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Abstract: COVID-19 has caused a major global health crisis, as excessive inflammation, 
oxidation, and exaggerated immune response in some sufferers can lead to a condition 
known as cytokine storm, which may progress to acute respiratory distress syndrome 
(ARDs), which can be fatal. So far, few effective drugs have emerged to assist in the 
treatment of patients with COVID-19, though some herbal medicine candidates may assist 
in the fight against COVID-19 deaths. Thymoquinone (TQ), the main active ingredient of 
black seed oil, possesses antioxidant, anti-inflammatory, antiviral, antimicrobial, immuno
modulatory and anticoagulant activities. TQ also increases the activity and number of 
cytokine suppressors, lymphocytes, natural killer cells, and macrophages, and it has demon
strated antiviral potential against a number of viruses, including murine cytomegalovirus, 
Epstein-Barr virus, hepatitis C virus, human immunodeficiency virus, and other corona
viruses. Recently, TQ has demonstrated notable antiviral activity against a SARSCoV-2 
strain isolated from Egyptian patients and, interestingly, molecular docking studies have 
also shown that TQ could potentially inhibit COVID-19 development through binding to the 
receptor-binding domain on the spike and envelope proteins of SARS-CoV-2, which may 
hinder virus entry into the host cell and inhibit its ion channel and pore forming activity. 
Other studies have shown that TQ may have an inhibitory effect on SARS CoV2 proteases, 
which could diminish viral replication, and it has also demonstrated good antagonism to 
angiotensin-converting enzyme 2 receptors, allowing it to interfere with virus uptake into the 
host cell. Several studies have also noted its potential protective capability against numerous 
chronic diseases and conditions, including diabetes, hypertension, dyslipidemia, asthma, 
renal dysfunction and malignancy. TQ has recently been tested in clinical trials for the 
treatment of several different diseases, and this review thus aims to highlight the potential 
therapeutic effects of TQ in the context of the COVID-19 pandemic. 
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Introduction
COVID-19 Overview
The novel coronavirus that causes COVID-19 was first discovered in 2019 in 
Wuhan, China. It has since spread globally, resulting in a worldwide pandemic. 
COVID-19 is an infectious disease that causes severe acute respiratory syndrome, 
leading to the virus causing it to be formally named SARS-CoV-2. Comorbidities 
such as chronic diseases and acute organ injuries are strongly correlated with 
disease severity and mortality among COVID-19 patients,1 though the clinical 
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features of COVID-19 are varied, ranging from asympto
matic states to acute respiratory distress syndrome 
(ARDS) and multiorgan dysfunction. A fever, coughing, 
a sore throat, headaches, fatigue, myalgia, and breathless
ness are the most common clinical features of COVID-19, 
however.2 By the end of the first week, in some patients, 
the disease may progress to pneumonia, respiratory failure, 
and death.3 This progression is generally associated with 
an extremely uncontrolled production of pro-inflammatory 
mediators that leads to ARDS and cytokine storm 
syndrome.4 Complications thus include acute lung injury, 
ARDS, shock, and acute kidney injury.

Several clinical trials of possible treatments for 
COVID-19 are underway, based on those treatments’ anti
viral, anti-inflammatory, immunomodulatory, antioxidant 
or similar activities.5,6 There are also some previously 
available drugs that have been repurposed for the manage
ment of COVID-19, such as remdesivir, hydroxychloro
quine, chloroquine, umifenovir, lopinavir, oseltamivir, and 
favipiravir, as well as adjunctive agents, such as zinc, 
vitamin D, azithromycin, ascorbic acid, nitric oxide, corti
costeroids, and interleukin (IL)-6 antagonists. Growing 
interest is also developing in the use of new therapeutic 
methods, such as specific anti-inflammatory molecules (eg 
tocilizumab), anti-IL-17, and treatment with mesenchymal 
stromal cells.7 The amplification of anti-2019nCoV- 
specific T lymphocytes may be another feasible option 
for treatment.8 In terms of prevention, several COVID-19 
vaccines are also now available.9

Alternative Therapies
Although researchers worldwide have worked exhaus
tively to find a solution, as yet, no entirely adequate 
therapy for COVID-19 has emerged. Alternative 
approaches must thus be subject to comprehensive atten
tion, similar to the strategy used in the initial repurposing 
of conventional therapeutics. An example of such alterna
tive therapy is found in the application of vitamin D, 
which has been suggested to help reduce the effect of the 
pandemic on maternal and child health.10 Other specula
tive suggestions include the idea that vitamin C could help 
with COVID-19-related symptoms,11 or that honey may 
have a positive impact on COVID-19 recovery.12 

Pharmacological intervention using natural products is 
considered another example of alternative medicine.13

In the past, herbal medicine has played an important role 
in managing infectious disease, and a range of herbal med
icinal studies on the treatment of a previous SARS 

coronavirus (SARS-CoV), have provided clinical evidence 
that herbal medicines have some advantageous effects with 
regard to the treatment and prevention of epidemics, with 
several significant results.14 There is also clinical evidence 
that the use of herbal medicines can have positive conse
quences in certain COVID-19 treatments.15,16 One systema
tic review has shown significant impacts on efficacy and 
improvement of symptoms on combining herbal medicine 
with Western medicine in the treatment of COVID-19, sug
gesting that herbal medicine does have a potential role to play 
in COVID-19 treatment. Further clinical trials are, however, 
necessary to further confirm the efficacy, and any adverse 
effects, of herbal medicine as part of COVID-19 treatment.17

Several edible plants are known to act as natural anti
viral agents, and these may have the potential to be devel
oped into a COVID-19 nutraceutical. Such a development 
may offer a supplementary treatment to help people cope 
with this highly infectious disease and thus protect the 
global population against the current pandemic.18 In 
terms of daily diet, herbal preparations with immunomo
dulatory actions may offer prophylactic therapy to prevent 
infection and to help contain diseases within communities, 
as well as encouraging faster post-infection healing.18

Natural Therapeutic Approaches
Some reports have emerged of the beneficial effects of 
certain traditional herbal medicines with regard to 
COVID-19. Examples include Ginseng (Panax ginseng), 
which has a modulatory effect on human immune cells;19 

ginger (Zingiber officinale), which has anti-apoptotic, anti- 
inflammatory, anti-tumor activities, anti-hyperglycemic, 
antioxidant, and analgesic properties;20 garlic (Allium sati
vum), which stimulates the immune system;21 and 
Echinacea extract (Echinacea purpurea (L.) Moench), 
which has antimicrobial and antioxidant activities.22

Other herbal phyto-constituents have been reported to be 
effective in reducing infectious conditions, including triter
pene glycosides isolated from Heteromorpha23 and extracts 
from Artemisia annua, Lycoris radiata, Pyrrosia lingua and 
Lindera aggregate,17,24 while natural inhibitors such as the 
nsP13 helicase and 3CL protease have been identified, along 
with myricetin, scutellarein, and phenolic compounds from 
Isatis indigotica and Torreya nucifera, to be operative against 
SARS-CoV enzymes.25–27 Moreover, Cinatl et al reported that 
glycyrrhizin elicited a significant antiviral activity against 
SARS coronavirus,28 while Nigella sativa (black seed) was 
reported to have potential for the management of COVID-19 
patients’ symptoms.13,29–31
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Nigella sativa: An Overview
Nigella sativa (Black seed), from the family Ranunculaceae, 
have been found in several ancient sites, including 
Tutankhamun’s tomb. The Persian physician Avicenna, 
regarded as the father of early modern medicine, described 
the plant in his Canon of Medicine as offering a treatment for 
shortness of breath,32 which frequently accompanies patho
logical conditions such as asthma and pneumonia. Volatile 
oils and alkaloids are generally associated with biological 
activity, and the volatile oils of these seeds contain nigellone, 
thymoquinone (TQ), thymohydroquinone, dithymoquinone, 
thymol, carvacrol, α and β-pinene, d-limonene, d-citronellol, 
p-cymene, carvacrol, t-anethole, 4-terpineol and 
longifolene.33,34 Nigella sativa seeds thus offer a natural 
product with multiple potential pharmacological activities 
including antidiabetic, anticancer, immunomodulatory, 
analgesic, antimicrobial, anti-inflammatory, bronchodilator, 
renal and gastro-protective, and antioxidant properties.35,36

Thymoquinone
Thymoquinone (2-Isopropyl-5-methylbenzo-1, 4-quinone) is 
the main active ingredient of the volatile oil of black seed 
(Figure 1). It was first extracted by El–Dakhakhny,37 and 
amongst the various different active constituents reported so 
far, TQ remains the major bioactive principle due to its range of 
therapeutic benefits including antioxidant,38 anti- 
inflammatory,39 anti-cancer,40 antibacterial,41 antifungal 
activity,42 and anticonvulsant activity.43 Furthermore, a more 
specific effect of the antiviral activity of TQ and black seed 
fixed oil against murine cytomegalovirus infection model has 

been reported.44,45 TQ may thus offer integral complementary 
support in conditions of uncertain core basic needs during 
COVID-19 treatment. However, the question of whether TQ 
might act as a distinct therapeutic drug for the control and/or 
treatment of COVID-19 still remains to be investigated.

The Aim of the Review
This review aims to focus on the potentially beneficial 
roles of TQ against COVID-19 pathophysiology in the 
context of antioxidant, anti-inflammatory, immunomodu
latory, epigenetic modulation, antiviral activity, docking 
studies on anti-COVID-19 activity, antibacterial and antic
oagulant effects for the treatment of COVID-19.

Potential Beneficial Effects of 
Thymoquinone in COVID-19
N sativa, due to its wide range of bioactive components such 
as TQ and nigellimine, could offer a range of benefits for 
treating COVID-19, such as blocking the introduction of the 
virus to pneumocytes; providing ionophores to improve zinc 
intake, thereby improving the host immune response to 
SARS-CoV-2; and preventing the virus from replicating.29 

TQ is the main bioactive principle in N Sativa, and this has 
been found to confer a range of therapeutic advantages34 

including antioxidant,38 anti-inflammatory,39,46 anticancer,40 

antibacterial,41 antifungal,42 anticoagulant,47 anti-sepsis,48 

and anticonvulsant activity.43 N Sativa seeds have also 
demonstrated immunomodulatory effects,49,50 while several 
studies suggest that N Sativa seeds have some antiviral 
effects.44,51,52 In addition to its immunomodulatory and anti
oxidant properties, however, N Sativa and its active constitu
ents have also been noted to provide anti-ischemic effects in 
several organs, including the brain, kidney, heart, liver, and 
intestines.53 Such evidence strongly suggests that N. sativa 
seeds and their active constituents may have significant ther
apeutic potential against COVID-19 and its 
complications13,54 (Figure 2).

Antioxidant Effect
Reactive oxygen species (ROS) are formed during normal 
cellular respiration and as a reaction to xenobiotics.55 They 
are highly reactive, and thus may harm and change the func
tions of various cell components, such as lipids, proteins, 
nucleic acids, and carbohydrates.56 Oxidative stress occurs 
due to imbalance between oxidants and antioxidants,57 and it 
is a crucial factor in pathogenesis of many diseases58 such as 
diabetes,59 inflammation,60 cardiovascular diseases,61 Figure 1 Chemical structure of thymoquinone.
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cancer,62 and advanced age.63 A major factor in the excessive 
immune response seen in some COVID-19 infections may 
thus be the overwhelming of the antioxidative defense 
mechanism and the resulting oxidative damage.55

Antioxidant properties require high radical-scavenging 
capabilities, and this is one of the essential characteristic 
functions of TQ. TQ works by activating the enzymes that 
protect cells from cellular damage caused by oxidative 
stress. Several studies have shown that TQ does this by 
increasing the expression of mRNA and stimulating var
ious cytoprotective antioxidant enzymes, including cata
lases, superoxide dismutase, glutathione reductase, and 
glutathione-S-transferase.64–68 TQ thus offers protection 
against glucose or methylglyoxal induced loss of super
oxide dismutase activity and fragmentation or cross- 
linking.69

Anti-Inflammatory Effect
While the rapid spread of COVID-19 is concerning, the 
inflammatory response of the host is an important deter
minant of the outcome and severity of any infection.70 

A cytokine storm represents cytokine overproduction, 
seen in the most severe cases of COVID-19, a process 
which includes T cell depletion, pulmonary disease and 
damage to the lungs.71 Granulocytosis can also lead to 
strong superoxide explosion,72 the formation of reactive 
oxygen species (ROS)73 and further production of proin
flammatory cytokines.74 The background of anti- 
inflammatory therapy complementing antiviral therapy 
must thus be understood in order to manage such symp
toms in COVID-19, as treatment should aim to control 
inflammation without affecting the host’s ability to 
respond adaptively to the virus. The nuclear factor ery
throid 2 (NFE2)-related factor 2 (Nrf2) can resist 

oxidative stress,75 and this is always dysregulated in dis
ease states, such as diabetes, liver disease, and inflamma
tory bowel diseases,76 as well as in severe aging.77 Any 
such conditions are thus risk factors for COVID-19- 
induced ARDS.78

Activation of Nrf2 has also been shown to be involved 
in preserving lung architecture in reactions to inflamma
tory syndrome, as well as having some therapeutic effects 
in various lung disorders, including respiratory infections 
and ARDS.79 Furthermore, Nrf2 is responsible for the 
transcription of certain macrophage-specific genes 
involved in the tissue repair that grant protection from 
viral infections,80 as well as restoring redox homeostasis, 
which protects against oxidative stress by upregulating 
thioredoxin reductase, glutathione, peroxiredoxin, and 
NADPH.81

It has been reported that TQ decreases levels of various 
proinflammatory mediators, such as IL-1β, IL-6, TNFα, 
IFNβ, and PGE66 in rats, as well as preventing pulmonary 
inflammation and improving the resistance of airways to 
damage induced by diesel exhaust particles. TQ also 
decreases blood leukocyte and plasma IL-6 levels.82 In 
a mouse model of allergic asthma, TQ reduced lung eosi
nophils, increased Th2 cytokines, and decreased mucus- 
producing goblet cells.46 TQ also inhibits inducible 
synthase nitric oxide (iNOS) and transforming growth 
factor-β1 in asthmatic murine experimental models.83–85

The experimental evidence suggests that TQ inhibits 
cyclooxygenase (COX) and lipoxygenase enzymes, pre
venting the generation of eicosanoids.86 TQ decreases the 
synthesis of LTs87 and inhibits prostaglandin and throm
boxane synthesis by decreasing COX2 expression, 
achieved by upregulating IL-1 receptor-associated kinase 
1 (IRAK1).88 IRAK1-mediated signal inhibitors also 

Figure 2 Multitargeted protective effects of thymoquinone against COVID-19 pathogenesis.
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downregulate NF-κB and activator protein 1/AP1 tran
scriptional activities which are required to activate the 
COX-2 expression,88 and TQ further downregulates the 
expression of many other inflammatory cytokines and 
signals mediators, including interleukin IL-1, IL-6, 
TNFα, and iNOS.88 These mediators can cause alveolar 
macrophages and neutrophils to create more damage by 
increasing pulmonary vascular permeability, releasing 
oxygen radicals and proteolytic enzymes.89 The anti- 
oxidant activity of TQ can also help in minimizing cell 
inflammation, while its ROS generation plays an important 
role in the synthesis of arachidonic acid based on the 
activation and/or expression of the basic upstream signal
ing molecules protein kinase B and NF-κB.90

Immunomodulatory Effect
TQ has several major immunomodulatory effects due to 
the crosslink between inflammatory and immunomodula
tory pathways. TQ could thus potentially suppress inflam
mation-induced immunosuppression based on its negative 
effects on proinflammatory eicosanoid synthesis and 
mediated gene expression in NF-κB.91 TQ can thus mod
ulate many aspects of cellular and humoral immunity by 
inhibiting the function and expression of various inflam
matory cytokines and their effector molecules.92 TQ mod
ulates cell immune responses, including dendritic cell 
maturity, NK-cells cytotoxicity, phagocytic involvement, 
chemotaxis, and the activation of T-cells. It also tends to 
have a context-relating effect on particular cell immune 
responses: for example, TQ prevents the maturation of 
lipopolysaccharide-induced dendritic cells by blunting the 
expression of IL-10, IL-12 and TNFα with enhancement of 
caspase 3/8 and increasing annexin V binding.93 TQ also 
improves the survival of CD8 antigen-specific T cells and 
improves the sustained expression of L-selectin, which 
may have an important effect on adoptive T cell therapy.94

Epigenetic Modulatory Effect
Various epigenetic pathways are involved in COVID-19 
infection, and these pathways may thus be therapeutically 
utilized.95 Possible targets for host immune response 
include epigenetic enzymes.96,97 The aberrant genetic 
expression and protein function that characterize 
COVID-19 are caused by genetic and epigenetic changes, 
and natural compounds can target and regulate genetic 
expression, directly or indirectly, based on their interfer
ence with genetic and epigenetic mechanisms.98–100 TQ is 
thus a promising molecule because it modulates epigenetic 

properties such as histone acetylation and deacetylation as 
well as DNA methylation and demethylation.101,102 In 
addition, TQ plays a role in activating and deactivating 
noncoding RNA, acting as a potent apoptosis-induced 
enzyme that causes histone acetylation and 
deacetylation.103–105

Endogenous miRNA activity has been studied in the 
field of viral replication for several complex virus 
mechanisms.106 It has thus been shown that miR34a has 
an effect on the inactivation of epithelial-mesenchymal 
transition-transcription factors (EMT-TFs), and epithe
lial–mesenchymal transition is known to play a crucial 
role in organ fibrosis and epithelial cell malignancy.107 

A promising therapeutic approach against COVID-19 
thus stems from the idea of inactivating EMT-TFs using 
miR34a,108 as a previous study showed that TQ may act as 
an enhancer of miR34a activity.109 miR146a is another 
miR involved in the process of inflammatory cytokine 
inhibition, which acts via the NF-κB pathway.110 It func
tions as a negative regulator for NF-κB, and it is a well- 
recognized transcript factor for the IL-6 gene.111 miR- 
146a-5p transcription is also regulated by NF-κB,112 and 
patients with COVID-19 have been shown to have higher 
levels of IL-6 and lower levels of miR-146a-5p than aver
age, suggesting imbalances in the physiological axis of IL- 
6/miR-146a-5p in the pathogenesis of COVID-19 
infections.113 TQ treatment, however, controls miR146a 
expression and can therefore reduce inflammatory reac
tions by interfering with NF-kB.114

Antiviral Activity
Several studies support the potential antiviral activity of 
TQ against various viral infections, which is mainly attrib
uted to its multiple beneficial effects, such as antioxidant, 
anti-inflammatory, and immunomodulatory effects in addi
tion to possible direct viral eradication.115,116 The antiviral 
effect of Nigella sativa oil, including its major active 
component TQ, was demonstrated in a murine cytomega
lovirus (MCMV) model; this showed that Nigella sativa 
significantly reduced the liver and spleen viral loads, 
which coincided with enhanced IFN-γ production and 
increased CD4 (+) T cell response.44 TQ has also been 
shown to significantly inhibit Epstein-Barr virus (EBV) 
replication in EBV-infected B cells,117 while Nigella 
sativa has been shown to exhibit antiviral activity against 
the hepatitis C virus (HCV), as evidenced by reduced viral 
load and improved liver function in HCV patients who 
received Nigella sativa at 450 mg, three times a day for 
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three successive months.51 This effect is also supported by 
observations of the selective inhibition of HCV virus 
replication by alpha-zam, a Nigella sativa seed 
formulation.118 Nigella sativa has also been suggested to 
be effective in controlling human immunodeficiency virus 
(HIV) infection, with one study reporting that treatment of 
HIV patients with Nigella sativa for six months resulted in 
sustained sero-reversion with a significant reduction in 
viral load and CD4 count elevation.52

Nigella sativa extract containing TQ has also, more 
specifically, been reported to decrease viral replication 
and loads in cells infected with some coronaviruses.119 

Interestingly, one in vitro study demonstrated that TQ 
showed significant antiviral activity against a SARSCoV- 
2 strain isolated from Egyptian patients,120 possibly 
through blocking the entry of the virus into the cells.121 

Overall, the existing studies highlight the immense poten
tial of TQ as an effective antiviral agent against COVID- 
19, a premise which is highly supported by the molecular 
docking studies examining TQ’s effects against various 
virus and host cell targets, which are discussed in more 
detail in the following section.

Molecular Docking Studies Related to 
Anti-COVID-19 Activity
Molecular docking is a promising in silico method that 
may be used to screen various compounds for their anti
viral potential by testing the binding affinities of the 
compounds against different viral or host cell receptor 
proteins. The molecular targets of SARS-CoV-2 include 
various viral proteins involved in viral entry, such as 
spike proteins, and replication, such as viral 
proteases.122 In addition, host cell targets, such as angio
tensin-converting enzyme 2 (ACE2) receptor and cell 
surface heat shock protein (HSPA5), which are involved 
in viral entry, may also offer potential therapeutic 
targets.122 Molecular docking studies have already 
shown that TQ could potentially inhibit COVID-19 by 
binding to the receptor-binding domain on the spike pro
tein of SARS-CoV-2, which would hinder virus entry into 
the host cell.123 Additionally, it may bind to the SARS- 
CoV-2 envelope protein and inhibit its ion channel and 
pore formation activity.124 Other studies have shown that 
TQ might display inhibitory action against the SARS 
CoV2 protease, which would halt viral 
replication.120,125–127

TQ has also demonstrated a good affinity against 
ACE2 receptors, which allows it to interfere with virus 
uptake into the host cell.121,127 Molecular dynamics simu
lations have shown that TQ can interfere with the attach
ment of SARS-CoV-2 to host cells by binding to a cell 
surface, HSPA5, which is recognized by the viral spike 
protein and upregulated upon viral infection.128,129 These 
in silico studies indicate a multi-targeted potential for TQ 
against COVID-19, and thus pave the way for further 
investigation of such anti-COVID-19 potential through in- 
vitro and in-vivo studies that may better support transla
tion into clinical practice.

Antibacterial Activity
COVID-19 may also be associated with serious secondary 
bacterial infections, such as bacterial pneumonia, as well 
as nosocomial infections resulting from the prolonged 
hospitalization of critically ill patients, both of which 
significantly increase morbidity and mortality in 
COVID-19 patients.130 Moreover, the intensive use of 
antibiotics in patients suffering from COVID-19 could 
result in the emergence of multidrug-resistant bacteria, 
which could further worsen COVID-19 adverse 
outcomes.131 Interestingly, TQ exerts antibacterial activity 
against several Gram positive and Gram negative bacteria, 
including Staphylococcus aureus, Pseudomonas aerugi
nosa and Escherichia coli, which could be used to aug
ment antibiotic effects.41,116,132 Furthermore, TQ has 
demonstrated significant antimicrobial activity against 
anaerobic bacteria, specifically Clostridium difficile,133 

as well as clinical isolates of Mycobacterium 
tuberculosis,134 alongside antibacterial and resistance 
modifying activities with regard to methicillin-resistant 
Staphylococcus aureus (MRSA)135 and Listeria 
monocytogenes.136

Nigella sativa was also seen to be significantly effec
tive in eradicating Helicobacter pylori in patients with 
non-ulcer dyspepsia.137 This suggests that TQ could play 
a significant role in the prevention and management of 
secondary bacterial infections in COVID-19 patients in 
addition to its potential value for modifying bacterial 
resistance and potentiating antibiotic actions.

Anticoagulation Effect
Thrombotic complications have become a major problem 
in COVID-19 patients. Preliminary COVID-19 studies 
have shown that infected patients typically develop throm
bocytopenia with higher D-dimer levels, while the rates of 
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developing thrombocytopenia in patients with severe 
COVID-19 are even higher.70 Viral infections often cause 
systemic inflammatory responses and interfere with the 
balance of procoagulants and anticoagulants,138 and in 
severe or critically ill patients, large quantities of inflam
matory mediators, hormones and immunoglobulin are 
released, leading to blood hypercoagulability. The level 
of interleukins, especially IL-6, IL-7, IL-2, granulocyte 
colony-=stimulating factor, monocyte chemoattractant pro
tein-1, macrophage inflammatory proteins 1-alpha, and 
TNFα, has been similarly found to be increased in patients 
with COVID-19.139

An earlier study found that coagulation factors VII, 
VIII, II, V, and X were significantly increased in 
COVID-19 patients.140 TQ, however, interferes with 
blood clotting by directly decreasing factor Xa activity in 
the blood coagulation pathway and by down-regulating 
TNFα, a cytokine that plays a critical role in the link 
between inflammatory and thrombosis pathways.47

The Effect of Thymoquinone on 
Comorbidities
The magnitude of COVID-19 infection is increased by 
a variety of comorbidities. TQ may thus also be helpful in 
patients infected with COVID-19 where it can relieve 
some comorbidity.13 Serious COVID-19 complications 
include ARDS, pneumonia and multi-organ failure, and 
the risk of all of these is increased in patients with 
diabetes and cardiovascular diseases.141,142 N. Sativa 
has been shown to reduce plasma glucose levels and 
control haemoglobin-A1c,143 while intraperitoneal 
administration of TQ has been demonstrated to substan
tially decrease hyperglycemia in streptozotocin-induced 
diabetes in the rats.144 One study reported that 7% of 
deaths in COVID-19 patients can be ascribed to circula
tory failure in myocarditis, suggesting that cardiovascular 
disorders play an important role in determining final 
adverse outcomes.145 TQ can also act centrally as an 
antihypertensive agent, as well as having a regulatory 
effect on platelet aggregation and blood clotting,146,147 

and TQ protects the heart from injury induced by isopro
terenol in rats.148

It is also notable that autoimmune and auto- 
inflammatory diseases, especially in children, may impact 
the severity of COVID-19 infection, with overlapping 
symptoms leading to pediatric inflammatory multisystem 
syndrome (PIMS) that includes Kawasaki-like 

diseases.149,150 This complex syndrome has been reported 
as “Kawa-COVID-19” because of the association with the 
symptoms of COVID-19 infection.151,152 In patients with 
Kawa-COVID-19, C-Reactive protein (CRP), IL-6, IL-8, 
and TNF-α were all significantly raised,153 suggesting that 
Nigella sativa could play a beneficial role in controlling 
incidence of PIMS or Kawa-COVID-19 by regulating and 
modulating immune response and reducing the occurrence 
of proinflammatory cytokines IL-2, IL-4, IL-5, II-6, IL-12, 
and IL-13.154

Dual Benefit of Thymoquinone as 
Adjunctive Therapy
TQ can be used in combination with other therapeutic agents 
that may be usefully repurposed for the treatment of COVID- 
19, as well as alongside other supportive treatments. Given the 
multiple beneficial effects of TQ and its favorable safety 
profile,155 the adjunct use of TQ with conventional therapeutic 
agents would have the dual benefit of attenuating drug- 
induced toxicity and improving therapeutic effectiveness, 
which could in turn result in reducing the required effective 
dosage of concomitantly used drugs, thus further minimizing 
any adverse effects. The potential cardioprotective,156 

neuroprotective,157 hepatoprotective,158 nephroprotective,159 

and gastroprotective160 effects of TQ may thus be employed 
in counteracting a range of drug-associated toxicities;161 cur
rently, various supportive treatments such as acetaminophen 
and nonsteroidal anti-inflammatory drugs (NSAIDs) render 
COVID-19 patients at increased risk of liver and kidney 
toxicity.162,163

TQ has been shown to counteract acetaminophen- 
induced hepatotoxicity164,165 as well as NSAIDs- 
associated nephrotoxicity and gastrointestinal side 
effects.166 TQ can also act synergistically with corticoster
oids to protect the lungs by mitigating the inflammatory 
response and resulting cytokine storm; this would allow 
the use of lower steroid doses, thus reducing the risk of 
potential adverse effects.167,168 TQ has further demon
strated significant protective effects against the renal toxi
city associated with antibiotics, such as vancomycin used 
in COVID-19 patients with secondary bacterial respiratory 
infections.169 TQ could also potentially counteract the 
toxic effects of various repurposed drugs,170,171 such as 
the cardiotoxicity risk associated with chloroquine and 
azithromycin161,172,173 and the potential liver and kidney 
toxicities associated with antivirals such as remdesivir and 
lopinavir.155,161,170 TQ can also exert gastroprotective 
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effects160 against gastric ulceration, which is associated 
with the IL-6 antagonist, tocilizumab,174 in addition to 
potentiating its anti-inflammatory effect.175

Clinical Applicability of 
Thymoquinone
The high hydrophobic and lipophilic characters of TQ lead 
to poor solubility, low bioavailability, and difficulty in 
formulation.176 The various pharmacokinetics of TQ 
have been reported in detail,177–179 and TQ has poor oral 
bioavailability based on its low aqueous solubility and 
dissolution rate.180 Moreover, TQ shows rapid polyexpo
nential decline following intravenous dosing,178 as well as 
binding with bovine serum albumin and alpha-1 acid 
glycoprotein.181–183 This poor solubility and limited bioa
vailability are the two main problems for developing TQ 
for clinical use, and several chemical derivatives and novel 
nanoformulations have thus been developed to improve 
the pharmacokinetic behaviors of TQ to increase 
bioavailability.184,185 TQ has, for example, been success
fully encapsulated into nanolipid carriers.186–188

TQ in different dose ranges shows beneficial effects with 
negligible toxicity in animal models of different 
diseases.156–159,189–195 TQ is a well-tolerated drug in rodents, 
and numerous studies have been done to determine the 
toxicological properties of TQ in vitro and in vivo.196–198 

Even mice treated with 0.03% TQ in their drinking water for 
three months showed no signs of toxicity.196 Moreover, TQ 
has demonstrated a high safety profile in rats based on high 
doses using oral and intraperitoneal administration.199,200

TQ compounds are currently used in clinical trials for the 
treatment of various types of cancer and other diseases.201,202 

In a Phase I safety and clinical activity study of TQ in 
patients with advanced refractory malignant disease, TQ 
was well tolerated at doses ranging from 75 mg/day to 
2600 mg/day, with neither toxicities nor therapeutic 
responses reported.203 This absence of side effects in humans 
is in agreement with the extremely low toxicity of oral TQ 
administration in experimental animals.196

Prospects and Limitations
Despite the numerous molecular docking studies on potential 
anti-COVID-19 activity of TQ, experimental studies on the 
effects of TQ against COVID-19 and its associated complica
tions remain limited. The multi-targeted beneficial effects of 
TQ and its favorable safety profile do, however, appear to 
warrant in-vivo investigations and clinical trials on its anti- 

COVID-19 potential to support the translation into clinical 
practice to treat COVID-19 patients either alone or in combi
nation with other potential therapies. TQ could also provide the 
additional benefits of ameliorating comorbidities and attenuat
ing certain drug-induced adverse effects, as well as improving 
the therapeutic effectiveness of some other therapies. Novel 
formulations of TQ nanoparticles may, however, be required to 
overcome the poor bioavailability and the pharmacokinetic 
limitation of this compound in terms of clinical use.

Conclusion
This article examined the concept that certain natural com
pounds may target the molecular mechanisms of COVID-19, 
as well as potentially assisting with overcoming the diverse 
health complications associated with the repeated use or 
withdrawal of conventional therapeutics. TQ, the main active 
ingredient of Black seed oil, is an easy, cost-effective natural 
source of anti-inflammatory, antioxidant, immune stimulant, 
antibacterial, anticoagulant, and antiviral properties. TQ use 
may thus be expected to improve COVID-19 comorbidities 
and to protect against certain antiviral drug-induced side 
effects and toxicities. TQ appears to be a promising thera
peutic option for managing COVID-19 and its complica
tions, and clinical trials in COVID-19 patients to examine 
the beneficial effects of TQ are thus highly recommended.
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