual processing with scripts compared to placebo (p < 0.005).

Conclusion: PTSD related to childhood sexual abuse in women is associated with alterations in 

brain areas involved in memory and the stress response and treatment with paroxetine results in 

modulation of these areas.

1. Introduction

Posttraumatic Stress Disorder (PTSD) affects about 8% of Americans at some time in 

their lives (Kessler et al., 2005), is more common in civilians than in the military and is 

twice as common in women as in men (Kessler et al., 2005). The most common cause 

of PTSD in women is childhood sexual abuse (Kessler et al., 2005). Symptoms of PTSD, 

including intrusive memories, avoidance behaviors, sleep disturbance, and hyperarousal are 

the behavioral manifestation of stress-related changes in the brain (Bremner and Wittbrodt, 

2020). The only medications approved by the Food and Drug Administration (FDA) for 

the treatment of PTSD are the Selective Serotonin Reuptake Inhibitor (SSRI) antidepressant 

medications, paroxetine and sertraline (Ballenger et al., 2000; Brady et al., 2000; Davis et 

al., 2016; Marshall et al., 2001; Stein et al., 2000; Tucker et al., 2001; Zohar et al., 2002). 

Evidence for their utility, however, is limited (Institute of Medicine, 2008). Understanding 

mechanisms in the brain underlying successful responses to treatment could be helpful in the 

development of new and better treatments (Bremner and Campanella, 2016; Bremner and 

Wittbrodt, 2020; Davis et al., 2016).

Brain imaging studies have outlined a network of brain areas mediating memory and the 

fear response in PTSD (Akiki et al., 2017; Boccia et al., 2016; Campanella and Bremner, 

2016; Dixon et al., 2017; Etkin and Wager, 2007; Fitzgerald et al., 2018; Francati et al., 

2007; Koch et al., 2016; Patel et al., 2012; Sartory et al., 2013; Thome et al., 2020; Wang et 

al., 2016). Brain imaging studies involving activation of PTSD symptoms using behavioral 

paradigms like trauma-related pictures, sounds and/or personalized scripts resulted in 

decreased function or failure of activation in the medial prefrontal cortex (mPFC)/anterior 

cingulate cortex (ACC) (Bremner et al., 1999a, 1999b; Dahlgren et al., 2018; Lanius et al., 

2001, 2003; Lindauer et al., 2004; Offringa et al., 2013; Phan et al., 2006; Shin et al., 1997, 

1999, 2004; Shin et al., 2001, 2005), ventromedial prefrontal cortex (Bluhm et al., 2012; 

Grupe et al., 2020; Milad et al., 2009; Phan et al., 2006; Rougemont-Bücking et al., 2011; 

Sanjuan et al., 2018), thalamus (Elman et al., 2018; Lanius et al., 2001, 2003; Schechter et 

al., 2012), fusiform gyrus (Cwik et al., 2017; Osuch et al., 2001), precuneus (Geuze et al., 

2008a; Lanius et al., 2002; Werner et al., 2009), cuneus (Cortese et al., 2018; Cwik et al., 

2017; Lindauer et al., 2004; Misaki et al., 2019; Morey et al., 2009; Ramage et al., 2013; 

Sun et al., 2019), visual association cortex (Bremner et al., 1999a; Gold et al., 2011; Lanius 

et al., 2001, 2003; Shin et al., 1997, 2004), temporal cortex (Chung et al., 2006; Geuze et al., 

2008b; Werner et al., 2009), parietal cortex (Bremner et al., 1999a; Chung et al., 2006; Ke 

et al., 2016; Morey et al., 2008; Shin et al., 1997, 1999), parahippocampus (Sakamoto et al., 

2005; Werner et al., 2009), hippocampus (Bremner et al., 1999a; Cisler et al., 2015b; Kim 

et al., 2012; Osuch et al., 2008; Yehuda et al., 2010, 2009), inferior frontal (Bremner et al., 

1999a; Lanius et al., 2003; Sakamoto et al., 2005; Shin et al., 1997, 1999, 2001) middle and 
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superior frontal gyrus, (Aupperle et al., 2012; Cisler et al., 2015b; Cohen et al., 2013; Cwik 

et al., 2017; Hou et al., 2007; Morey et al., 2009; Shin et al., 1997, 1999, 2004; Shin et al., 

2001)

Activation of PTSD symptoms was associated with increased function in the insula (Bruce et 

al., 2013; Fonzo et al., 2010a; Kaczkurkin et al., 2017; King et al., 2009; Mazza et al., 2015; 

Misaki et al., 2019; Morey et al., 2015; Moser et al., 2013; Nicholson et al., 2016; Osuch 

et al., 2001; Simmons et al., 2008; Whalley et al., 2013), dorsal anterior cingulate cortex 

(dACC) (Bremner et al., 1999a, 1999b; Britton et al., 2005; Fonzo et al., 2010a, b; Herringa 

et al., 2013; Milad et al., 2009, 2007; Misaki et al., 2019; Piefke et al., 2007; Ramage et al., 

2013; Rougemont-Bücking et al., 2011), motor cortex (Barkay et al., 2012; Bremner et al., 

1999b; Cohen et al., 2013; Cwik et al., 2017; Naegeli et al., 2018), and posterior cingulate 

cortex (Bremner et al., 1999a, 1999b; Brinkmann et al., 2017; Ke et al., 2016; Lanius et al., 

2001; Ramage et al., 2013; Shin et al., 1997, 2005). There was increased function in the 

amygdala with fear-related tasks including fear conditioning, exposure to fearful or angry 

faces, and exposure to pictures with traumatic content (Armony et al., 2005; Bremner et al., 

2005; Dickie et al., 2008; Etkin and Wager, 2007; Felmingham et al., 2009; Lieberman et al., 

2017; McLaughlin et al., 2014; Morey et al., 2009; Patel et al., 2016; Protopopescu et al., 

2005; Shin et al., 2004, 2005; Stevens et al., 2014, 2017).

Studies of functional brain connectivity at rest show similar results in PTSD (Akiki et al., 

2017; Etkin et al., 2011; Etkin and Wager, 2007; Fitzgerald et al., 2018; Koch et al., 2016; 

Patel et al., 2012; Sartory et al., 2013; Schulze et al., 2019; Thome et al., 2020; Wang et 

al., 2016). These studies show altered function/connectivity in the hippocampus (Abdallah 

et al., 2017; Admon et al., 2013; Bluhm et al., 2009; Chen and Etkin, 2013; Chen et al., 

2019; Jin et al., 2014; Lazarov et al., 2017; Malivoire et al., 2018; Metz et al., 2019; Miller 

et al., 2017a; Rabellino et al., 2018a, 2018b; Stevens et al., 2014; Zhang et al., 2017), 

parahippocampus (Jin et al., 2014; Misaki et al., 2018), insula (Birn et al., 2014; Etkin et al., 

2019; Harricharan et al., 2020; Ke et al., 2018; Koch et al., 2016; Liu et al., 2017; Nicholson 

et al., 2020; Sripada et al., 2012a; Tursich et al., 2015; Vanasse et al., 2019; Zhang et al., 

2016b), amygdala (Admon et al., 2009; Barredo et al., 2018; Disner et al., 2018; Jin et al., 

2014; Koch et al., 2016; Nicholson et al., 2019, 2017; Satterthwaite et al., 2016; Simmons et 

al., 2008; Stevens et al., 2013; Sun et al., 2020; Weng et al., 2019; Yan et al., 2013; Yuan et 

al., 2019; Zhang et al., 2016a; Zhu et al., 2017), medial prefrontal cortex (Akiki et al., 2018; 

Amad et al., 2019; Birn et al., 2014; Clausen et al., 2017b; Disner et al., 2018; Gong et al., 

2014; Jin et al., 2014; Kennis et al., 2015; Liu et al., 2016; Misaki et al., 2018; Sadeh et al., 

2015) and other brain areas involved in memory and visual and spatial processing (Olivé et 

al., 2018; Olson et al., 2019; Reuveni et al., 2016) (Bluhm et al., 2009; Disner et al., 2018; 

Fu et al., 2019; Gong et al., 2014; Jeon et al., 2020; Ke et al., 2017; Koch et al., 2016; 

Lanius et al., 2010; Liu et al., 2016, 2017; Miller et al., 2017a, 2017b; Qin et al., 2012; Shaw 

et al., 2002; Terpou et al., 2018; Wang et al., 2016; Weng et al., 2019; Yan et al., 2013; 

Yin et al., 2011; Zhang et al., 2017, 2016b, 2016c; Zhu et al., 2015). A number of studies 

have shown decreased conductivity in the default mode network (DMN), a network of brain 

regions that are active when the brain is not engaged, including ventromedial prefrontal 

cortex (vmPFC), dorsomedial PFC (dmPFC), posterior cingulate cortex (PCC), precuneus, 

medial temporal lobe, and medial and lateral parietal cortices (Akiki et al., 2017; Jin et al., 
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2017; Koch et al., 2016; Lei et al., 2015; Maron-Katz et al., 2020; Miller et al., 2017a, 

2017b; Nicholson et al., 2020; Reuveni et al., 2016; Russman Block et al., 2017; Sripada et 

al., 2012b; Zhang et al., 2015; Zhu et al., 2019). Other studies showed altered connectivity in 

the salience network, which includes insula, parietal and lateral prefrontal cortex, and dACC 

(Koch et al., 2016; Misaki et al., 2018; Nicholson et al., 2020; Russman Block et al., 2017; 

Shang et al., 2014; Zhu et al., 2020).

Brain imaging studies have tracked the effects of successful treatment of PTSD on the 

brain (Bremner and Campanella, 2016; Campanella and Bremner, 2016). Studies showed 

increased connectivity in DMN with a variety of behavioral treatments (Bremner et al., 

2017; Felmingham et al., 2007; Fonzo et al., 2017; King et al., 2016; Kluetsch et al., 2014; 

Lansing et al., 2005; Lee et al., 2019; Lindauer et al., 2008; Misaki et al., 2019; Nicholson 

et al., 2017; Pagani et al., 2007; Peres et al., 2007; Shou et al., 2017; Simmons et al., 

2013; van Rooij et al., 2016; Yang et al., 2018; Zhu et al., 2018; Zotev et al., 2018). Open 

label studies and case reports with PET and SPECT showed increased medial prefrontal 

function in PTSD following treatment with the SSRI fluoxetine (Fernandez et al., 2001). 

Placebo-controlled studies of paroxetine in PTSD patients showed an increase in function 

in medial prefrontal, anterior cingulate (Fani et al., 2011) and orbitofrontal cortex (Zhu et 

al., 2015), and dorsolateral prefrontal cortex, and supplementary motor area (MacNamara et 

al., 2016) while decreased function was found in the medial temporal cortex with citalopram 

(Seedat et al., 2004). Other medication and neuromodulation treatment studies showed 

increased medial prefrontal function in PTSD (Metz et al., 2019) (Philip et al., 2018). 

(Wittbrodt et al., 2020, 2021).

Understanding the mechanism by which treatments act in the brain is potentially useful 

in developing new treatments for PTSD (Bremner and Campanella, 2016). The purpose 

of this study was to examine brain responses to personalized traumatic scripts in women 

with childhood sexual abuse with and without PTSD, and to examine neural correlates of 

response to treatment with paroxetine. This study built on our prior study of the effects of 

paroxetine versus placebo on men and women with PTSD from a variety of causes women 

(Fani et al., 2011) by looking at the effects of double-blind paroxetine treatment versus 

placebo on a more specific sample of women with PTSD related childhood sexual abuse that 

was independent from the sample in our earlier study, and comparing them to women with 

childhood sexual abuse without PTSD. We hypothesized based on prior studies involving 

behavioral, neuromodulation, and medication treatment of PTSD, including our prior study 

with paroxetine, that PTSD would be associated with a decrease in medial prefrontal cortex 

and other brain areas involved in the DMN at baseline in comparison to non-PTSD and that 

paroxetine would result in a greater increase in medial prefrontal cortex and other DMN 

areas in women with PTSD treated with paroxetine versus those treated with placebo.

2. Materials and methods

2.1. Institutional review board

The Emory University institutional review board provided approval for this study which is 

posted on ClinicalTrials.gov (ClinicalTrials.gov # NCT01681849). Verbal / written informed 

consent was provided by all participants before enrollment.
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2.2. Participants

The participants were healthy women between the ages of 18 and 75 with a history of 

childhood sexual abuse. Women were included with childhood sexual abuse that began at 

age 13 or before, involving unwanted and repeated penetration or oral sex. Abused women 

were divided in those with and without PTSD. All women underwent brain imaging at 

baseline, and the women with PTSD were randomized to a double-blind study of paroxetine 

versus placebo followed by repeat brain imaging at three months while still on study 

medication. Fig. 1 presents the Consolidated Standards of Reporting Trials (CONSORT) 

for this study. Of the 135 individuals assessed for eligibility, 44 were excluded based 

on eligibility criteria and 91 consented to participate including 57 PTSD patients and 34 

non-PTSD traumatized controls. Seven of the PTSD patients were excluded based on further 

screening and 22 lost interest or were lost to followup. Twenty-eight PTSD patients were 

randomized to paroxetine or placebo and scanned at baseline (15 paroxetine, 13 placebo). 

Post treatment scans were obtained on seven paroxetine and six placebo PTSD patients. 

Seventeen of the non-PTSD trauma controls lost interest or were lost to followup and 17 

underwent the imaging protocol.

The diagnosis of schizophrenia, schizoaffective disorder, bipolar disorder, bulimia, or 

anorexia, as defined by The Diagnostic and Statistical Manual of Mental Disorders (DSM-

IV-TR) (APA, 2000), excluded individuals from participating. Further exclusion criteria 

were current pregnancy, traumatic brain injury, meningitis, or evidence or history of serious 

medical or neurological illness. Trained staff administered the Structured Interview for the 

Diagnostic and Statistical Manual of Mental Disorders (SCID) (First and Gibbon, 2004) 

for psychiatric diagnosis. The Clinician-Administered PTSD Scale for DSM-IV-TR (CAPS) 

was used to measure the severity of PTSD (Blake et al., 1995). The SCID and CAPS 

interviews were used to determine that PTSD was primarily related to childhood abuse. The 

Subjective Units of Distress Scale (SUDS) was used to measure behavioral responses to 

traumatic scripts in the scanner (Wolpe and Lazarus, 1966). Participants also completed the 

Early Trauma Inventory-Self Report-Short Form (ETI-SR-SF) (Bremner et al., 2007).

2.3. Study design

At the initial screening, a trained member of the research staff conducted a psychiatric 

interview and facilitated a written traumatic history of the participant. From there, the 

written traumatic experiences were converted into a 60-second script which was recorded 

by a member of the research team (Bremner et al., 1999a). Women with PTSD were 

randomized to receive three months of double-blind paroxetine 10–40 mg variable dose 

given once per day or placebo. Dosage was adjusted to be within the efficacious range based 

on prior studies in PTSD and to minimize side effects (Tucker et al., 2001). The study 

blinded assignment was kept by a research pharmacist who was not involved in the study.

2.4. Neuroimaging and analysis

During the second visit, participants underwent a high-resolution positron emission 

tomography (HR-PET) scan session consisting of auditory delivery of a series of both 

neutral and traumatic scripts. There were two neutral followed by two traumatic scripts 

delivered in fixed order. The neutral scripts were descriptions of nature designed to 
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induce neutral-to-positive affective responses. Scripts were recorded by a female voice. 

The scripts were two minutes in length and divided into two scripts one minute in length 

to correspond to the scanning time of the two trauma related scans. All scripts were 

delivered using headphones as the participant lay supine in the HR-PET scanner. The scripts 

were delivered while the participant rested with eyes open. Twenty mCi of radiolabeled 

water ([15O]H2O) produced by an on-site cyclotron was injected intravenously five seconds 

before the beginning of the script followed by a 90 second HR-PET scan of the brain to 

measure brain blood perfusion. Regional cerebral blood flow was measured using the High 

Resolution Research Tomograph (HRRT) brain dedicated HR-PET device (CTI, Knoxville, 
TN) (Schmand et al., 1999). Following all scans, participants were asked to complete the 

Subjective Units of Distress Scale, rating their level of distress from 0 (no distress) to 100 

(extreme distress).

HR-PET image analysis was completed similar to previous research (Wittbrodt et al., 2019) 

within the statistical parametrical mapping (SPM12; www.fil.ion.ucl.ac.uk/spm) suite. Scans 

were pre-processed by spatially normalizing to a mean intensity image across individual 

scans, transformed into a common anatomical space (SPM PET Template), smoothed using 

a three-dimensional Gaussian filter at 5-mm full width half maximum, and then normalized 

to whole-brain activity. First level (individual) models were computed using the neutral 

script and traumatic script conditions with the factor of scan pairs. The first level model 

was grand mean scaled, estimated, and contrasts computed for activation (trauma scripts – 

neutral scripts) and deactivation (neutral scripts – trauma scripts).

2.5. Statistical analysis

Comparison between groups was completed using a two-sample t-test or Mann-Whitney-

Wilcoxon test for continuous and Fisher’s exact test for discrete variables, respectively. For 

assessments during the scripts, linear mixed-effects models were fit to the data (lme4; cran.r-

project.org/web/packages/lme4) using between-participant fixed effects of PTSD versus 

non-PTSD group and within-participant fixed effects of script type (neutral, traumatic), 

random effect of participant, and baseline value as a covariate.

Regional brain blood flow changes between PTSD and non-PTSD and paroxetine versus 

placebo at baseline and after treatment were encoded similar to previous recommendations 

(Gläscher and Gitelman, 2008) resulting in t-statistic brain maps. For all types of analyses, a 

threshold of p < 0.005 (uncorrected) and a minimum voxel size of eleven was employed to 

minimize Type I and Type II errors in neuroimaging research (Lane et al., 1997). Significant 

cluster peaks were identified using the distance from the anterior commissure with x, y, and 

z coordinates transformed from Montreal Neurological Institute (MNI) space to those of 

the Talairach stereotaxic atlas (Talairach and Tournoux, 1988). Cluster peaks were identified 

using Brodmann Areas (BA) from the Talairach daemon (www.talairach.org). The a priori α 
level for non-brain imaging data was chosen at 0.05. All data are presented as mean ± SD.
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3. Results

3.1. Demographics

Demographic variables including age, years of education, and body mass index were similar 

between PTSD and non-PTSD women. Early trauma exposure severity measured with the 

ETI-SR-SF was slightly higher in the PTSD group (Table 1). Early trauma, antidepressant 

usage and PTSD symptom levels at baseline are presented in Table 1. Comorbid diagnoses 

based on the SCID are presented in Table 2.

3.2. Psychometric measures during traumatic scripts

Exposure to traumatic scripts during the imaging session resulted in significant increases in 

distress measured by the SUDS (baseline to posttraumatic scripts) in both the traumatized 

PTSD (40 (33 SD) to 63 (37 SD), p = 0.007) and non-PTSD women (25 (23 SD) to 47 

(29 SD), p = 0.016). There were no significant differences in the magnitude of increase in 

distress with traumatic scripts between traumatized women with and without PTSD.

3.3. Neuroimaging

Traumatized non-PTSD women showed activation with traumatic scrips in pre- and 

postcentral gyrus, frontal cortex (BA 9, 10, 45), precuneus, anterior cingulate (BA 32), 

cingulate (BA 31) and insula (Table 3). Decreases occurred in parts of the parietal and 

frontal cortex (Table 4). PTSD women also showed activation in pre- and post-central 

gyrus, cuneus, and frontal cortex (Table 5). Decreases were seen in fusiform gyrus, 

parahippocampus, and parts of the parietal cortex and frontal cortex (Table 6, Fig. 2). PTSD 

women had greater increases with traumatic scripts compared to non-PTSD in parts of the 

cingulate, frontal cortex and lentiform nucleus (Table 7). Non-PTSD women activated more 

(there was a relative decrease in activation in PTSD) in cerebellum, posterior cingulate (BA 

30), parahippocampal gyrus, thalamus, parietal cortex, cuneus, precuneus, fusiform gyrus, 

left insula and temporal lobe (Table 8).

3.4. Effects of treatment on PTSD symptoms, reactivity and brain function

Three months of treatment of women with PTSD resulted in a significant reduction in 

symptoms as measured by the CAPS for the paroxetine group (31 (10 SD) baseline versus 

20 (10) post-treatment (p<0.05)) but not the placebo group (30 baseline (5 SD) versus 25 

posttreatment (6 SD)). After three months of treatment there were not significant increases 

in distress with traumatic scripts in either the PTSD paroxetine group (16 (27 SD) to 51 (39 

SD), p = 0.054) or the PTSD placebo group (14 (23 SD) to 32 (38 SD), p = 0.2). There 

were no significant differences in the magnitude of increase in distress with traumatic scripts 

between the PTSD paroxetine and PTSD placebo groups. With treatment of PTSD patients 

there were greater increases in the anterior cingulate (BA 24, 32) with exposure to traumatic 

scripts in the paroxetine compared to the placebo group (Fig. 3). Increases were also seen 

in the precuneus, middle and superior frontal gyri (BA 46, 10) and temporal cortex (BA 22, 

39).
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4. Discussion

Women with childhood abuse-related PTSD in this study exposed to personalized traumatic 

scripts showed decreased function in parahippocampal gyrus, precuneus, cuneus, fusiform 

gyrus, insula, thalamus, posterior cingulate, dorsolateral prefrontal, parietal and temporal 

cortex compared to abused non-PTSD women. Treatment with paroxetine compared to 

placebo resulted in an improvement in symptoms of PTSD and increased function in anterior 

cingulate/medial prefrontal cortex, precuneus, dorsolateral prefrontal and temporal cortex.

The findings in this study are consistent with prior neuroimaging studies implicating several 

networks of interconnected brain areas with altered functional interconnectedness that 

respond to treatment in PTSD (Etkin et al., 2019). These include studies showing decreased 

connectivity in PTSD in the default mode network (DMN), a network of brain regions that 

are active when the brain is not engaged, including ventromedial prefrontal cortex (vmPFC), 

dorsomedial PFC (dmPFC), posterior cingulate cortex (PCC), precuneus, medial temporal 

lobe, and medial and lateral parietal cortices,(Akiki et al., 2017; Jin et al., 2017; Koch et al., 

2016; Lei et al., 2015; Maron-Katz et al., 2020; Miller et al., 2017a, 2017b; Nicholson et al., 

2020; Reuveni et al., 2016; Russman Block et al., 2017; Sripada et al., 2012b; Zhang et al., 

2015; Zhu et al., 2019) in addition to related areas involved in visual processing including 

cuneus and fusiform gyrus as well as the hippocampus. Prior studies in PTSD have shown 

decreased function in precuneus (Geuze et al., 2008a; Lanius et al., 2002; Werner et al., 

2009) and fusiform gyrus (Cwik et al., 2017; Osuch et al., 2001), and decreased connectivity 

in precuneus (Bluhm et al., 2009; Ke et al., 2017; Lanius et al., 2010; Liu et al., 2017; Yan 

et al., 2013; Yin et al., 2011), cuneus(Gong et al., 2014) and posterior cingulate (Bluhm et 

al., 2009; Ke et al., 2017; Miller et al., 2017a, 2017b; Qin et al., 2012) Studies also showed 

decreased connectivity between precuneus and posterior cingulate (Bluhm et al., 2009) as 

well as decreased connectivity between precuneus and other DMN brain regions. (Bluhm 

et al., 2009; Ke et al., 2017; Lanius et al., 2010; Liu et al., 2017; Yan et al., 2013; Yin 

et al., 2011) In addition to visual processing, which plays a critical role in assessment of 

threat, the precuneus plays a role in sense self, which may be relevant to disturbances in 

autobiographical memory in PTSD,(Germain et al., 2013; Geuze et al., 2008a; Klein and 

Ehlers, 2008; McNally et al., 1994; St Jacques et al., 2011, 2013; Thome et al., 2020) as 

well as lability of mood and other clinical aspects of PTSD. Fusiform gyrus is involved in 

memory for faces, which plays an obvious role in perception of threat. (Gur et al., 2002; 

Haxby et al., 1996)

PTSD was associated with decreases in other brain areas including dorsolateral prefrontal, 

parietal, and temporal cortex that were also responsive to treatment. Previous studies have 

shown decreases in parietal cortex function (Bremner et al., 1999a; Chung et al., 2006; Ke 

et al., 2016; Morey et al., 2008; Rauch et al., 1996; Sakamoto et al., 2005; Shin et al., 1997, 

1999) and connectivity (Disner et al., 2018; Fu et al., 2019; Gong et al., 2014; Shaw et al., 

2002; Weng et al., 2019; Zhang et al., 2017, 2016c; Zhu et al., 2015) in PTSD. The parietal 

cortex plays an important role in conceptualization of the self in space and time as well 

interpretation of visual information, both key to the stress response (Cornwell et al., 2007; 

Jonides et al., 1993; Luo et al., 2007; Selemon and Goldman-Rakic, 1988; van Rooij et al., 

2015; Weber et al., 2005) Decreased function seen in PTSD in the temporal cortex (Chung 
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et al., 2006; Geuze et al., 2008b; Werner et al., 2009), as well as connectivity,(Shang et 

al., 2014) may be relevant to alterations in memory in PTSD. Problems with memory and 

concentration may also be driven by decreased function in the dorsolateral prefrontal cortex 

(middle and superior frontal gyrus (BA 46, 10). (Aupperle et al., 2012; Cisler et al., 2015b; 

Cohen et al., 2013; Cwik et al., 2017; Hou et al., 2007; Morey et al., 2009; Sakamoto et 

al., 2005; Scheibel et al., 2015; Shin et al., 1997, 1999, 2004; Shin et al., 2001; Werner 

et al., 2009) or connectivity between this area and other brain regions in DMN. (Olivé et 

al., 2018; Olson et al., 2019; Reuveni et al., 2016) The insula is connected to these regions 

in salience networks and altered connectivity has been seen in this region as well. (Birn et 

al., 2014; Etkin et al., 2019; Harricharan et al., 2020; Ke et al., 2018; Koch et al., 2016; 

Liu et al., 2017; Nicholson et al., 2020; Sripada et al., 2012a; Tursich et al., 2015; Vanasse 

et al., 2019; Yin et al., 2011; Zhang et al., 2016b) The current study showed a decrease 

in function in several DMN and visual association regions that similar to prior studies of 

acoustic stimulation (Lee et al., 2019) and paroxetine (Fani et al., 2011; MacNamara et al., 

2016) as treatments for PTSD reversed with treatment.

The current findings of decreased function in the hippocampus and parahippocampal gyrus 

are similar to other studies in PTSD. These studies showed decreased function (Bremner 

et al., 1999a; Cisler et al., 2015a, 2015b; Kim et al., 2012; Osuch et al., 2008; Yehuda 

et al., 2010, 2009), and connectivity in the hippocampus (Abdallah et al., 2017; Admon 

et al., 2013; Bluhm et al., 2009; Chen and Etkin, 2013; Chen et al., 2019; Jin et al., 

2014; Lazarov et al., 2017; Malivoire et al., 2018; Metz et al., 2019; Miller et al., 2017a; 

Rabellino et al., 2018a, 2018b; Stevens et al., 2014; Zhang et al., 2017), as well as decreased 

function (Werner et al., 2009) and connectivity (Jin et al., 2014; Misaki et al., 2018) in the 

parahippocampal gyrus in PTSD. The hippocampus mediates consolidation of short term 

memory or explicit memory into long term memory. (Zola-Morgan and Squire, 1990) and 

is sensitive to stress (Sapolsky, 2003). The parahippocampal gyrus also plays an important 

role in memory. (Zola-Morgan et al., 1989) In addition to processing explicit memory 

the hippocampus, like the medial prefrontal cortex, plays a role in fear extinction and is 

involved in response to context-specific traumatic reminders (Ritov et al., 2014). In PTSD, a 

failure of hippocampal activation is commonly observed during trauma reminders (Bremner 

et al., 1999a), potentially as a result of alterations in this brain area (Karl et al., 2006) 

with associated declarative memory deficits (Samuelson, 2011). Additionally, PTSD disrupts 

a memory network consisting of the hippocampus, anterior cingulate, and orbitofrontal 

cortex, that is employed in the recall of emotionally valenced words (Bremner et al., 2003). 

Alterations in verbal declarative memory of the type mediated by the hippocampus and 

parahippocampus are associated with PTSD.(Bremner and Vermetten, 2012) Prior studies 

showed an improvement in verbal declarative memory(Fani et al., 2009; Vermetten et al., 

2003) and increase in hippocampal volume. (Vermetten et al., 2003) following treatment 

with paroxetine in PTSD

Replicating prior studies, treatment with paroxetine resulted in an increase in anterior 

cingulate/medial prefrontal (BA 24, 32) function in women with PTSD. Multiple studies 

have shown a decrease in anterior cingulate/medial prefrontal function (Bluhm et al., 2012; 

Bremner et al., 1999a, 1999b, 2004; Britton et al., 2005; Clausen et al., 2017b; Dahlgren 

et al., 2018; Elzinga and Bremner, 2002; Fonzo et al., 2010a; Frewen et al., 2012; Gold 

Bremner et al. Page 9

J Affect Disord Rep. Author manuscript; available in PMC 2023 December 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2011; Grupe et al., 2020; Hopper et al., 2007; Hou et al., 2007; King et al., 2009; 

Lanius et al., 2001, 2004, 2003; Liberzon et al., 2003, 1999; Lindauer et al., 2004; New 

et al., 2009; Offringa et al., 2013; Phan et al., 2006; Pissiota et al., 2002; Shin et al., 

1997, 1999, 2004; Shin et al., 2001, 2005; St Jacques et al., 2011, 2013; Yang et al., 2004) 

and connectivity (Akiki et al., 2018; Amad et al., 2019; Birn et al., 2014; Clausen et al., 

2017b; Disner et al., 2018; Gong et al., 2014; Jin et al., 2014; Kennis et al., 2015; Liu 

et al., 2016; Misaki et al., 2018; Sadeh et al., 2015) in PTSD. Treatment with paroxetine 

(Fani et al., 2011; Zhu et al., 2015) transcutaneous vagal nerve stimulation (Wittbrodt et 

al., 2021) or hydrocortisone (Metz et al., 2019) in PTSD patients resulted in an increase 

in function in this region. Decreased function in this area may underlie deficient emotional 

regulation associated with traumatic remembrance (Etkin and Wager, 2007) due to a failure 

of inhibition of fear memories in the amygdala (Etkin et al., 2006). Increased anterior 

cingulate/medial prefrontal activity would facilitate inhibition of the amygdala leading to 

improved emotional regulation. This area is also part of the dorsal cognitive division, 

which is part of a distributed attentional network with reciprocal connections with the 

lateral prefrontal cortex, parietal cortex, and motor areas (Bush et al., 2000; Devinsky et 

al., 1995) that acts as a storage buffer of information before executing action (Heilbronner 

and Hayden, 2016) which confers advantage in fear extinction and/or emotional reappraisal 

(Clausen et al., 2017a; Etkin et al., 2011). These results suggest that paroxetine may have 

effects on brain circuits that span multiple aspects of emotional regulation and cognitive 

function.

The study has several limitations. The sample size is small, especially for the treatment 

portion, with only seven paroxetine completers and eight placebo completers. This fact 

limits generalizability of the findings. Therefore, the results should be considered as 

preliminary. The sample was limited to women with childhood sexual abuse-related PTSD 

and may not be generalizable to other PTSD populations. The scripts involved comparison 

of trauma scripts to neutral scripts, which does not separate trauma specific effects from 

general heightened emotional arousal, therefore it is not possible to determine if the brain 

effects are specific to trauma or just emotional experience in PTSD patients.

In summary this study showed that PTSD related to childhood sexual abuse in women was 

associated with a decrease in activation in medial prefrontal, Default Mode Network (DMN) 

and visual processing areas, and that treatment with paroxetine resulted in an improvement 

in PTSD symptoms as well as increased function in DMN and visual processing areas 

in addition to medial prefrontal cortex/anterior cingulate. Future studies are indicated to 

replicate and extend these findings. Modification of brain areas mediating emotion, memory, 

and the stress response may have implications for understanding successful treatment 

responses in PTSD.
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Fig. 1. 
Consort diagram showing subject flow. Female subjects were screened and consented based 

on a history of early childhood sexual abuse and then divided into current PTSD and 

non-PTSD groups. Subsequent screening after consenting led to additional exclusions in 

the PTSD group and subjects who lost interest or were lost to followup in both groups. 

PTSD patients were then randomized to paroxetine or placebo and all subjects were scanned 

at baseline with personalized traumatic scripts and memory tasks. PTSD patients then 

underwent three months of double-blind treatment with paroxetine or placebo, during which 

time there were additional dropouts and patients lost to followup. Remaining patients were 

rescanned using the same protocol after three months.
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Fig. 2. 
Areas representing decreased (p < 0.005) activation (yellow/orange) with traumatic scripts 

in PTSD patients at baseline (pre-treatment) compared to traumatized non-PTSD women 

showing decreased activation in right hippocampus (arrow). Color bar corresponds to z 

score.
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Fig. 3. 
Areas representing greater (p < 0.005) activation (yellow/orange) with traumatic scripts in 

PTSD patients treated with paroxetine compared to PTSD patients treated with placebo after 

three months of treatment. There is increased activation in the anterior cingulate (BA 24, 32) 

(arrow). Increases were also seen in the precuneus, temporal cortex (BA 22, 39), and middle 

and superior frontal gyri (BA 46, 10).
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Table 1

Co-Morbid Psychiatric Diagnoses in Traumatized Women with and without Posttraumatic Stress Disorder 

(PTSD).

Measure PTSD
(n = 28)

Non-PTSD
(n 17)

Age (y) 43 ± 8 41 ± 10

Sex 28 F 17 F

BMI (kg·m − 2), 31.4 ± 9.3 31.6 ± 8.0

Race/Ethnicity

White/Caucasian 12 (43%) 8 (47%)

Black/AA 12 (43%) 8 (47%)

White Hispanic 2 (7%) 1 (6%)

Black Hispanic 1 (4%) 0 (0%)

Asian/mixed 1 (4%) 0 (0%)

Years of Education 13 (3 SD) 14 (2 SD)

Marital Status

Never Married 11 (39%) 6 (35%)

Married 5 (18%) 5 (29%)

Divorced 9 (32%) 6 (35%)

Separated 2 (7%) 0 (0%)

Widowed 1 (4%) 0 (0%)

Current Antidepressants 7 (25%) 5 (29%)

CAPS-Total Severity Score 71 ± 19 24 ± 11

ETI-SR-SF-Score 17 ± 5 12 ± 6

AA=African-American; CAPS = Clinician-Administered PTSD Scale; ETI-SR-SF = Early Trauma Inventory-Self Report Short Form; Data 
expressed as numbers with percentages or means with standard deviations (SD).

J Affect Disord Rep. Author manuscript; available in PMC 2023 December 12.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bremner et al. Page 30

Table 2

Co-Morbid Psychiatric Disorders in Traumatized Women with and without Posttraumatic Stress Disorder.

Measure PTSD
(n = 28)

Non-PTSD
(n = 17)

Major Depression

Current 6 (21%) 1 (6%)

Past 5 (18%) 4 (24%)

Dysthymia

Current 5 (18%) 1 (6%)

Past 0 (0%) 0 (0%)

Obsessive-Compulsive Disorder

Current 1 (4%) 1 (6%)

Past 0 (0%) 0 (0%)

PTSD

Current 28 (100%) 0 (0%)

Past 0 (0%) 4 (24%)

Social Phobia

Current 1 (4%) 0 (0%)

Past 2 (7%) 1 (6%)

Panic Disorder with AG

Current 2 (7%) 0 (0%)

Past 0 (0%) 2 (12%)

Panic Disorder without AG

Current 1 (4%) 0 (0%)

Past 7 (25%) 4 (24%)

Generalized Anxiety Disorder

Current 2 (7%) 0 (0%)

Past 0 (0%) 0 (0%)

Cocaine Dependence

Current 0 (0%) 0 (0%)

Past 1 (4%) 0 (0%)

Alcohol Dependence

Current 0 (0%) 0 (0%)

Past 1 (4%) 1 (6%)

AA=African-American; AG=Agoraphobia; CAPS = Clinician-Administered PTSD Scale; ETI-SR-SF = Early Trauma Inventory-Self Report Short 
Form; Data expressed in means.
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Table 3

Increased Brain Activation with Traumatic Scripts in Traumatized Non-PTSD Women

Brain areas with significant (p < 0.005) activations during exposure to personalized trauma scripts in 

participants with posttraumatic stress disorder as measured with high-resolution positron emission 

tomography. Significant clusters are presented by size (number of voxels) and location (Brodmann area, 

cluster peak Talairach coordinates). Sub-cluster peaks are also identified.

Voxel
Number

Brain Region Brodmann
Area

X Y Z Z
Score

1227 L. Transverse Temporal Gyrus 42 −58 −12 14 6.15

L. Precentral Gyrus 4 −54 −14 28 5.52

L. Postcentral Gyrus 3 −62 −12 28 5.49

749 R. Precentral Gyrus 4 62 −8 26 5.41

R. Precentral Gyrus 6 58 −14 42 3.73

R. Precentral Gyrus 4 48 −16 34 3.61

1223 R. Superior Frontal Gyrus 9 14 54 20 4.85

L. Medial Frontal Gyrus 10 −2 60 20 4.51

97 L. Middle Temporal Gyrus 21 −60 −4 −20 5.20

L. Inferior Temporal Gyrus 20 −58 −2 −30 3.15

438 R. Precuneus 31 16 −52 32 4.56

R. Precuneus 31 6 −62 26 4.49

R. Cingulate Gyrus 31 2 −52 28 3.53

80 L. Superior Temporal Gyrus 38 −40 16 −34 4.53

35 R. Inferior Frontal Gyrus 45 62 18 10 4.46

45 L. Declive −16 −68 −18 4.45

21 L. Middle Temporal Gyrus 21 −50 6 −34 4.09

62 R. Superior Temporal Gyrus 38 50 14 −32 4.05

44 R. Fusiform Gyrus 20 64 −4 −26 3.89

R. Middle Temporal Gyrus 21 60 4 −24 2.94

30 R. Inferior Temporal Gyrus 21 70 −16 −20 3.78

R. Middle Temporal Gyrus 21 72 −22 −12 3.16

55 L. Insula 13 −34 −2 12 3.58

L. Claustrum −38 −10 4 2.79

53 R. Declive 20 −66 −22 3.48

19 R. Uvula 26 −84 −26 3.38

12 R. Superior Frontal Gyrus 8 16 42 46 3.31

17 R. Anterior Cingulate Gyrus 32 12 44 6 3.14

14 L. Cingulate Gyrus 31 −4 −38 36 3.08

11 L. Insula 22 −42 −26 0 2.87
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Table 4

Decreased Brain Activation with Traumatic Scripts in Traumatized Non-PTSD Women

Brain areas with significant (p < 0.005) deactivations during exposure to personalized trauma scripts in 

participants with posttraumatic stress disorder as measured with high-resolution positron emission 

tomography. Significant clusters are presented by size (number of voxels) and location (Brodmann area, 

cluster peak Talairach coordinates). Sub-cluster peaks are also identified.

Voxel
Number

Brain Region Brodmann
Area

X Y Z Z
Score

470 L. Middle Frontal Gyrus 6 −20 12 62 5.58

L. Superior Frontal Gyrus 6 −22 2 70 4.38

L. Middle Frontal Gyrus 6 −34 6 62 4.01

1200 R. Supramarginal Gyrus 40 56 −48 32 5.15

R. Inferior Parietal Lobule 7 36 −58 48 4.92

R. Inferior Parietal Lobule 40 42 −42 44 4.69

1121 R. Cerebellar Tonsil 42 −54 −44 4.99

R. Inferior Temporal Gyrus 20 62 −52 −16 4.88

R. Cerebellar Tonsil 46 −52 −34 4.69

633 R. Middle Frontal Gyrus 46 56 32 22 4.84

R. Middle Frontal Gyrus 9 48 6 36 4.77

R. Middle Frontal Gyrus 9 52 22 28 4.41

658 L. Superior Frontal Gyrus 10 −32 56 24 4.75

L. Middle Frontal Gyrus 9 −48 30 30 4.36

L. Middle Frontal Gyrus 8 −46 26 42 4.35

320 L. Superior Frontal Gyrus 10 −34 62 −6 4.68

L. Superior Frontal Gyrus 11 −32 56 −14 4.06

L. Superior Frontal Gyrus 11 −32 48 −16 3.81

669 L. Inferior Parietal Lobule 40 −58 −38 50 4.54

L. Inferior Parietal Lobule 40 −44 −46 38 4.29

L. Inferior Parietal Lobule 40 −44 −48 48 4.28

175 L. Thalamus −10 −20 8 4.52

L. Thalamus −6 −12 6 3.55

L. Thalamus −4 −20 0 3.26

221 R. Middle Frontal Gyrus 6 30 −4 60 4.21

R. Middle Frontal Gyrus 6 30 8 62 4.17

R. Middle Frontal Gyrus 6 36 14 62 2.88

175 L. Extra-Nuclear 47 −34 22 −2 4.18

L. Lentiform Nucleus −24 18 0 3.42

566 L. Cingulate Gyrus 32 −6 30 28 4.17

R. Medial Frontal Gyrus 8 8 22 46 3.92

L. Medial Frontal Gyrus 8 −4 32 38 3.87

225 R. Caudate 18 16 4 4.04

R. Insula 13 36 20 2 3.52

R. Inferior Frontal Gyrus 47 36 28 −4 3.39
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Voxel
Number

Brain Region Brodmann
Area

X Y Z Z
Score

166 R. Declive 36 −64 −16 3.99

R. Inferior Temporal Gyrus 37 48 −64 −4 3.26

R. Declive 34 −58 −8 3.03

25 R. Precentral Gyrus 6 56 −2 50 3.92

14 R. Uncus 28 18 2 −30 3.86

42 L. Medial Frontal Gyrus 9 −4 42 28 3.66

L. Anterior Cingulate 0 38 22 3.08

L. Cerebellar Tonsil −38 −48 −34 3.65

L. Culmen −28 −54 −16 3.61

L. Cerebellar Tonsil −38 −50 −44 3.46

87 R. Nodule 10 −52 −30 3.53

R. Nodule 2 −54 −30 3.25

R. Culmen 0 −60 −22 3.18

30 L. Cingulate Gyrus 31 −8 −10 44 3.50

32 R. Cingulate Gyrus 31 14 −22 42 3.49

16 R. Postcentral Gyrus 2 62 −24 48 3.49

54 R. Culmen 26 −40 −22 3.48

R. Culmen 24 −48 −20 2.88

26 L. Culmen −18 −34 −20 3.46

17 L. Cerebellar Tonsil −22 −58 −44 3.45

53 R. Tuber 48 −76 −30 3.42

19 R. Fusiform Gyrus 19 52 −74 −14 3.42

19 R. Inferior Occipital Gyrus 18 40 −90 −10 3.36

61 L. Uvula −6 −74 −32 3.33

L. Inferior Semi-Lunar Lobule −14 −76 −36 2.93

48 R. Transverse Temporal Gyrus 41 42 −24 14 3.27

14 L. Lentiform Nucleus −28 2 0 3.27

32 L. Tuber −34 −64 −30 3.26

19 L. Orbital Gyrus 47 −16 24 −22 3.26

20 L. Cuneus 17 −4 −96 2 3.25

27 R. Postcentral Gyrus 3 32 −30 62 3.23

41 R. Middle Temporal Gyrus 39 56 −54 10 3.22

R. Middle Temporal Gyrus 21 60 −46 6 2.94

13 L. Precuneus 7 −16 −66 50 3.22

13 L. Middle Frontal Gyrus 6 −44 2 58 3.15

32 R. Paracentral Lobule 5 12 −36 54 3.15

R. Paracentral Lobule 5 16 −32 48 3.07

21 L. Uvula −10 −62 −34 3.14

24 R. Medial Frontal Gyrus 6 2 2 58 3.13

10 R. Culmen 32 −52 −20 3.12

47 L. Declive −40 −68 −18 3.11
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Voxel
Number

Brain Region Brodmann
Area

X Y Z Z
Score

11 R. Middle Temporal Gyrus 21 58 −30 −4 3.11

14 L. Middle Frontal Gyrus 11 −40 38 −18 3.10

12 L. Paracentral Gyrus 6 −8 −30 52 3.08

14 L. Culmen −44 −48 −24 3.08

13 L. Cuneus 18 −16 −94 10 3.07

19 R. Inferior Frontal Gyrus 45 48 14 14 3.05

33 L. Superior Parietal Lobule 7 −32 −60 46 3.04

L. Superior Parietal Lobule 7 −28 −50 40 2.85

18 R. Middle Frontal Gyrus 10 40 62 2 2.96

18 L. Cingulate Gyrus 24 −10 4 48 2.96

11 R. Cuneus 17 8 −78 12 2.96

12 R. Inferior Temporal Gyrus 20 50 −16 −36 2.91

17 L. Fusiform Gyrus 20 −50 −34 −22 2.88

28 R. Middle Frontal Gyrus 10 46 48 18 2.81
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Table 5

Increased Brain Activation with Traumatic Scripts in Women with PTSD

Brain areas with significant (p < 0.005) activations during exposure to personalized trauma scripts in 

participants with posttraumatic stress disorder as measured with high-resolution positron emission 

tomography. Significant clusters are presented by size (number of voxels) and location (Brodmann area, 

cluster peak Talairach coordinates). Sub-cluster peaks are also identified.

Voxel
Number

Brain Region Brodmann
Area

X Y Z Z
Score

881 L. Precentral Gyrus 4 −52 −16 26 5.34

L. Postcentral Gyrus 43 −66 −12 16 5.22

L. Precentral Gyrus 6 −64 −4 22 4.33

705 R. Precentral Gyrus 6 64 −10 30 5.17

R. Postcentral Gyrus 3 50 −16 36 5.04

R. Postcentral Gyrus 43 64 −10 20 4.09

89 R. Cuneus 19 10 −90 40 4.34

R. Cuneus 19 6 −86 34 3.69

11 L. Inferior Frontal Gyrus 47 −52 30 −4 4.24

46 R. Angular Gyrus 39 54 −70 36 4.16

57 R. Cingulate Gyrus 31 2 −52 24 3.80

56 R. Sup. Frontal Gyrus 9 20 44 36 3.79

57 L. Medial Frontal Gyrus 10 −6 60 12 3.66

L. Medial Frontal Gyrus −16 58 0 3.01

102 L. Precuneus 7 −8 −82 52 3.29

R. Precuneus 7 2 −78 46 3.11

36 L. Superior Frontal Gyrus 8 −16 34 44 3.42

37 L. Precuneus 7 0 −58 40 3.36

18 R. Sup. Frontal Gyrus 10 22 48 −8 3.32

22 L. Angular Gyrus 39 −46 −72 38 3.23

17 L. Anterior Cingulate 32 −10 38 10 3.19

58 R. Medial Frontal Gyrus 10 18 56 6 3.19

R. Medial Frontal Gyrus 10 16 62 0 3.11

15 R. Medial Frontal Gyrus 10 6 50 −10 3.14

13 R. Declive 20 −62 −22 3.02

12 L. Sup. Temporal Gyrus 38 −36 0 −10 2.93
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Table 6

Decreased Brain Activation with Traumatic Scripts in Women with PTSD

Brain areas with significant (p < 0.005) deactivations during exposure to personalized trauma scripts in 

participants with posttraumatic stress disorder as measured with high-resolution positron emission 

tomography. Significant clusters are presented by size (number of voxels) and location (Brodmann area, 

cluster peak Talairach coordinates). Sub-cluster peaks are also identified.

Voxel
Number

Brain Region Brodmann
Area

X Y Z Z
Score

11,124 R. Fusiform Gyrus 20 56 −38 −24 5.48

L. Culmen −38 −54 −24 5.40

R. Tuber 56 −50 −24 5.17

1686 L. Middle Frontal Gyrus 8 −36 38 40 5.46

L. Superior Frontal Gyrus 9 −32 50 30 5.09

L. Middle Frontal Gyrus 10 −40 54 8 4.92

1344 R. Inferior Parietal Lobule 40 62 −36 44 5.13

R. Inferior Parietal Lobule 40 46 −38 44 4.64

R. Inferior Parietal Lobule 40 64 −40 36 4.04

721 R. Middle Frontal Gyrus 46 48 32 16 5.04

R. Middle Frontal Gyrus 10 36 62 −12 4.78

R. Middle Frontal Gyrus 10 42 56 −10 4.56

363 L. Cerebellar Tonsil −2 −54 −34 5.01

L. Culmen −2 −46 −20 3.47

R. Cerebellar Tonsil 16 −50 −38 3.25

299 R. Superior Frontal Gyrus 8 30 28 56 4.76

R. Superior Frontal Gyrus 8 30 44 44 4.01

R. Middle Frontal Gyrus 6 30 8 64 3.78

55 L. Middle Temporal Gyrus 21 −44 −34 −4 4.67

519 L. Insula 13 −32 22 0 4.60

L. Lentiform Nucleus −22 16 −8 4.00

L. Caudate −14 18 6 3.71

651 L. Precuneus 19 −28 −66 42 4.43

L. Inferior Parietal Lobule 40 −50 −42 32 4.32

L. Supramarginal Gyrus 40 −60 −48 32 3.94

182 R. Inferior Frontal Gyrus 9 48 10 26 4.29

R. Inferior Frontal Gyrus 45 56 12 22 3.24

379 L. Middle Occipital Gyrus 18 −18 −86 12 4.28

L. Middle Occipital Gyrus 19 −32 −88 16 3.97

L. Middle Occipital Gyrus 19 −32 −84 8 3.89

422 R. Inferior Frontal Gyrus 47 34 24 −8 4.28

R. Inferior Frontal Gyrus 47 44 18 0 4.12

R. Inferior Frontal Gyrus 47 34 26 0 4.00

79 L. Uvula −10 −74 −32 4.28

75 R. Posterior Cingulate 30 18 −56 12 4.13
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Voxel
Number

Brain Region Brodmann
Area

X Y Z Z
Score

305 R. Superior Frontal Gyrus 8 4 16 48 3.89

R. Superior Frontal Gyrus 6 6 8 50 3.64

L. Medial Frontal Gyrus 8 0 22 44 3.38

61 L. Thalamus −4 −2 4 3.89

91 L. Precentral Gyrus 6 −42 −6 62 3.82

L. Postcentral Gyrus 3 −44 −20 64 3.26

L. Precentral Gyrus 4 −48 −10 58 2.95

33 L. Uncus 20 −22 −2 −42 3.82

L. Uncus 36 −18 −8 −36 2.98

23 L. Inferior Temporal Gyrus 20 −38 −2 −40 3.78

55 L. Rectal Gyrus 11 −10 34 −24 3.74

18 R. Inferior Temporal Gyrus 20 38 −6 −46 3.72

35 R. Parahippocampal Gyrus 30 24 −36 4 3.71

19 R. Caudate 18 8 16 3.61

33 R. Superior Parietal Lobule 7 38 −66 52 3.56

22 R. Lentiform Nucleus 20 −8 −2 3.46

56 R. Uvula 16 −78 −24 3.44

48 L. Middle Temporal Gyrus 21 −50 −12 −14 3.42

18 R. Superior Temporal Gyrus 38 34 14 −44 3.42

48 R. Orbital Gyrus 47 18 18 −26 3.42

10 L. Insula 13 −32 −26 14 3.32

29 R. Insula 13 44 −20 12 3.31

31 L. Inferior Parietal Lobule 40 −52 −28 24 3.31

14 R. Precentral Gyrus 6 52 −2 56 3.31

74 R. Superior Temporal Gyrus 22 52 −4 6 3.31

R. Superior Temporal Gyrus 22 46 −10 −2 3.26

10 R. Precentral Gyrus 6 36 −10 70 3.29

35 R. Middle Temporal Gyrus 21 62 −6 −12 3.28

20 R. Superior Temporal Gyrus 22 60 6 −4 3.27

25 L. Inferior Parietal Lobule 40 −62 −36 22 3.25

L. Superior Temporal Gyrus 42 −62 −30 12 2.91

28 R. Precuneus 31 28 −76 22 3.03

14 R. Thalamus 8 −14 8 2.95

12 R. Superior Frontal 11 26 50 −18 2.94

28 L. Cingulate Gyrus 24 −6 −14 42 2.93

23 L. Thalamus −2 −16 2 2.9

L. Thalamus −10 −18 8 2.88

16 L. Middle Occipital Gyrus 19 −44 −76 16 2.93

L. Middle Occipital Gyrus 19 −42 −76 8 2.78

11 R. Middle Frontal Gyrus 11 32 36 −20 2.93

28 L. Cingulate Gyrus 32 −6 26 32 2.92
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Voxel
Number

Brain Region Brodmann
Area

X Y Z Z
Score

10 R. Middle Frontal Gyrus 10 26 62 22 2.92
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Table 7

Greater Increases in Blood Flow with Traumatic Scripts in Women with PTSD versus Traumatized Non-PTSD 

Women

Brain areas with significant (p < 0.005) activations during exposure to personalized trauma scripts in 

participants with posttraumatic stress disorder as measured with high-resolution positron emission 

tomography. Significant clusters are presented by size (number of voxels) and location (Brodmann area, 

cluster peak Talairach coordinates). Sub-cluster peaks are also identified.

Voxel
Number

Brain Region Brodmann
Area

X Y Z Z
Score

35 R. Lentiform Nucleus 20 −6 16 3.99

R. Lentiform Nucleus 26 −12 14 3.33

55 R. Anterior Cingulate 32 12 48 −8 3.69

25 L. Precentral Gyrus 4 −48 −6 42 3.64

41 L. Anterior Cingulate 32 −2 44 12 3.47

18 L. Supramarginal Gyrus 40 −62 −52 24 3.41

25 R. Middle Frontal Gyrus 8 50 14 40 3.41

13 L. Medial Frontal Gyrus 25 −2 8 −16 3.39

30 L. Anterior Cingulate 24 −2 26 18 3.29

L. Cingulate Gyrus 32 −4 30 26 2.87

12 R. Superior Frontal Gyrus 11 24 58 −20 3.29

21 R. Supramarginal Gyrus 40 58 −46 34 3.28

10 R. Precuneus 19 46 −78 40 3.19

12 L. Caudate −12 −4 14 3.14

17 R. Subcallosal Gyrus 25 12 24 −10 3.09

20 L. Medial Frontal Gyrus 10 −12 64 −6 2.96

17 L. Superior Frontal Gyrus 11 −30 50 −16 2.95

15 L. Middle Frontal Gyrus 8 −24 28 42 2.94
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Table 8

Greater Decreases in Blood Flow with Traumatic Scripts in Women with PTSD Versus Traumatized Non-

PTSD Women

Brain areas with significant (p < 0.005) deactivations during exposure to personalized trauma scripts in 

participants with posttraumatic stress disorder as measured with high-resolution positron emission 

tomography. Significant clusters are presented by size (number of voxels) and location (Brodmann area, 

cluster peak Talairach coordinates). Sub-cluster peaks are also identified.

Voxel
Number

Brain Region Brodmann
Area

X Y Z Z
Score

111 R. Inferior Semi-Lunar Lobule 34 −76 −38 4.75

R. Pyramis 40 −68 −34 3.56

53 L. Tuber −54 −52 −22 3.98

L. Fusiform Gyrus 20 −52 −42 −22 3.04

74 R. Fusiform Gyrus 36 44 −38 −20 3.82

R. Fusiform Gyrus 20 56 −38 −26 3.68

76 L. Declive −20 −68 −18 3.69

18 L. Insula 13 −32 20 12 3.63

32 L. Insula 22 −44 −28 −4 3.59

61 L. Culmen −2 −38 −22 3.56

16 R. Inferior Frontal Gyrus 11 22 24 −20 3.47

80 R. Parahippocampal Gyrus 30 −22 −16 3.47

R. Parahippocampal Gyrus 36 30 −30 −14 3.04

R. Culmen 32 −32 −22 2.84

31 L. Claustrum −32 2 10 3.41

54 R. Inferior Temporal Gyrus 20 66 −12 −26 3.39

17 R. Culmen 16 −24 −26 3.37

22 R. Declive 38 −60 −22 3.37

43 R. Cerebellar Tonsil 36 −38 −34 3.33

21 L. Middle Temporal Gyrus 21 −54 −12 −12 3.29

14 R. Inferior Parietal Lobule 40 46 −34 40 3.29

56 L. Superior Temporal Gyrus 38 −38 14 −36 3.28

L. Superior Temporal Gyrus 38 −42 16 −28 2.89

13 R. Middle Temporal Gyrus 21 60 6 −18 3.26

24 L. Superior Temporal Gyrus 22 −48 −4 4 3.25

48 R. Posterior Cingulate 30 22 −62 6 3.22

14 R. Middle Temporal Gyrus 22 52 −36 6 3.17

12 R. Cuneus 19 10 −90 24 3.16

14 R. Claustrum 30 12 6 3.15

15 R. Precuneus 31 6 −70 20 3.14

R. Cuneus 18 10 −74 26 2.67

19 R. Inferior Semi-Lunar Lobule 2 −60 −40 3.09

L. Cerebellar Tonsil −4 −54 −36 2.69

37 R. Lingual Gyrus 18 22 −76 −8 3.06
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Voxel
Number

Brain Region Brodmann
Area

X Y Z Z
Score

15 L. Cuneus 17 −6 −92 6 3.01

11 L. Precentral Gyrus 6 −58 −6 36 2.99

10 L. Culmen −36 −46 −20 2.89

10 L. Fusiform Gyrus 37 −44 −54 −14 2.89

10 L. Parahippocampal Gyrus 36 −22 −40 −10 2.89

20 R. Inferior Parietal Lobule 40 62 −30 36 2.88

R. Inferior Parietal Lobule 40 58 −26 30 2.79

14 R. Lentiform Nucleus 16 −10 2 2.86

15 L. Thalamus −16 −28 4 2.85

12 R. Middle Temporal Gyrus 20 42 4 −44 2.83
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