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ABSTRACT

Motivation: Approaches that use supervised machine learning
techniques for protein–protein interaction (PPI) prediction typically
use features obtained by integrating several sources of data. Often
certain attributes of the data are not available, resulting in missing
values. In particular, our host–pathogen PPI datasets have a large
fraction, in the range of 58–85% of missing values, which makes it
challenging to apply machine learning algorithms.
Results: We show that specialized techniques for missing value
imputation can improve the performance of the models significantly.
We use cross species information in combination with machine
learning techniques like Group lasso with �1/�2 regularization. We
demonstrate the benefits of our approach on two PPI prediction
problems. In our first example of Salmonella–human PPI prediction,
we are able to obtain high prediction accuracies with 77.6% precision
and 84% recall. Comparison with various other techniques shows
an improvement of 9 in F1 score over the next best technique. We
also apply our method to Yersinia–human PPI prediction successfully,
demonstrating the generality of our approach.
Availability: Predicted interactions, datasets, features are available
at: http://www.cs.cmu.edu/∼mkshirsa/eccb2012_paper46.html.
Contact: judithks@cs.cmu.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Identification of protein–protein interactions (PPIs) between a
pathogen and its hosts will not only give us insights into the
molecular mechanisms underlying pathogenisis but also provide us
with potential targets aiding in the development of pathogen-specific
therapeutics. Computational methods complement experimental
methods in studying PPIs by predicting highly probable interactions,
which are used by experimentalists to filter out unlikely interactions
from the prohibitively large set of potential interactions that need
to be tested. In particular, supervised machine learning methods use
the existing known interactions as training data and formulate the
interaction prediction problem in a classification setting, with target
classes: ‘interacting’ or ‘non-interacting’. Features are derived on
the data by integrating various attributes of proteins, which include
protein sequences from Uniprot (UniProt Consortium, 2011), protein
family from Pfam (Finn et al., 2010), protein structure from PDB,
gene ontology (GO) from the GO database (Ashburner et al.,
2000), gene expression from GEO (Barrett et al., 2011), interactions
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between protein families from iPfam (Finn et al., 2005), protein
domain interactions from 3DID (Stein et al., 2011), to name a few.

Although these attributes are available for some proteins, many of
them remain unknown for various reasons: they are a part of ongoing
experimental studies, difficulty of experimentation due to the
nature of the protein, lack of efficient high-throughput techniques,
limited pace of manual curation from published literature, etc.
Such unavailable information results in missing values in the
dataset. Missing values make the application of any machine
learning algorithm and data analysis technique difficult, as most
approaches were designed to work on complete or nearly complete
data. Imputation of missing values involves exploiting available
information about the data in order to best estimate the missing
entries. Thus, the choice of an appropriate missing value imputation
method is very important in order to build good predictive models.

Here, we develop methods to deal with missing values for host–
pathogen PPI prediction. Prior work on PPI prediction within the
supervised learning framework deals with missing values in one
of the following ways. (Mohamed et al., 2010) eliminate all data
with missing values. (Qi et al., 2005) and (Singh et al., 2006)
use a Random Forest (RF) classifier-induced imputation originally
introduced by (Breiman, 2001), which uses mean values of features
in combination with proximity to other instances. The abstaining
variant of Adaboost originally introduced by (Schapire and Singer,
1999) has been applied by (Smeraldi et al., 2010). The work by
(Qi et al., 2007) adds one extra binary ‘indicator’ feature for every
existing feature to indicate its availability. (Dyer et al., 2011) limit
the data sources used to generate features so as to exclude the
possibility of any missing values.

As the main application of our techniques, we consider
Salmonella–human PPI prediction, which is an important step
towards developing our understanding of Salmonello-sis, a disease
that causes millions of infections and thousands of deaths every
year world-wide (Graham, 2010). The bacterium Salmonella has
4533 protein sequences in the reference proteome set in Uniprot
database, known molecular functions for 1058 proteins in GO,
protein structures for 592 proteins in PDB and protein family
information for 2978 proteins in Pfam database. Approaches that
construct features integrating data from these databases will thus
have many missing values since not all attributes are available for all
proteins across all databases. In the example dataset of Salmonella–
human PPI that has 62 known interactions, with our feature set we
find that ≈58% of the interactions have at least one feature with
missing values.

To cope with missing values, we can apply standard statistical
imputation methods or develop application-specific methods that
take advantage of the particular properties of the data being imputed.
Our work falls in the second category and is novel in its use of
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data from other related species, in addition to information from the
species of interest itself. To transfer this information from other
closely related species to the species of interest, we use protein
sequence alignment to define a measure of similarity between the
proteins from the two species. We use ideas from nearest-neighbour-
based methods to combine such cross-species data. Our techniques
have several benefits:

1. PPI datasets can have a very high missing value rate. Methods
that use the limited available features to impute a large number
of missing features are likely to produce very biased models.
Our method uses cross-species data in addition to the available
features thus reducing this bias.

2. We make no independence assumptions on the features.
Previous work in imputation for PPI assumes that all features
are independent of each other. However, this is not always
true, e.g., gene expression data are a time series of expression
measurements and features derived from such data cannot be
considered independent.

3. We avoid explicitly estimating the density of very high
dimensional features in order to impute the values.

The method we present is general and can be used whenever there
is available data from a related distribution. The proposed use of
abundantly available cross-species data is analogous to sampling the
missing values of a feature from another related feature distribution.
We demonstrate the generality of our approach by successfully
extending our modelling efforts to predict PPIs in Yersinia pestis.

2 APPROACH

2.1 Problem setup
We describe the problem setup in the context of Salmonella–
human PPI prediction; however, the ideas are similar for other
host–pathogen PPI prediction tasks. We use a binary classification
framework defining an ‘instance’ to be a pair of proteins <ps,ph>,
where one protein is the pathogen protein ‘ps’ (i.e. Salmonella) and
the other is the host protein ‘ph’ (i.e. human). Features are defined
for every protein-pair using various properties of the individual
proteins and combining them all into a single feature vector. Details
of our feature-set are listed in Table 2. These features are used with
discriminative classifiers like support vector machine (SVMs).

We used the list of 62 interacting protein-pairs reported in
(Schleker et al., 2012)—these data form the ‘interacting’or ‘positive’
class. Since there is no experimental evidence about proteins that
do not interact, we construct the ‘non-interacting’ or ‘negative’
class using a technique commonly used in PPI prediction—using
random pairs of proteins obtained by sampling the set of all possible
Salmonella–human protein pairs. Our dataset had 3592 unique
Salmonella1 and 24431 unique human proteins, resulting in ≈90
million protein pairs. The missing value analysis we present in
Section 2.2 was done on a small random subset ‘M’ of size 40 000
pairs that includes all interacting pairs. These data were used to
decide on imputation strategy and not our training data—the details
of training and test sets can be found in Section 3.

1We consider strains Typhimurium, Typhi and Enteritidis

2.2 Mechanism of the missing values
Let �Xi = (Xij), where j=1,...p, be the feature vector corresponding
to the ith protein pair. The p features can be considered random
variables that have either been observed or missing. The seminal
work by (Little and Rubin, 1987) identifies three broad categories
of missing value mechanisms that are briefly listed below. Please
refer to the original work for examples and details of each.

(1) Missing completely at random (MCAR): if the probability that
an observation Xij is missing is unrelated to its value or to the
value of any other variable {Xik :k �= j}.

(2) Missing at random (MAR): if the missingness of an
observation Xij is independent of its value, given the value
of some other observed variables in {Xik :k �= j}.

(3) Missing not at random (MNAR): if the missingness depends
both on the missing value itself and other observed variables.

The missingness mechanism in PPI datasets is MAR. Eliminating
data that have any missing values, an approach called ‘listwise
deletion’, has been followed in some prior work. However, it is
appropriate only for data that is MCAR, otherwise it leads to biased
estimates and models. Our claim of MAR arises from the observation
that the absence of features for a given protein pair depends
on how well studied the individual proteins are. An approximate
measure of ‘well-studiedness’ for a protein can be obtained from
UniprotKB, which defines an attribute called ‘protein existence’ that
indicates the type of evidence supporting the existence of the protein.
There are five categories of evidence: (1) evidence at protein level,
(2) evidence at transcript level, (3) inferred from homology, (4)
predicted and (5) ‘uncertain’. It is clear that proteins with status (1)
or (2) can be considered to be well studied while the rest are not.

Let this ‘existence’ status of proteins be two additional observed
features E1 and E2, then we can say that the missingness of other
features in �Xi approximately depends on E1 and E2. It is independent
of the actual value of every missing feature, thereby giving us an
MAR mechanism. We observed that in the set ‘M’ described in
Section 2.1, the missingness of various features correlated well
with E1 and E2 taking values of (3)–(5). Note how in this case,
the removal of all data that have missing features will leave behind
protein pairs that mostly involve well-studied proteins. A model built
on such data will be undesirable as it will not glean any information
about the less studied protein-pairs.

2.3 Imputation of missing values
Table 1 shows the percentage of missing values in our dataset, over
all features and over individual feature types. The fraction of overall
missing data is very high, about 58% for the positive class and 81%
for the negative class. Furthermore, the missingness is highly skewed
between the two classes, being significantly higher in the negative
class data—this limits the choice of imputation techniques that can
be used. Techniques like mean-value imputation can produce models
that are biased towards predicting all data with the imputed features
as ‘negative’. We also want to point out that high-dimensional
features like the GO features are very difficult to impute using purely
statistical modelling-based approaches that are very inefficient when
the number of parameters to estimate is huge (≈180 million for the
GO features).
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Table 1. Percentage of examples with missing values

Features % Missing in % Missing in
interacting pairs random pairs

Over all features 58.0 81.2
Gene Exp. GDS77 21.1 34.6
Gene Exp. GDS78 21.1 31.4
Gene Exp. GDS80 22.6 30.5
GO component 19.4 52.0
GO function 5.0 37.8
GO process 21.2 45.2

Shown over all features and also individually for the important features. Observations:
the overall proportion of missing data is very high; the extent of missing values is highly
skewed between the interacting and random pairs.

Considering these issues, we use a localized nearest-neighbour
like approach that uses protein sequence similarity as the basis to
compute the locality. The approach works in two phases: (i) cross-
species information integration and (ii) modelling based imputation.
The first component modifies the data source before feature
computation by supplementing it with cross-species information.
The latter uses modelling techniques to estimate feature values.

2.3.1 Cross-species information integration This technique relies
on the observation that certain attributes of proteins like GO
annotations and protein domains are similar for homologous proteins
across various species. Whenever these properties are largely
unavailable for any organism, we can exploit the vast amounts
of equivalent information available in closely related organisms.
For instance, the bacterium Salmonella is very similar to some
other Gram-negative bacteria such as Escherichia coli, Francisella
tularensis, Yersinia pestis, Y.pestis, etc. Some of these bacteria have
been better studied and are likely to have more properties available
than Salmonella. We illustrate the case of GO attributes in the context
of two bacteria. The grey curve in Figure 1 shows the similarity in the
GO terms2 between Salmonella and E.coli genes. The curve plots for
every Salmonella gene (along x-axis), the overlap3 in the GO terms
with the most homologous E.coli gene (along y-axis). Homologous4

gene pairs were obtained using BLAST alignment (e-value <0.01).
This GO-overlap was computed only for Salmonella genes that had
at least one GO annotation. Of these genes, 20% did not have any
homologues in E.coli and are shown in the curve with the overlap
value of 0. About 68% of the Salmonella genes have a GO-overlap of
>50% with the corresponding homologous E.coli gene. We perform
a similar analysis on protein family information (Pfam) for the two
bacteria; the overlap is shown in Figure 1 (solid line).

Imputing the GO features: We used the above approach
to impute GO annotations in both Salmonella and human proteins.
For Salmonella proteins, we find proteins in all other bacteria
which cross the BLAST e-value cutoff of 0.01 and use their GO
annotations; whereas for human proteins, we use the GO annotations
of aligning proteins from mouse and rat. The imputed value of a GO
feature for a protein pair <ps,ph> where say the GO annotation of

2Terms from the three ontologies: cellular component, molecular function
and biological process were combined for this analysis.
3Overlap = intersection of the two sets of GO terms or Pfam ids.
4We use ‘homologue’ in a loose sense for sequences similar to each other.

Fig. 1. Overlap in GO terms for two closely related bacteria: Salmonella and
E.coli. Each point on the curve represents the GO overlap of a Salmonella
gene with the most homologous E.coli gene. Of all gene pairs, 68% show a
high overlap in GO terms and 79% show a high overlap in Pfam

ps is missing, uses the linear combination

fGO(ps,ph)=
∑

∀pb:hom(ps,pb)

αb fGO(pb,ph),

where fGO(pb,ph) computes the GO similarity feature between
the proteins pb and ph using the method listed in Table 2, the
function hom(.,.) checks if bacterial protein ‘pb’ is homologous to
the Salmonella protein ps, and αb ∈[0,1] is the normalized similarity
between ps and pb. We use the BLAST alignment e-values to
compute αb. Other cases where only ph, or both ps and ph are
missing GO annotations are computed in an analogous manner.

The goal of our imputation method is to obtain a higher coverage
over the missing data, at the same time maintaining good prediction
accuracy. The e-value cutoff of 0.01 gave a good predictive
performance. We also tried a lower threshold of 0.0001 and the
results are discussed in Section 4.

Imputing the gene expression features: This is based on the
premise that genes whose protein products are similar are likely to
have a similar expression pattern. The imputed value for a protein
pair <ps,ph> would be computed as

fge(ps,ph)=gene_exp(ph)=
∑

∀pk :hom(ph,pk)

αk .gene_exp(pk),

where ‘gene_exp()’ represents the expression of the gene encoding
the given protein, hom(·,·) and αk are defined as before.

2.3.2 Modelling-based imputation The above technique is able to
transfer a large number of cross-species attributes, thereby reducing
the fraction of missing data ranging from 58 to 80% to about
10–15% in both positive and negative class data. The proteins with
the remaining missing attributes are either species-specific and do
not have any homologues to transfer information from or have
homologues which are also missing the attributes of interest. To
deal with this much smaller fraction of remaining missing data, we
use modelling-based imputation techniques.

Modelling gene expression features: Gene expression data are
time-series data with several measurements spread across time or
across different types of control experiments. Each expression value
is not independent of the others, and it is important to model their
distribution jointly. (Liew et al., 2010) give a good review of missing
value imputation for gene expression data. Our approach is different
since it is related to PPIs. In addition to the gene expression data
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Table 2. Feature set: summary of the various categories of features and the number of features in each category

Feature name (count) Description

Gene ontologya (≈177 million) (i) Pairwise similarity: computed between GO terms of ps and ph. Let S = set of all GO terms, Sp = set of GO terms for
protein ‘p’. We set the entries of S×S corresponding to all pairs of GO terms from Sps ×Sph to the similarity between the
GO term pairs. Similarity between two individual GO-terms was computed using G-Sesame.
(ii) Neighbour similarity: computed analogously using GO terms of ps and binding partners of ph in the human
interactome. Total number of features from both categories = 2 |S|·|S|

Network-based (3) Uses three graph properties of ph in the human protein interaction network: (i) ‘degree’ = number of neighbours of ph;
(ii) ‘clustering coefficient’ = ratio of edges present amongst neighbours of ph to all possible edges between them;
(iii) ‘centrality’ = fraction of shortest paths in the network that pass through ph

Gene expression (7) Derived using the gene of the human protein ph. Uses three GEO datasets: GDS77, GDS78, GDS80 reporting differential
gene expression of human genes infected by Salmonella, under seven different control conditions.

Conserved pathways (2) We look for interactions <pb,ph2 > in other known bacteria–human PPI datasets, where bacterial protein pb is a
homologue of ps, and human proteins ph and ph2 share a pathway. Two such features were defined: (i) GP: aggregates
bacteria–human PPI datasets across Gram-positive bacteria and (ii) GN: aggregated over Gram-negative bacteria.
Let Pc = number of human pathways shared by two human proteins; Hom(p1,p2) = 1 if the two proteins p1, p2 are
homologous, 0 otherwise. Then, fcp(ps,ph)=

∑
(pbi

,phi
)

Hom(pbi ,ps)Pc(phi ,ph);

RNAi expression (2) Uses human genes teemed as ‘hits’ by the RNAi screens published in (Misselwitz et al., 2011). Defines two features: (i)
pathway-enrichment: feature is ‘on’ if ph belongs to a pathway statistically enriched by the RNAi hit genes. (ii)
complex-enrichment: ‘on’ if ph belongs to statistically enriched protein complexes. Enrichment analysis used the
hypergeometric test with p-value cutoff of 0.01.

Interologues (1) Number of protein-pairs from other species that are interologs of the given pair <ps,ph>.

Sequence n-grams (39 200) Used the ‘conjoint triad model’ (Shen et al., 2007) to get n-gram features on the protein sequence for n=2,3,4,5. The
amino acid sequence is first converted to class sequence and n-grams are computed separately for ps and ph and then
concatenated to give a single feature vector similar to Dyer et al. (2011) of size =2(72 +73 +74 +75).

Pfam interactions (1) Counts the fraction of all possible interactions between the Pfam families of ps and ph, that are listed as known
interactions in the iPfam database (Finn et al., 2005)

Domain interactions (1) Similar to the above feature, computes the fraction of all possible domain–domain interactions between ps and ph that are
present in the domain interactions database 3DID (Stein et al., 2011).

Protein sequence (2) (i) Log of the e-value from the sequence alignment between proteins ps and ph, computed using PSI-BLAST
(Altschul et al., 1997). (ii) Log of the e-value of the sequence alignment between ps and ph’s binding partners in the
human interactome.
The maximum value is taken over all the binding partners.

ph represents the human protein, and ps represents the Salmonella protein in a given protein pair <ps,ph>.
asparse features, i.e. only some of the millions of features are active in a single protein–pair.

itself, we use protein sequence data to impute missing values. To
use protein sequence data, we convert each sequence to a feature
vector using the ‘conjoint triad’ concept from (Shen et al., 2007).
They partition the amino acids into seven classes based on their
properties and replace every amino acid in the protein sequence by
the appropriate class. We build n-gram features on this modified
sequence for n=2,3,4. This gives us 2793 features. Note how
these features encode the protein sequence at a much coarser level;
proteins with similar features are likely to have similar properties.

Given the observed gene expression data and sequence features
for every protein, we model this imputation problem as a multi-
variate regression problem: Y =XB+ε. The covariates X ∈R

n×d

are the sequence features for n proteins and the response variables

Y ∈R
n×k refer to k time-series gene expression values for the n

proteins. We have 2793 sequence features that make d =2793, and
the set of all human proteins has n≈ 25 000 proteins. One of our gene
expression datasets ‘GDS78’ downloaded from GEO (Barrett et al.,
2011), has three time-series measurements for each gene; thus k =3.
Since we want the response Y to be jointly dependent on a subset of
the covariates X, we use the block regularization regression model
from the work by (Obozinski et al., 2008), also called ‘Group Lasso
with �1/�2 regularization’. The sparsity constraints due to the �1
norm in the formulation allow us to select a subset of the covariates
(i.e. the sequence features) to regress upon. The �2 norm allows
for sharing of this covariate structure across the different response
variables (i.e. sharing across the different time points). The details
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of this model, formulation and implementation are described in
Subsection 3.1.

We also tried to regress each of the individual time points Yi
separately using simple linear regression and squared error loss
with lasso (�1) regularization. However, in both these models
the independence assumption between the response variables Y =
{Yi} resulted in undesirable models. In order to illustrate that
this imputation indeed improves the performance, we trained two
models—one that discards examples with missing gene expression
values, and the other that uses this regression-based imputation. We
found an improvement of about 4% in F1.

3 METHODS

3.1 Imputation using group lasso with �1/�2 penalty
Group lasso with �1/�2 regularization (Obozinski et al., 2008) is a way
to perform high-dimensional multivariate linear regression in the scenario
where the set of all response variables is to be regressed on the same set of
covariates. Let Y ∈R

n×k be the matrix of real-valued observations, where
each of the n observations comprises k responses. Let X ∈R

n×d be the
design matrix with the set of d covariates for each of the n observations.
The multivariate linear regression model takes the form

Y =XB∗ +ε,

where B∗ ∈R
d×k is the regression coefficients matrix and ε∈R

n×k is the
noise matrix with zero mean. B∗ has d coefficients corresponding to each
of the k response variables Yi. For high-dimensional problems, a sparsity
condition is assumed meaning that ‘most’ of the d covariates have zero
weights across all the tasks. A natural way to solve for the coefficient
matrix B∗ is to formulate the regression as an optimization problem with
the objective of minimizing the squared error, at the same time maintaining
the sparsity of B∗ as shown below:

B∗ =arg min
B∈Rd×k

{
1

2n
‖Y −XB‖2

F +λ‖B‖l1/l2

}
, (1)

where B= (βij) with 1≤i≤d, 1≤j≤k; rows representing the d covariates and

columns representing the k responses and ‖B‖l1/l2 =∑d
i=1‖βi‖2 is the block

�1/�2 norm; the norm ‖.‖F is the Frobenius norm of a matrix computed as
the sum of squares of all individual elements of the matrix.

The �1/�2 norm has several nice properties. The �2 norm couples together
the columns of the coefficient matrix, as a consequence of which coefficients
for a particular covariate jointly remain non-zero across all k responses. In
our context this implies that, a particular sequence feature will be non-zero or
active for the entire gene expression time series. Also, the �1 norm decouples
the rows of the coefficient matrix B∗ and adds sparsity which results in some
of the d rows getting selected as the important covariates and the remaining
going to zero. This causes some of the sequence features getting selected as
the important ones.

The optimization problem in Equation (1) is convex and is solved by using
the dual augmented Lagrangian method for efficient sparse reconstruction,
proposed by (Tomioka and Sugiyama, 2009). We use the implementation
from (Puniyani et al., 2010) and (Tomioka and Sugiyama, 2009). Parameters
were tuned using 3-fold cross validation.

3.2 Dataset and training
We use the 62 Salmonella–human PPIs reported in (Schleker et al., 2012) as
the ‘positive class’ in our gold standard data. Call this set P. Let ‘U’ be the
set of protein pairs obtained by pairing up all Salmonella proteins with all
human proteins. Our proteins data described in Section 2.1 gave us |U|≈90
million pairs. We sample some random pairs from the set U\P, to derive the
set N that will be the negative class. The number of random pairs chosen to
be the negative class is decided by what we expect the interaction ratio to

be. We chose a ratio of 1:100 meaning that we expect 1 in every 100 random
pairs of proteins to interact with each other, based on prior work in Dyer
et al. (2010), Tastan et al. (2009). Our training data D=P∪N thus had 62
positives and 6200 negatives. To generate novel potential interactions given
the gold-standard data, we apply the classifier model built on D to the rest
of the protein pairs: (U\D) and report the positive pairs predicted by the
classifier.

3.3 Classifiers for learning
In our techniques, we tried SVM (Boser et al., 1992) and Logistic regression
(LR) (Hastie et al., 2009) with �1 and �2 regularization. A linear kernel was
used for SVM experiments. Since our feature set is very high dimensional, the
�1 regularization-based methods were the most efficient. We found that LR
with �1 regularization (LR L1) had the best accuracy in all our experiments.
This is explained by the fact that our feature set is very sparse and �1 is known
to learn sparse hypotheses well. We used the Liblinear implementation by
(Fan et al., 2008) for both SVM and LR.

3.4 Experimental setup
Our evaluation criteria were chosen considering the characteristics of our
dataset: high class imbalance and small number of labelled examples. Instead
of using accuracy that measures performance over both the classes, we use
precision, recall and F1 computed on the positive class. Note how a classifier
that labels all data as ‘negative’ will have a high accuracy but 0 recall.

3.4.1 Bootstrap sampling experiments Bootstrap sampling (Efron and
Tibshirani, 1994) is used in statistical estimation when the available labelled
examples are small in number. We perform 100 randomized bootstrap
sampling experiments. For each experiment, we first make two random splits
of 60 and 40% of the data, such that the class ratio of 1:100 is maintained
in both. The training set is constructed using a bootstrap sample from the 60%
split and the test data from the 40% split. Precision and recall are computed
for each experiment and then averaged over the 100 experiments.

3.4.2 Precision–recall curves (PR) curves have been shown to give a
more informative picture of an algorithm’s performance than ROC curves
in the case of high class imbalance (Davis et al., 2006). The PR curve for
every method was obtained by averaging over the 100 bootstrap sampling
experiments.

3.4.3 Leave-one-out cross-validation This technique, also called ‘jack-
knifing’ is known to give an almost unbiased estimate of the true error, as
it uses most of the available labelled data. It is a cross-validation technique
where one instance is left out in each iteration and used for testing. Say
the gold standard dataset contains P positive examples. We perform P
experiments leaving out one positive and 100 negative examples in each,
while training the model on the remaining P−1 positives and (P−1)×100
negatives. This maintains the class ratio in all experiments at 1:100.

3.4.4 Parameter tuning To tune parameters, we perform a grid search over
a range of possible parameter values and combinations of learning algorithms
(SVM or LR) and type of regularization (�1 or �2). The parameters for SVM
and LR are the tradeoff parameter λ and the class-specific loss parameters C+
and C−. We did a 5-fold nested cross validation (Varma and Simon, 2006),
the results are reported in the Supplementary Material. The parameters that
give best performance were chosen and fixed for all the random sampling
and leave-one-out cross-validation (LOOCV) experiments. The same tuning
technique was used for the alternate algorithms we compare against.

4 RESULTS
We evaluate our cross-species imputation technique by comparing
it (i) with other imputation techniques and (ii) with other recent
work in host–pathogen PPI prediction. Results are shown in Table 3
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for the two scenarios. For the 100 bootstrap sampling experiments,
along with precision and recall averaged across 100 runs, we also
show the standard deviation ‘σ ’.

4.1 Comparison with other imputation methods
Both classifier-induced and data-driven imputation methods were
applied on the feature-set described in Table 2. RF imputation is a
classifier induced imputation, which works during the training phase
of the classifier. The data driven imputation methods, namely mean
value and cross-species, work before the classifier. Subsequently,
we apply two classifiers on this imputed data: SVM and LR. For
each classifier, we found that �1 regularization outperforms �2
regularization. We compared the following imputation approaches.

• RF imputation The implementation of RF by (Breiman
and Cutler, 2004) imputes missing data by initializing each
missing value to the mean of the feature and re-estimating
values by building a forest and using nearest examples from
the leaf nodes.

• Mean-value imputation Here, the average value of every
feature is used to impute missing values. Feature averages
obtained on the training data were used to impute both
training and test data. Another related technique is ‘class-
wise’or ‘multiple’mean-value imputation, where the averages
are computed separately for the two classes. We tried this
technique and the results did not improve over mean-value
imputation.

• Cross species imputation This refers to our techniques
described in Sections 2.3 and 3. We show results for two e-
value thresholds: 0.01 and 0.0001 that define ‘homologous’
proteins in other species that will be used for imputation.

• Deletion imputation We simply discard all data with missing
values. This leaves us with 26 interacting pairs; we pick a
random set of 2600 random pairs to be the negative class,
such that there are no features with missing values. We find
that �1 regularized LR, when applied on this reduced dataset
performs better than SVMs or �2 regularization.

In Table 3, we see that LR with �1 regularization (LR L1) applied
on the cross-species imputed data using a BLAST e-value threshold
of 0.01 outperforms all other approaches, with an F1 score of 76.4.
This is an improvement of about 7.2 points over the next best result
of 69.2 achieved by LR L1 with mean-value imputation. Note that
deletion imputation that uses a much smaller dataset has a very
high variance (σ ≈18) in its performance. It is very sensitive to the
dataset used and will produce a model that overfits the data, which
is undesirable. The LOOCV results show that our technique has
an F1 score of 80.7, which is 9 points better than the mean-value
imputation technique. The LOOCV performance for all techniques
is better than the bootstrap sampling experiments, since they use
the maximum available training data. The improvement obtained
by our method is evident from the percent increase in F1 that we
achieve over the other imputation methods: 18.4% over deletion,
10.4% over mean-value and 46.9% over RF imputation. Permutation
tests comparing our technique with all others show that the gains are
statistically significant.

Figure 2 shows the PR curves for all the imputation techniques. RF
imputation and deletion have good precision but suffer in recall; the

Table 3. First three columns show the performance of various techniques on
precision, recall and F1 averaged over 100 bootstrap sampling experiments
along with the standard deviation ‘σ ’. The last three columns show the
precision, recall and F1 obtained using LOOCV. Bold entries correspond
to highest accuracy achieved across the various methods. ‘RF’, Random
Forest, ‘LR’, Logistic Regression; ‘L1’ refers to the �1 regularizer.
aDid not finish running 100 bootstrap runs, so averaged over 30

Bootstrap sampling average LOOCV performance

Technique Prec. Rec. F1 Prec. Rec. F1

Comparison with other imputation techniques

RF 81.7 40.7 52
96.5 45.2 61.56

Imp.a σ : 11.3 σ : 13.9 σ : 12.4
Deletion 72.4 61 64.5

66.7 69.2 67.2
LR L1 σ : 16.2 σ : 20.7 σ : 17.8
Mean-val. 67.4 72 69.2

65.3 79 71.5
LR L1 σ : 5.5 σ : 7.8 σ : 3.9
CrossSp.0.01 77.4 76.1 76.4

77.6 84 80.7
LR L1 σ : 6.4 σ : 7.7 σ : 4.6
CrossSp.0.0001 73.4 74.8 73.5

70.6 77.4 73.8
LR L1 σ : 8.6 σ : 8.8 σ : 5.6

Comparison with previous related work

Tastan ’09 61 24.2 34.4
55.8 38.7 45.7

RF imp. σ : 19.4 σ : 5.2 σ : 8
Dyer ’11 70.3 46 55.2

65 62.9 63.9
No Imp.,SVM σ : 8.2 σ : 7.3 σ : 6.2

Fig. 2. Precision–recall curve for various imputation techniques.

opposite is true for Mean-val imputation. Cross species imputation
however, does well on both precision and recall. All results are
shown for positive to negative class skew of 1:100. We tried other
class skews: 1:1, 1:50 and 1:150 and found that all techniques report
higher accuracies for the lower class skews and the performance
degrades gradually with increasing class skew. However, in all
settings the ranking of relative performance remains the same: L1 LR
with cross-species imputation performs the best, with the difference
in performance being more on higher class skews. In the case of
equally balanced class ratio (i.e. 1:1), all the curves come very close
to each other.

4.2 Comparison with related work
Two methods originally proposed to address the HIV-human PPI
prediction problem were compared here.
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Table 4. Percentage of examples with missing values in the Yersinia–human
PPI dataset, for all features and separately for two features

Type % Miss in % Miss in
positive random

All features 83% 85%
Gene expression 15–27% 24–43%
GO 39–66% 40–54%

Table 5. Bootstrap sampling results on Yersinia–human PPI prediction
comparing different imputation techniques

Method Prec. Rec. F1

Mean Value 36.8 42.4 39.1
Cross species 44.6 42.8 43.7

Tastan et al. 2009 used RF with the built-in classifier-induced
feature imputation technique from (Breiman and Cutler, 2004). Dyer
et al. 2011 and assumed there are no missing values and applied.
SVMs with a linear kernel.

For both methods, we derived their features on our dataset and
applied their techniques. The results in Table 3 show the superiority
of our combination of feature set, classifier and imputation method
over previous work on host–pathogen PPI prediction.

4.3 Results on Yersinia–human PPI dataset
We demonstrate the consistency of our techniques onYersinia pestis–
human PPI prediction. The dataset comes from high-throughput
experiments (Dyer et al., 2010) and has 4067 reported interactions.
We build a negative class dataset using random pairs of proteins
as described earlier, with a class ratio of 1:100. Features similar
to the ones described in Table 2 were used. This PPI dataset also
has several missing values as shown in Table 4. We apply the two
best imputation techniques and show results for the 100 bootstrap-
sampling experiments in Table 5. The overall accuracies are lower
for this dataset as it comes from high-throughput experiments that
tend to be noisy, and also because it has a larger proportion of missing
values.

5 CONCLUSION
We presented an imputation technique for dealing with missing
values that arise in PPI prediction tasks. The improvements we
obtain on both host–pathogen PPI datasets over prior approaches
that use generic imputation methods clearly show the superiority of
our method. We further observe that the importance of the imputed
features in the learned classifiers is significant, implying that their
imputation is important for prediction. Although our current work
shows improvements in accuracy, we believe that the resulting
models which are based on the MAR missingness assumption are
less biased by the imputation technique as compared to the other
commonly used methods. Characterizing and measuring such model
bias as a consequence of imputation will be an interesting direction
for future study, as it will make model selection more principled.
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