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Abstract: Model-free reinforcement learning is a powerful and efficient machine-learning paradigm
which has been generally used in the robotic control domain. In the reinforcement learning setting,
the value function method learns policies by maximizing the state-action value (Q value), but it
suffers from inaccurate Q estimation and results in poor performance in a stochastic environment.
To mitigate this issue, we present an approach based on the actor-critic framework, and in the critic
branch we modify the manner of estimating Q-value by introducing the advantage function, such
as dueling network, which can estimate the action-advantage value. The action-advantage value is
independent of state and environment noise, we use it as a fine-tuning factor to the estimated Q value.
We refer to this approach as the actor-dueling-critic (ADC) network since the frame is inspired by the
dueling network. Furthermore, we redesign the dueling network part in the critic branch to make it
adapt to the continuous action space. The method was tested on gym classic control environments
and an obstacle avoidance environment, and we design a noise environment to test the training
stability. The results indicate the ADC approach is more stable and converges faster than the DDPG
method in noise environments.

Keywords: reinforcement learning; continuous control; DDPG; dueling network; advantage

1. Introduction

Autonomous navigation is a core research area of the mobile robot, and the obstacle avoidance
technique has been treated as a planning problem [1]. An efficient navigation system requires
both global path planning and local motion control ability. The local motion usually uses sensory
information to determine a motion that will avoid collision with unknown obstacles [2]. The classical
solutions such as simultaneous localization and mapping (SLAM) enable autonomous vehicles to
safely roam in unknown environments while incrementally building a map of it [3]. The robot uses
laser or cameras as major sensors to scan a great many points in an area, based on this map it can
avoid collisions. But avoiding obstacles based on a complex world representation can be inconvenient
and lacks flexibility. Besides, some basic obstacle avoidance algorithms determine a suitable distance
and are based on recent sensory data to ensure the real-time avoidance. However, to optimize these
algorithms, lots of environmental circumstances should be considered and tested [1]. The visual-based
navigation system recognizes objects and measures the distance from them by monocular or binocular
cameras to avoid obstacles. However, the visual information is easily affected by environmental
conditions such as the position of light sources, illumination intensity, etc. [4]. To solve the obstacle
avoidance task based on distance measurement, sensors such as lasers and LiDARs can provide
simple and effective solutions. The sensors are employed to collect information around the robot,
thus the robot can perceive the relative position between itself and the environmental obstacles.
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Traditional control algorithms are based on expert knowledge and experimental experience to make
the sensors and motors coordinate to avoid collisions. It has a high training cost and is not flexible.
With the rise of artificial intelligence in recent years, approaches based on deep learning have achieved
lots of impressive results [5–9]. Combining with transfer learning technique, the pre-trained local
motion planning model and knowledge in the simulator can be effectively used in real robots to
achieve obstacle avoidance [10]. There are many excellent works [11] training models in simulators
such as gazebo [11] and Mojuco [12]. Typically, robots such as Turtlebot measure distance from
environments with onboard LiDAR and sonar to avoid unpredictable obstacles. Based on the sensor
input, the robot can finish navigation tasks with a pre-trained model. The model and knowledge can
be acquired by means of reinforcement learning. Therefore, the study of reinforcement learning
algorithms and approaches to improve training performance has more practical significance to
navigation field presently.

Reinforcement learning (RL) is a mathematical framework for autonomous learning optimal
control strategy through trial and error in a wide range of fields besides engineering and robotics [13].
The control strategy or policy is a mapping between states and actions, which enables the agent to
have knowledge about selecting a good action based upon the current state and its experience during
interaction with an environment. This learning process continues until the agent acquires a promising
performance and the whole process is fully driven by the reward. For obstacle-avoiding robots,
the sensory input can be regarded as states, and the operation of the motor is regarded as the action.
Whether the collision occurs or not can be defined as rewards. Through this change, an obstacle
avoidance task can be formalized as a standard RL process. Extracting the useful information
from the environment (forms such as images, text, and audio) is a key capability for training the
agent. With the recent advances in deep learning (DL), relying on the neural networks’ powerful
function approximation and representation learning properties allows an RL agent to efficiently
learn features and patterns from high-dimensional data with multiple processing layers models [14].
It has dramatically accelerated the developing process of RL, and deep reinforcement learning (DRL)
could be applied to more fields and learn knowledge end to end by integration of RL and neural
networks. There is a range of successful neural network architectures, such as convolutional neural
networks (CNN) [15], multilayer perceptrons, recurrent neural networks [16], generative adversarial
nets (GAN) [17], etc., which dramatically improves the state of the art in applications such as object
detection, speech recognition, and language understanding [14]. DRL algorithms can deal with
decision-making problems that were previously intractable with high-dimensional state input and
large action spaces [18], which has made significant progress, and it became easier to train a more
complex neural network model than before.

In this paper, we focus on improving the training performance of RL algorithms by providing
new training technique and apply it in an obstacle avoidance simulator to discuss the practicability in
navigation field. This method combines the benefit from the actor-critic framework and the dueling
network architecture [19]. We refer to this hybrid approach as the ADC algorithm. The ADC algorithm
operates well in a continuous action space since it has an actor network, which directly optimizes
policy and selects actions. On the other hand, the dueling-critic network can estimate state-action
value and action-advantage value. By combining the two estimated values in a technique we present,
the estimation of Q-value can be insensitive to the change of environmental noise, thereby improving
the training stability. The dueling-critic adopts the framework design like dueling network [19], which
is an efficient technique that decouples the state and action pairs; therefore, it evaluates the action
value independent of states. Our method provides a more accurate estimation of the state-action value
at each time step, and it is an important factor for guiding the actor to update its policy network.
However, the original dueling network can only work in discrete action space, since it is based on
standard the deep Q-learning network and the action advantage is a relative action value in each
state, relative to other unselected actions. In the continuous action space, the unselected actions are
countless, and it is impossible to evaluate each unselected actions’ advantage value. We introduce
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the concept of action interval, converting the action’s advantage to action interval’s advantage value,
which makes it possible to use this technique in continuous action spaces.

To test our approach’s performance, we apply our method to the gym Pendulum-v0 environment
and the obstacle avoidance environment, all tasks are in continuous action space. To explore the
stability of the ADC method, we manually add noise to the environments. From the results show, our
method operates well in the continuous control tasks and the training process is more efficient than
DDPG algorithm [20] especially in the environments with noise input. The contributions of this paper
are summarized as follows:

• We provide a novel network structure (ADC) working in continuous action space, which can
decouple the states and actions and estimate state value and action advantage separately in an
environment.

• We introduce the concept of action interval’s advantage, which makes it possible for the advantage
technique to be used in continuous action domain.

• Based on the ADC structure, we propose an algorithm that is effective at learning policies for
continuous control tasks. This is fully model-free, and it leads to stable long-term behavior.

The rest of paper is organized as follows. Section 2 gives a brief review of the main RL-related
techniques for improving training performance and the robotics applications. In Section 3 we formalize
the problem setup and provide some necessary background knowledge of RL. Our main contribution
is in Section 4 which discusses our approach which combines dueling network architecture with the
actor-critic network and presents the details of the network such as the action interval’s advantage and
dueling network’s aggregating module. Section 5 we present the experimental results of our method
on a gym classic control simulator and navigation simulator. Some general discussions are presented
in Section 6 and Section 7 concludes the paper with some potential use cases.

2. Related Work

Many researchers have studied RL algorithms and relevant techniques to improve their training
performance. At the same time, many research groups have narrowed the gap between the algorithms
and practical applications. In particular, the applications in continuous control have drawn more
attention, which has great significance in the field of robotic navigation.

Mnih et al. [21] developed the first standout DRL algorithm, the Deep Q-Network (DQN)
algorithm, which develops a novel artificial agent achieved human-level performance in playing Atari
series games, directly from raw video input. Silver et al. [22] set a landmark in artificial intelligence
(AI) in playing the game of Go based on supervised learning and RL. DRL is poised to revolutionize the
field of AI and represents a big step towards building fully autonomous or end-to-end systems with a
higher-level understanding of the visual world [18]. Henceforth, a number of new RL algorithms and
techniques have sprung up to improve the training performance in their own way. Hasselt et al. [23]
presented a double-Q estimator for value-based RL methods to decrease the overestimated Q value,
hence improve the agent’s training performance. Wang et al. [19] improve the accuracy of Q value
estimation by adopting two split networks, one for estimating state value and the other one for
estimating its action value. In contrast to modifying networks’ structure, Schaul et al. [24] investigated
the prioritized experience replay (PER) method to make experience replay more efficient and effective,
this prioritization can lead to quickly convergence in the sparse reward environment. Nair et al. [25]
introduced massively distributed DRL architecture which consists of parallel actors and learners
and it uses a distributed replay memory and neural network to increase the computation. These
advances in algorithms drove lots of researchers to do experiments in applications such as visual
navigation and robot control. Barron et al. [26] explored virtual 3-D world navigation with deep
Q-learning method, the trained agent can have good performance with a shallow neural network.
Relative research did by Mirowski et al. [27] they formulated the navigation task as an RL problem
and trained an agent to navigate in a complex environment with dynamic elements. Haarnoja et al.
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explored a series of tasks and methods enable real robots to learn skills [28–30], and they presented the
soft actor-critic [31] method to improve the sampling efficiency. As for the application of RL in the
control field, the first thing we should consider is the action space. Because the majority of previous
RL methods are in domains with discrete actions which are based on value function estimation [32].
For the real-world applications related to physical control such as robotics, an important property
is the continuous (real-valued) action spaces. The methods based on the value functions such as
deep Q-learn cannot be straightforwardly applied to continuous domains since it relies on finding
the action that maximizes the action-value function and requires an iterative optimization process
at every step [20]. So, the exploration of RL algorithms in continuous action space is important and
practical work.

For continuous control tasks, simply discretizing the action spaces and using value-based methods
such as DQN is a feasible way. Obviously, it must drop off a lot of information about the action space,
thus undermines the ability to find the true optimum policy. Large action spaces are difficult to
explore effectively and making the training process intractable with traditional value-based methods.
Therefore, lacking most of the action spaces’ information will result in poor performance. Another
series of algorithms developed based on policy-gradient methods [33], which directly optimize the
parameters of a stochastic policy through local gradient information obtained by interacting with the
environment using the current policy [34]. The critical challenge of policy-based methods is finding a
proper score function to evaluate how good or bad a policy is. To solve it, actor-critic approaches have
grown in popularity in the continuous domain, which take advantage of prior researching experience
and they are capable to select actions in a continuous domain with a temporal-difference learning
value function. Based on this hybrid framework, Mnih et al. [35] proposed an asynchronous variant of
actor-critic (A2C) method which surpasses the origin actor-critic in convergence time and performance.
Lillicrap et al. [20] presented the deep deterministic policy-gradient (DDPG) algorithm it robustly
solved a variety of challenging problems with continuous action spaces. O’Donoghue et al. [36] gave a
similar technique such as DDPG which combines the policy gradient with off-policy Q-learning (PGQL).
Among these actor-critic-based methods, the critic network ways of estimating the state-action value
are all same. Notably, these estimations serve as a signal to guide the actor network select better actions
then update the policy. Therefore, we intend to present a method which has more precise and proper
state-action values’ estimation in the critic network, then potentially improve the overall performance.

There is a lot of recent work that solves robotic navigation tasks with RL approaches. Tai et al. [37]
trained a mapless motion planner for navigation tasks with an asynchronous DRL method, which
can be directly applied in unseen environments. The motion planer was trained end to end based
on the sparse laser sensors. Zhu et al. [38] presented an RL-based model for target-driven visual
navigation tasks, the model addressed the issues such as lacking generalization capability and data
inefficiency. Xie et al. [39] presented a method based on a double-Q network for obstacle avoidance
tasks, using monocular RGB vision as input. Zuo et al. [40] built a robotic navigation system based
on the Q-learning method, which is useful for robot to quickly adapt unseen environments with
sonar measurements input. Zhang et al. [41] proposed a successor-feature-based DRL algorithm
which used for obstacle avoidance task rely on raw onboard sensors’ data. Tai et al. [42] presented
the deep-network structure to do obstacle avoidance tasks, they tested their model in real-world
experiments and showed the robot’s control policy has high similarity with human decisions.
Khan et al. [43] proposed a self-supervised policy-gradient algorithm and applied it in a LiDAR-based
robot. These works showed the RL methods can make full use of robots’ sensory input, and map the
input to the appropriate action output for safely walking without collisions, and the models trained
in simulators in these works can be successfully transferred to the robot in the real world for the
same tasks.
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3. The Problem Setup

The RL problem is meant to be a straightforward framing of the problem of learning from
interaction with environments E over several discrete time steps to achieve a goal [44]. At each time
step t, the agent receives a state st in the environment’s state space S and selects an action, at ∈ A(st)

according to a policy π(at|st), whereA(st) is the set of actions available in state st. The policy amounts
to a conditional probability π(a|s) of the agent taking action if the current state is s. It is a mapping
from state and action to the probability of taking an action. After that, the agent will receive a scalar
reward rt and store the transition in the agent’s memory as experiences. The process continues until
the agent reaches a terminal state. The agent seeks to learn a policy π∗ that maximizes the expected
discounted return Rt = ∑∞

k=0 γkrt+k, accumulated reward with the discount factor γ ∈ (0, 1] trades-off
the importance of immediate and future rewards [19].

RL tasks that satisfy the Markov property can be described as Markov decision processes (MDPs),
which are defined by a tuple (S ,A,P ,R, γ), where R is a reward function R(s, a) and P is a state
transition probability P(st+1|st, at). The Markov property indicates the future states are conditionally
independent of the past given the present. So, in an RL task, the decisions and values are assumed
to be a function only of the current state. Markov property can be defined as p(st+1|s1, a1, ..., st, at) =

p(st+1|st, at) , which means the future states are conditionally independent of the past given the
present. RL task which satisfies Markov property can be described as MDPs, defined by the 5-tuple
(S ,A,P ,R, γ), whereR is reward functionR(s, a) and P is state transition probability P(st+1|st, at).
In an episodic task, the state will reset after each episode of length, and the sequence of states, actions,
and rewards in an episode constitute a trajectory or rollout of the policy [18].

3.1. Value Functions

Value functions are a core component of RL systems, which constructs a function approximator
that estimates the long-term reward from any state. It estimates how good (expected return) it is
for an agent to be in a given state (or given action in a given state) [44]. By this way, the function
approximator exploits the structure in the state space to efficiently learn the value of observed states
and generalize to the value of similar, unseen states [45]. A typical form of value function can be
defined as:

Vπ(s) = E[R|s, π] = E[
∞

∑
k=0

γkrt+k|s, π] (1)

Normally we refer to Vπ(s) (1) as the state-value function, which measures the expected
discounted return when starting in a state s and following a policy π. When actions follow by
the optimal policy π∗, the state-value function can be optimal:

V∗(s) = max
π

Vπ(s) ∀s ∈ S (2)

In addition to measuring the value of states, there is also an indicator for measuring the quality of
actions’ selection, which is denoted as state-action-value or quality function Qπ(s, a). It defines the
value of choosing an action a from a given state s and thereafter following a policy π.

Qπ(s, a) = E[R|s, a, π] = E[
∞

∑
k=0

γkrt+k|s, a, π] (3)

State-action-value is similar to the state value Vπ except the initial action a is provided, and the
policy π is only followed from the succeeding state onwards. The optimal state-action-value function
is denoted as:

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S , ∀a ∈ A (4)
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Q∗(s, a) gives the maximum state-action value for state s and action a achievable by any policy.
This action-value function satisfies a recursive property, which is a fundamental property of value
functions in the RL setting, and it expresses a relationship between the value of a state and its
successor states:

Qπ(s, a) = Es′ [r + γEa′∼π(s′)[Q
∗(s′, a′)]|s, a, π] (5)

Unlike producing absolute state-action values as with Qπ , an advantage function represents
relative state-action values, which measures whether or not the action is better or worse than the
policy’s default behavior [46]. Often, it is easier to learn that action yields higher reward than another,
than it is to learn the actual return from taking one particular action [18]. Advantage function expresses
a relative advantage of actions through this simple relationship:

Aπ(s, a) = Qπ(s, a)−Vπ(s) (6)

Many successful value-based RL algorithms [32,35,46] rely on the idea of advantage updates. In
our approach, we also adopt the advantage value to measure the relative actions’ quality on each step.

3.2. Deep Q-Network

Deep reinforcement learning (DRL) applies deep neural nets for representing the value functions
within reinforcement learning methods. DRL algorithms have attained superhuman performance
in several challenging task domains to attribute to the powerful function approximation and
representation learning properties of the DL. The DQN algorithm [47] achieves human-level
performance on Atari series games from pixels input. It parameterizes the quality function Q with a
neural network Q(s, a; θ) that approximates the Q values. Two main techniques of the DQN algorithm
can learn value functions in a stable and robust way are using the target network and experience replay.
At each iteration, the network’s parameters are updated by minimizing the following loss function:

Li(θi) = Es,a,r,s′ [(y
DQN
i −Q(s, a; θi))

2] (7)

with
yDQN

i = r + γmax
a′

Q(s′, a′; θ−) (8)

in which θ− is the parameter for the target network. The first stabilizing method is fixing the target
network’s parameters rather than calculating the TD error based on its own rapidly fluctuating
estimates of the Q-values. The second one, experience replay, uses a buffer for storing a certain size of
transitions (st, at, st+1, rt+1, ) makes it possible for training off-policy and enhancing the efficiency of
sampling data.

There is a series of improvements in the value-based RL setting after the DQN algorithm ignited
this field. To reduce the overestimated Q-values in DQN, van Hasselt et al. [23] proposed the double
DQN algorithm. Wang et al. [19] presented a dueling Q-network architecture to estimate state-value
function V(s) and associated advantage function A(s, a) respectively. Tamar et al. [48] proposed a
value iteration network that can effectively learn to plan, and it leads to better generalization in many
RL tasks. Schaul et al. [24] developed the PER approach built on top of double DQN, it makes the
experience replay process more efficient and effective than all transitions are replayed uniformly.

3.3. Dueling Network Architecture

Unlike the standard single sequence Q-networks design (Figure 1 right), the dueling network
structure (Figure 1 left) consists of two sequences (streams) of networks (A-network and V-network)
which separately learn action-advantage function and state-value function. This construction decouples
the value and advantage functions and combines the two streams to produce the estimate of the
state-action value function with a special aggregating module (Figure 1 green module). The two
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streams share a common feature extraction layer (or lower layers). The deep Q-network focuses
on estimating every state-action pairs’ value. However, the idea of dueling network is to estimate
action-independent state function and action-dependent advantage function separately, because in
RL environments, not all states are related to a specific action, there are many states independent of
action, and under these states the agent does not need to change actions to adapt to the new states.
Therefore, it is meaningless and inefficient to estimate such state-action pairs’ value. Dueling network
firstly presented by Wang et al. [19] and through this change, the training efficiency has been greatly
improved than the single-stream Q networks. The dueling network results in a new state of the art
for tasks in the discrete action space according to Wang’s work. Shortly, the Q-values generated by
dueling network are more advantageous to the performance improvement than deep Q-network in an
RL task. In our approach, we adopt a dual-network design similar to dueling architecture to generate
appropriate Q-values. In Section 4, we discuss the ADC network’s architecture and the aggregating
method in detail.

Observation(s)

…

Observation(s)

…
Q(s,a)

Q(s,a)

Q-networkA-network V-network

A(s,a) V(s)

Input layer and
 feature extraction

 layers

Output:
state-action 

values

State 
value 

Action 
advantages

Aggregating 
module

Figure 1. Dueling Q-network (left) and standard single-stream Q-network (right). Both networks have
the same input and feature extraction module; the outputs are state-action values. The difference is
that dueling network adopts two sequences (streams) networks to estimate state values and action
advantages, and then combines them to indirectly generate the Q-values; The Q-network has a single
sequence network and it directly produces Q-values’ estimation.

3.4. Policy Gradient

The methods mentioned above indirectly learn the policy π(s) based on the estimate of the value
functions. These value-based approaches are effective in handling problem in a discrete actions field.
However, when dealing with a problem with a continuous action space such as physical control
tasks, the value-based approaches cannot be straightforwardly applied, and it is difficult to ensure the
results’ convergence since it relies on each actions’ Q value [49]. An obvious approach to implement
value-based algorithms such as DQN to continuous domains is to discretize the action space to several
fixed actions. However, it has many drawbacks and limitations such as throwing information (maybe
essential) about the structure of the action domain [20].

There is no such worry in policy-based approaches since the policy network output agent’s actions
without the estimation of the action-value function. They directly parameterize the control policy
π(a|s; θ) and update the parameters θ [35] to optimize the cumulative reward, therefore, policy-based
methods are more applicable to continuous control problem such as tasks of robotic controls [20,50–53]
than the value-based methods. Policy gradient (PG) is an appealing policy-based algorithm which
optimizes the parametric policy πθ(a|s) = P[a|s; θ] following the gradient ∇θ J(πθ) of its expectation
of cumulative reward with respect to the policy parameters [54]. Policy-gradient methods are effective
in high-dimensional or continuous action spaces, and can learn stochastic policies. In an RL task,
the agent’s goal is to find parameter θ maximizes the objective function J(π). A typical performance
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objective to be considered is the average reward function: J(π) = E[R|πθ ]. The policy-gradient
theorem [33] provides the gradient of J with respect to the parameters θ of policy π:

∇θ J(πθ) =
∫
S ρπ

∫
A∇θπθ(a|s)Qπ(s, a)dads

= Es∼ρπ ,a∼πθ [∇θ logπθ(a|s)Qπ(s, a)]
(9)

where the ρπ(s) is the state distribution. The unknown part, Qπ(s, a) is normally estimated by using
the actual returns Rt = ∑∞

k=0 γkrt+k as an approximation for each Qπ(st, at) [33]. Based on this theorem,
Silver et al. [49] proposed a deterministic policy-gradient (DPG) algorithm for estimating gradient and
it is more efficient than the usual stochastic policy-gradient method. O’Donoghue et al. [36] referred to
a new technique by combining PGQL and discussed the practical implementation of this technique in
RL setting. In this paper, we consider the deterministic policies a = πθ(s) because they significantly
outperform their stochastic counterparts in continuous action spaces [49].

3.5. Actor-Critic Algorithm

Regular policy-gradient methods often exhibit slow convergence due to the large variances of
the gradient estimates. The actor-critic methods attempt to reduce the variance by adopting a critic
network to estimate the value of the current policy, which is then used to update the actor’s policy
parameters in a direction of performance improvement [55]. The action-selection policy is known as
the actor πθ : S → A, which make decisions without the need for optimization procedures on a value
function, mapping representation of the states to action-selection probabilities [33]. The value function
is known as the critic Qπ

φ : S ×A → R, which estimates the expected return to reduce variance and
accelerate learning [56], mapping states to expected cumulative future reward.

Figure 2 shows an architecture design, the actor and critic are two separated networks share a
common observation. At each step, the action selected by actor network is also an input factor to the
critic network. In the process of policy improvement, the critic network estimates the state-action value
of the current policy by DQN, then actor network updates its policy in a direction improves the Q-value.
Compared with the previous pure policy-gradient methods, which do not have a value function, using
a critic network to evaluate the current policy is more conducive to convergence and stability. The
better the state-action value evaluation is, the lower the learning performance’s variance is. It is
important and helpful to have a better policy evaluation in the critic network. Policy-gradient-based
actor-critic algorithms are useful in many real-life applications because they can search for optimal
policies using low-variance gradient estimates [56]. Lillicrap et al. [20] presented the DDPG algorithm,
which combines the actor-critic approach with insights from DQN, to solve simulated physics tasks
and it has been widely used in many robotic control tasks. It uses two neural networks; the actor
network learns a deterministic policy and the critic network approximates the Q-function of the current
policy [57].

Actor network Critic network

Output 
layer

Observation(s)

…

Input layer and 
feature extraction 

layers

π(a|s) Q(s,a)

Figure 2. actor-critic network.
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4. Proposed Method

In this work, we propose an approach for operating in continuous action space. We named
our method as ADC network, which can find stable policies in continuous action spaces and it
collects the benefits from the actor-critic network and dueling network. The main structure of the
ADC network (Figure 3) is similar to the actor-critic network which consists of the two sequence
networks. The actor network (left blue part in Figure 3) computes continuous actions with the DPG
method. The dueling-critic network (right orange part in Figure 3) supplies the estimate of expected
return as the performance’s knowledge for the actor. A difference from the actor-critic networks is
the application of the dueling network (Figure 3 A-network and V-network) in the original critic
branch. The dueling-critic network consists of two sequences (or streams) of fully connected layers
which provide separate estimates of the state value V(s) and state-dependent advantage A(s, a).
Then, the aggregating module combines the two streams to produce the estimate of state-action
value Q. In the continuous action space, we cannot output the estimation of each possible action’s
advantage value, so we add a new method to enable the dueling network to be used in continuous
space, which was originally used in discrete action space. We manually divide the action space and
estimate the advantage of the action interval in each state. Through this change, the agent could learn
which action interval is good when facing a specific state and pick the action belong to this interval.
The action-advantage value is a relative value and it measures the quality of the possible actions in
one state. Meanwhile, it is a tiny amount close to zero and independent of the environment state and
noise. Therefore, it can be seen as a fine-tuning factor to the Q value and improve the accuracy of Q
value estimation.

Observation(s)

…

Actor Dueling-critic

Input layer and 
feature extraction 

layers

π(a|s) 

A-network V-network

V(s)

Q(s,a)

...

...

Action intervals’ 
advantages

Figure 3. Actor-dueling-critic (ADC) networks architecture. It is based on actor-critic architecture.
The actor network selects actions based on the policy-gradient method; The dueling-critic network
applies dueling architecture to estimate state-action values. The ADC network has better Q-value
estimator than the original actor-critic networks. The outputs of A-network are a list of action intervals’
advantages, the action space is uniformly divided. The aggregating module implements Equation (14)
to combine the two streams.

The dueling-critic branch provides Q values to the actor, then the actor tends to know how good
or bad the action taken is. So, an accurate Q-value estimation can lead to better performance for the
actor-critic-based methods. In the traditional actor-critic methods, the critic applies a single sequence
network and uses Q-learning updates to estimate state-action values, which force to build connections
between states and actions. However, in practice, many states are independent of an action, which
means in some states, the choice of action has no effect on what happens. Therefore, it is unnecessary
to estimate each state-action pairs’ value. In our method, the dueling-critic decouples the action and
state through this dual-network design. The value stream learns to pay attention to the state’s value;



Sensors 2019, 19, 1547 10 of 20

the advantage stream learns to pay attention to action interval’s advantage on a state, thus making the
Q estimation more accurate by combining the two separate values. It also improves the computing
efficiency. The original dueling network focuses on solving discrete actions’ RL problem. It cannot
scale to continuous control tasks since it is a pure value-based method. However, the ADC method
can cope with continuous action spaces since it has an actor network which is responsible for selecting
actions based on policy. ADC combines the merit of dueling architecture and actor-critic frame. With
an accurate state-action-value estimation, the actor-dueling-critic network can be more efficient in
finding suitable policies than the classic actor-critic methods.

From the advantage Equation (6) we could get Qπ(s, a) = Vπ(s) + Aπ(s, a). Then under the
definition of advantage, we build an aggregating networks module:

Q(s, a; θQ, α, β) = V(s; θQ, β) + A(s, a; θQ, α) (10)

where θQ denotes the parameters of the first layer in the dueling-critic branch, α and β are the network
parameters of advantage and value streams respectively (A-network and V-network). The Q(s, a; θ, α, β)

is the output of the dueling-critic network, and it is a parameterized estimate of true Q-function.
Equation (10) lacks the identifiability since given Q, the V and A cannot be recovered uniquely.
To migrate this issue, we force the A to have zero advantage at the chosen action:

Q(s, a; θQ, α, β) = V(s; θQ, β) + (A(s, a; θQ, α)− max
a′∈|A|

A(s, a′; θQ, α)) (11)

Through this change, when a = a∗ = arg maxa′∈|A| Q(s, a′; θQ, α, β) = arg maxa′∈|A| A(s, a′; θQ, α),
the advantage equal to zero and then the Q equal to V. An alternative equation of aggregating module
presented by Wang et al. [19] is:

Q(s, a; θQ, α, β) = V(s; θQ, β) + (A(s, a; θQ, α)− 1
|A|∑a′

A(s, a′; θQ, α)) (12)

It replaces the max operator with the mean. Equation (12) increases the stability of the optimization
because the advantages only need to change as the same pace of mean rather than compensate change
to the optimal action’s advantage [19]. It also helps identifiability and does not change the relative
rank of A. The original intention of advantage technique is to measure the relative value by comparing
multiple actions under a state in discrete action spaces. While in this work, we focus on the continuous
action space, so we uniformly partition the action space to n intervals (Figure 3) according to its
experimental environment, and we use z denotes of the action interval. At each step, the A-network
outputs the advantages of each action intervals (z1, z2, ..., za, ..., zn−1, zn), and we use the advantage
value of interval (za) containing the action actor network adopted subtract the mean of all intervals’
advantage to calculate the step advantage. The definition of advantage’s value of the step when the
agent takes an action a can be calculated with Equation (13):

A(s, a; θQ, α) = A(s, za; θQ, α)− 1
n ∑

z
A(s, z; θQ, α) (13)

Therefore, the equation of aggregating module of ADC network can be presented as (14):

Q(s, a; θQ, α, β) = V(s; θQ, β) + A(s, a; θQ, α) (14)

In the actor network branch, we apply the off-policy DPG algorithm [49]. We parameterize the
policy as µ(s|θµ) which mapping states to a specific action (µ : S → A). The actor network adjust its
parameters θµ of the policy in the direction of the performance gradient ∇θµ J:

∇θµ J ≈ Es∼ρ[∇θµ Q(s, a|θQ)|a=µ(s|θµ)]

= Es∼ρ[∇aQ(s, a|θQ)|s,a=µ(s)∇θµ
µ(s|θµ)|s]

(15)
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To ensure adequate exploration of action space, we execute an exploration policy by injecting
noise into the output of action choice: µ′(s) = µ(s|θµ) +N . Where the noise signal N randomly
sampled from a Gaussian distribution. With this strategy, a noised action is taken with probability
ε and the noise-free action is chosen with probability 1− ε. As the number of iterations increases,
the ε slowly decreases from 1 to 0, at the same time, the actor network chooses noise-free action with
increasing possibility from 0 to 1.

As the success of DQN algorithm, we use a neural network to learn in minibatches with a
finite-sized cache R. Transitions were sampled from the environment according to the exploration
policy. At each time steps, the actor and dueling-critic networks are updated by sampling a minibatch
uniformly from the replay bufferR. Furthermore, for improving the stability of the training process
we use the ’soft’ target updates in actor and dueling-critic networks rather than directly copy the target
networks’ parameters. We set Q′(s, a|θQ′) and µ′(s|θµ′) as the target networks of dueling-critic and
actor networks, respectively. The ’soft’ update means we update parameters slowly track the learned
networks: θ′ ← τθ + (1− τ)θ′ with τ � 1.

Figure 3 shows the basic architecture of our proposed network and Algorithm 1 provides the
overall steps of our off-policy variant ADC algorithm.

Algorithm 1 Actor-dueling-critic algorithm

1: Initialize:
Initialize actor µ(s|θµ) and dueling-critic Q(s, a|θQ, α, β)

Initialize target actor µ′ with θµ′ = θµ and target dueling-critic Q′ with θQ′ = θQ, α′ = α, β′ = β

Initialize replay memory R = ∅, random process N .
Uniformly separate the action space to n intervals (Z = {z1, z2, ..., zn}).

2: for episode=1 to M do
3: Receive initial state s1

4: for t=1 to N do
5: With probability ε select action at = µ(st|θµ) +Nt, otherwise select at = µ(st|θµ)

6: Execute at and observe reward rt and new state st+1

7: Store transition (st, at, rt, st+1) in R
8: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
9: Implement target actor a′i+1 = µ′(si+1|θµ′)

10: Implement dueling-critic Q′i+1 = Q′(si+1, a′i+1|θQ′ , α′, β′) (Equation (14)) with a′i+1 ∈ zj

11: Set yi = ri + γQ′i+1 (set yi = ri if st+1 is terminal)
12: Update dueling-critic by minimizing the loss:

L = 1
N ∑i(yi −Q(si, ai|θQ, α, β))2

13: Update actor using the sampled PG:
∇θµ J ≈ 1

N ∑i∇aQ(s, a|θQ)|s=si ,a=µ(si)
∇θµ µ(s|θµ))|si

14: Soft update target networks of dueling-critic and actor (τ � 1):
θµ′ ← τθµ + (1− τ)θµ′ θQ′ ← τθQ + (1− τ)θQ′

α′ ← τα + (1− τ)α′ β′ ← τβ + (1− τ)β′

15: end for
16: end for

5. Experiments

We evaluated our approach on gym classic control environment and a navigation task. They are
in continuous action domain. Experiments include non-noisy and noisy environments to explore the
stability of our method.
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5.1. Non-Noise Environments

5.1.1. Gym Pendulum-v0

We apply off-policy ADC, DDPG, actor-critic and dueling networks on gym ’Pendulum-v0’
platform. This is a common continuous domain physical environment. We manually separate the
continuous action space to 25 discrete actions for running the dueling network. It is a common method
for applying most of value-based RL algorithms in continuous action space. The division of continuous
action space based on experience, by choosing 25 discrete actions can lead to converging at a good
speed for the dueling network. The agent’s goal is to try to keep the pendulum standing up, and when
it stands up the reward is 0, otherwise, the rewards are negative value.

For the ADC network architecture, we applied a small fully connected neural network with
one hidden layer of 30 neurons in actor and dueling-critic networks separately. In the following
hidden layers of dueling-critic branch we use 100 neuron and 20 neurons for advantage and value
streams, the 100 neurons of advantage denote of 100 action intervals of action space; In the DDPG and
actor-critic networks, the actor branch is the same as that of ADC and the critic branch use 30 neurons
in the hidden layer. Because both DDPG and ADC are based on the actor-critic network, it is reasonable
to compare their results’ difference by making the main bodies of two networks the same. At the same
time, this neural network can ensure that DDPG has good performance; In the dueling network, the
first hidden layer use 30 neurons and the following advantage and value layers use 100 and 20 neurons.
Additionally, we list the important hyper-parameters in Table 1. The vanilla actor-critic approach we
used without buffer and we did not apply soft replacement in dueling and actor-critic approaches.

Table 1. Hyper-parameters.

Hyper-Parameter ADC DDPG Actor-Critc Dueling

Discount factor γ 0.9 0.9 0.9 0.9
Buffer size R 5000 5000 N/A 5000

Batch size 32 32 N/A 32

Learning rate α
a:0.001
c:0.002

a:0.001
c:0.002

a:0.001
c:0.002 0.001

Soft replacement τ 0.01 0.01 N/A N/A

As the Figure 4 shows, the vanilla actor-critic method performs poorly and fluctuates violently. It is
hard to learn a good policy for vanilla actor-critic method without other technique such as experience
replay; The dueling approach learns policy at a very slow speed and it can achieve good performance
after the 200th episode but still behave unstable before the 400th episode; The ADC method can
overcome the shortcomings of actor-critic and it learns a stable policy quickly. From beginning to the
50th episode the ADC and DDPG both achieve a good level and then ADC behaves more stable than
DDPG (from the 50th episode to 200th episode). After the 200th episode, the performance of ADC and
DDPG are at the same level. For comparing the stability of these two methods, we plot the variance
Figure 5 of these two methods.

The variance of ADC is significantly lower than that of DDPG in the initial stage from the
beginning to the 450th episode. After the 450th episode the DDPG’s variance tends to decrease, and
then both variances stay stable. In the initial part (50th–300th episode), ADC has higher rewards than
that of DDPG (Figure 4), and the rewards’ variance of ADC is lower than that of DDPG (Figure 5).
Therefore, in this task, the ADC approach can learn better policy with high performance (rewards) and
stability than the DDPG method. Obviously, ADC’s learning ability is also better than that of vanilla
actor-critic and dueling approaches.
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Figure 4. ADC, DDPG, dueling and actor-critic’s performance in the gym Pendulum-v0 environment.
The x-axis represents the episodes and y-axis represents the cumulative rewards per episode. Table 1
lists important hyper-parameters.

Figure 5. The variance of DDPG and ADC’s rewards.

5.1.2. Navigation Task

In this navigation task, we implement ADC and DDPG methods in an obstacle avoidance task to
test the long-term training performance. This is an obstacle avoidance task (Figure 6) in a continuous
action space. The main goal of the agent (robot) is trying to go as far as possible and avoid the obstacles
(wall). The agent has 8 sonars they measure the distances in 8 different directions, and it is given a little
positive reward (0.001) for moving on each step without collision. Meanwhile, it can be punished with
a negative reward (−1) for hitting obstacles. Every time the robot hit a wall, it will restart from the
starting point. We set 500 steps per episode and 3500 episodes in total. The action is the steering angle
range from [−6◦,+6◦] at each step. Based on the distance information of sensors and the rewards
value, the robot can learn the correct way to avoid collisions. Through rewards drive, the robot knows
what action can be avoided punishment. In this environment, the information received by the robot’s
sonars is the state, which are distances from the obstacles in 8 directions. The steering operation is
the action, these values make up a standard Markov process. The trained model is more flexible and
applied to a variety of scenarios. This environment can properly simulate the operation of the real
laser robot.
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Figure 6. Obstacle avoidance task. The agent measures distance from obstacle with 8 sonars.
The purpose is trying to go as far as possible without any collision.

The actor branches in ADC and DDPG architectures have two hidden layers with 100 neurons in
the first hidden layer and 20 neurons in the second hidden layer. The critic branch of DDPG has 100
neurons and 20 neurons in the first and second hidden layers separately. The dueling-critic branch of
ADC has 100 neurons in the first hidden layer, 100 neuron (advantage stream) and 20 neurons (value
stream) in the second hidden layers separately. We list the important hyper-parameters in Table 2.
The experimental results are shown in Figure 7.

Figure 7. ADC and DDPG’s performance on obstacle avoidance task. The x-axis presents the episodes
and y-axis presents the cumulative rewards per episode. The whole process has 3500 episodes and
each episode has 500 steps.

Table 2. Hyper-parameters.

Hyper-Parameter ADC DDPG

Discount factor γ 0.9 0.9
Buffer size R 5000 5000

Batch size 16 16

Learning rate α
a:1e−4
c:2e−4

a:1e−4
c:2e−4

Soft replacement τ 0.01 0.01

From the overall performance, both approaches can achieve a similar performance level in this
task, and they can quickly adapt to the environment within the first 100 episodes. However, from
the stability, ADC is more stable than DDPG, especially in the 900th episode, 1800th episode and
3300th episode. For intuitively comparing the stability of these two methods’ rewards, we also plot the
variance figure (Figure 8).
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Figure 8. Variance of ADC and DDPG’s rewards.

More intuitively, the variance of ADC’s rewards shows a significant downward trend, and it is
less than DDPG’s variance at most of the episodes. The variance of the DDPG is particularly large at
the 900th, the 1350th, and the 1800th episode. In contrast, ADC behaves more stable than DDPG in the
whole process. After the 2500th episode, DDPG’s variance becomes less violently and maintain the
same level as the ADC. To sum up, the ADC approach can tackle this continuous control task, and it
can learn a more stable policy than DDPG method during long-term training.

5.2. Noise Environments

In this section, we do experiments in environments with noise input to test the training stability.
We omitted the results of deep Q-learning, dueling network and actor-critic algorithms because they
perform poorly. We mix random noise to each channel of the environment’s state as interference
sources. The noise random samples from a uniform distribution over [−0.1,+0.1] (mean = 0, standard
deviation = 0.0578). The introduced noise can reduce the learning efficiency of a model and cause a
certain degree of instability, the convergence rate decreases in the first 200 episodes. The real robots
also face environmental noise and affect the training process. Moreover, the state value mixed with
noise affects the agent’s judgment and policy. Our method learns the policy based on state value and
action advantage.

We use the hyper-parameters in Table 3 and the same network structure as noise environment
to operate in Pendulum-v0 environment noise input. To explore the effect of the number of action’s
intervals on the outcome, we set four groups of intervals. Figures 9 and 10 show the results.

Table 3. Hyper-parameters.

Hyper-Parameter ADC DDPG

Discount factor γ 0.9 0.9
Buffer size R 5000 5000

Batch size 32 32

Learning rate α
a:1e−4
c:2e−4

a:1e−4
c:2e−4

Soft replacement τ 0.01 0.01

From the results, the training effects are affected by noise disturbance, which is reflected in the
slower learning rate and worse stability. Meanwhile, the performance of ADC method is better than
that of DDPG in convergence speed and stability. When n = 60, 100, 140, the training results can
convergence at around 120th episode, while for DDPG, it is over the 200th episode. From Figure 9
shows, when n = 20, the performance of ADC is slightly better than that of DDPG. While n = 60,
performance improvement is more obvious. When n = 100, 140 (Figure 10), the overall performance of
the two is similar, and the stability of 100 intervals is slightly better. When n = 100, 140, they show a
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higher upward trend in the first 50 episodes than that of 20, 60 action intervals, but the upward trends
become slower after the 50th episode.

Figure 9. ADC and DDPG’s performance on Pendulum-v0 environment with noise input. The action
intervals of ADC network are 20, 60, respectively. When n is 20, ADC has a limited promotion compared
with DDPG. When n is 60, the convergence speed and stability have been greatly improved.

Figure 10. The action intervals of ADC network are 100, 140, respectively. The performance of the two
groups are similar, both better than DDPG. The stability of 100 intervals is slightly better than 140.

6. Discussion

The combination of dueling architecture and actor-critic network allows our approach to use action
advantages as an auxiliary value to Q-value estimations and hence helps the policy select a correct
action in continuous action domain. As the non-noise experiment shows, our approach overcomes
the shortcoming of actor-critic networks, which cannot learn a good policy, and the performance is
significantly unstable. Meanwhile, the dueling network has a low learning rate in the continuous
control task. The DDPG is a successful actor-critic-based method, it has good results in continuous
control tasks. The ADC method can achieve better results with slightly higher stability. From the
navigation task, it demonstrated that the ADC approach can attain long-term higher stability than
DDPG in a non-noise environment. Furthermore, the ADC’s average reward for the whole period
is also higher than that of DDPG. Meanwhile, the navigation task also proves the feasibility of our
method in the field of real-world navigation. We directly applied the trained model to unseen simulator
environments by changing the path and width, and the agent can avoid obstacles perfectly without
any collision. It shows that the trained model has generalization ability. To further explore the
performance of our method in the noise environment, we designed the second experiment. Meanwhile,
the effects of different action intervals on the overall performance were researched. The experimental
results show that ADC is more insensitive to the environment’s noise than DDPG; even the noise
makes the performance of two fluctuate a little. From the exploration of different action intervals,
the preliminary conclusion is that with a small number such as n = 20, its improvement is not very
obvious compared to DDPG, but when n = 60, 100, the overall effects are much better. If it further
increases, such as n = 140, the effect is not obviously improved. In addition, it increases the training
time and computational resource. The specific impact of the action interval’s number needs further



Sensors 2019, 19, 1547 17 of 20

study. Overall, ADC and DDPG work well in continuous action spaces. In the noise environment,
the learning efficiency and stability of ADC are better than that of DDPG.

7. Conclusions

This paper introduces a novel ADC approach for solving the obstacle avoidance task of
sensor-based robots. These are continuous control problems. The ADC is based on the actor-critic
network and it is more efficient than the original vanilla actor-critic method. Continuous control ability
is a fundamental requirement for autonomous robots that interact with the real environment. We used
the navigation scenario to test the performance of the ADC algorithm in the obstacle avoidance task.
From the results, the obstacle avoidance problem in sensor-based robots can be well solved by using
the ADC algorithm. To improve its training stability, we used a series of techniques such as experience
replay, target network, soft update, ε-greedy etc. in its algorithm. The applications of these techniques
make the learning process more stable and improve the sampling use rate in the replay buffer. In
addition, since the traditional method of state-action estimation hinders the performance improvement
of actor-critic-based algorithms, we introduce a dueling-critic network which decouples the states and
actions and estimates state value and action interval advantage separately. By aggregating the two
values—dueling-critic output the state-action values—then the actor network updates its parameters
according to the Q-value. The dueling structure can improve the accuracy of Q-value estimation
in noise environment by using advantage technique. Through the combination of the dueling and
actor-critic network, the ADC can work well and be stable in a noise environment. We conduct
experiments to examine the algorithm and compare it with other methods, a vanilla actor-critic
network method, dueling network method, and DDPG method. In the gym Pendulum-v0 experiment,
our approach can quickly adapt to the environment and show high efficiency and stability in dealing
with continuous control problems. In the navigation environment, the results show our method can
solve the obstacle avoidance problem and its training performance is stable and reliable Furthermore,
we designed a noise environment to compare the training efficiency of ADC and DDPG. The superiority
of ADC in the noise environment is more obvious. It indicates that our approach has made progress
on training efficiency.

There are some problems we plan to address in future work. First, the stability and efficiency
of the ADC network need further investigation, especially in the face of more complex problems
and application scenarios. Second, the influence of interval advantage on performance needs to be
further explored. Third, in dealing with the action interval advantage, we need to explore how to
reasonably divide the action space and how to divide action space in a complex environment, such as
adaptively dividing the action space. Fourth, the method will be transferred to a real laser robot to test
performance in obstacle avoidance tasks.
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