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Abstract: In this paper, a multi-robot persistent coverage of the region of interest is considered,
where persistent coverage and cooperative coverage are addressed simultaneously. Previous works
have mainly concentrated on the paths that allow for repeated coverage, but ignored the coverage
period requirements of each sub-region. In contrast, this paper presents a combinatorial approach for
path planning, which aims to cover mission domains with different task periods while guaranteeing
both obstacle avoidance and minimizing the number of robots used. The algorithm first deploys
the sensors in the region to satisfy coverage requirements with minimum cost. Then it solves the
travelling salesman problem to obtain the frame of the closed path. Finally, the approach partitions
the closed path into the fewest segments under the coverage period constraints, and it generates the
closed route for each robot on the basis of portioned segments of the closed path. Therefore, each
robot can circumnavigate one closed route to cover the different task areas completely and persistently.
The numerical simulations show that the proposed approach is feasible to implement the cooperative
coverage in consideration of obstacles and coverage period constraints, and the number of robots
used is also minimized.

Keywords: multi-robot; cooperative coverage; persistent coverage; path planning; coverage period
constraints; obstacle avoidance

1. Introduction

Research interest for the coverage and coordination of multi-agent has shown an increase in the
field of artificial intelligence (AI) and control [1–6]. In particular, coverage control using multiple robots
with limited sensing capabilities has received significant attention recently due to its versatility in
many applications, such as mapping, patrolling, surveillance, and complete coverage [3–11]. However,
it is more difficult to achieve persistent coverage for a group of multiple robots considering obstacle
avoidance and coverage period, because mission domains may have differently shaped obstacles, as
well as more complicated constraints.

In the current literature, many advanced methods, such as grid-based coverage, cellular
decomposition and topological coverage, have been proposed for coverage problems [12,13]. The
literature [13] develops two efficient coverage strategies for multiple robots based on boustrophedon
cellular decomposition to achieve complete coverage of a known environment. Traditional AI search
algorithms, such as A-Star and its variants, have also been applied [14], but cannot adapt to multiple
robots. Votion and Cao first develop three improved A-star algorithms to obtain the optimal path,
and then they present a new spatially diverse path planning algorithm based on the A-star variants to
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address the need for path diversity in multi-agent path planning [15]. Spanning tree coverage [16]
is developed for multi-robot area patrolling [17] and surveillance [18], but ignores the sub-regions
with different importance. Market-based mechanisms have also been used to assign work to robots,
but their applications have been limited [8]. At the other end of the spectrum is the coordination of
multi-agent, which includes potential-function based approaches, digital pheromone mechanisms, and
particle swarm optimization (PSO) [19–22]. They are effective in dealing with the problem, but often
suffer from troubles of local optimum. Another coverage approach includes artificial neural networks
(ANNs) to represent control politics [23]. Multi-robot persistent coverage of the convex polygonal
region is investigated in [24], where the path consists of the vertices of the scaled barycentric polygons.
In [25], an adaptive path planning algorithm is proposed for multiple AUVs cooperative environmental
sampling and sensing over an interest region. Atınç, Stipanović, and Voulgaris study a dynamic
coverage for multi-agent systems, where the main objective of a group of mobile agents is to explore a
given compact region [26]. Franco et al. present a new bounded potential repulsion law to achieve
persistent coverage for a team of agents with collision avoidance [19]. The speed controller along the
path is further developed in [27] for persistent awareness coverage using mobile sensors. The robots
are supposed to be placed on the path uniformly to increase the frequency of revisits in [17]. It is also
assumed that the coverage periods of the areas in the region are equal in the literature [27]. Persistent
monitoring of given discrete sites under different frequency constraints is considered in [28,29], where
the travelling salesman problem (TSP) [28] or the vehicle routing problem with time windows [29] is
solved for the routing of the robots.

Most of these methods for multi-robot persistent coverage can be classified into two categories.
One class is focussed on the paths to cover the task areas completely and persistently [10,30,31]. They
present some new path planning algorithms and implementation for the efficient complete coverage of
a known area. However, these methods are only suitable for simple task environments. In addition,
they also ignore the sub-regions in the mission domain, which may be more important and need to
be re-covered more frequently. The other class is characterized by approaches which are simple and
highly scalable to address the problem of multi-robot persistent coverage [32,33]. These approaches
can have better performance than a single robot for persistent coverage, but they do not consider using
the least number of the robots to cover the areas.

Although the aforementioned methods have promoted the development of coordination algorithm
for multi-robot persistent coverage, the number of robots used and coverage period are not taken
into account in these cooperative persistent coverage methods. Therefore, this paper presents a new
combinatorial approach for cooperative multi-robot path planning, which focuses on the persistent
coverage problem with obstacles and different coverage period constraints using the minimum
number of robots. The robots are supposed to re-cover the region of interest within every unit of
time periodically. The contribution of the combinatorial method with respect to previous works is
summarized as three-fold. The first contribution is the development of the proposed path planning
based on sensor deployment for cooperative persistent coverage in complex task environments
with obstacles. Compared with the traditional coverage planning, the new approach divides path
planning issues into sensor deployment problem (SDP) and TSP in order to effectively cope with the
planning puzzle caused by environmental obstacles. More precisely, the proposed algorithm introduces
the idea of sensor deployment to implement coverage planning in more complex environments,
thereby improving the adaptability and robustness of the algorithm to the environment. The second
contribution is to consider the coverage period constraints of different sub-regions in the mission
domains. The coverage period is utilized to indicate how frequently the region should be re-covered.
In the mission area, there may be some sub-regions of different importance depending on the target
probability density. Some sub-regions of greater importance are required to be re-covered with smaller
periods. In addition, the sensors are deployed to cover the sub-region with the smallest coverage
period first, then the sub-region with larger coverage period next, and so on. The third contribution is
to optimize the number of robots performing the task for purpose of using a minimum number of
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robots to achieve persistent coverage for the mission area. Additionally, the approach can adaptively
adjust the number of robots used according to the coverage period constraints of different sub-regions.

The rest of this paper is organized as follows. Section 2 presents the preliminaries to the improved
cooperatively coevolving particle swarm optimization (CCPSO2) and modified genetic algorithm
(GA). Section 3 describes the problem formulation of multi-robot persistent coverage. In Section 4, a
new combinatorial approach for cooperative path planning is developed to achieve the multi-robot
persistent coverage. The numerical results of proposed approach are discussed in Section 5. Finally,
the discussion and conclusions are made in Sections 6 and 7, respectively.

2. Preliminaries

In this paper, we use the CCPSO2 because it is fast enough to find the optimal solution of SDP.
In addition, modified GA is utilized to solve TSP because of its inherent parallelism and global
search capability.

2.1. Improved Cooperatively Coevolving Particle Swarm Optimization

PSO is one of popular swarm intelligence methods. However, the performance of the PSO
algorithm deteriorates rapidly as the particle dimension increases. In contrast, the CCPSO2 algorithm
decomposes the solution vector into different parts and each part is optimized with a single particle
swarm. It reduces the dimension of the solution vector in a single particle swarm and has advantages in
solving large-scale optimization problems. Therefore, in consideration of SDP characteristics, CCPSO2
with multiple heuristic rules is introduced to enhance particle diversity and algorithm performance.

In the PSO algorithm, each particle represents a potential solution to the optimization problem.
Particles move through the search space to seek the best position. Assume that xi and yi are the current
position and local optimal position of ith particle respectively. Let ŷ be the global optimal position of
particles in the swarm. The update of yi and ŷ are determined by:{

yi = xi, if f (xi) < f (yi)

ŷ = argmin( f (yi))
(1)

where f (xi) refers to the fitness value of the particle.
The update of velocity and position are formulated as [34]:{

vi,d(t + 1) = ω(t)vi,d(t) + c1r1(t)(yi,d(t) − xi,d(t)) + c2r2(t)(ŷi,d(t) − xi,d(t))
xi,d(t + 1) = xi,d(t) + vi,d(t + 1)

(2)

where vi,d(t) and xi,d(t) are the velocity and position of the ith particle in the dth dimension respectively;
ω(t) is the inertial weight; c1 and c2 are acceleration constants; r1(t) and r2(t) are random numbers and
satisfy r1(t) ∈ [0, 1], r2(t) ∈ [0, 1].

In order to improve the particle diversity and prevent premature convergence to local optimum,
a new update model that uses both Gaussian and Cauchy distributions, as well as ring topology, is
proposed in [35].

xi,d(t + 1) =
{

yi,d(t) + C(1)
∣∣∣yi,d(t) − y′i,d(t)

∣∣∣, if rand < p
y′i,d(t) + N(0, 1)

∣∣∣yi,d(t) − y′i,d(t)
∣∣∣, otherwise

(3)

where C(1) and N(0, 1) are the random numbers generated following the Cauchy and Gaussian
distributions respectively; rand is a random number generated uniformly in the range of [0, 1]; p is
a custom parameter for Cauchy sampling to occur; y′i denotes a local neighborhood best for the
ith particle.
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In this paper, the ring topology is utilized to describe the particles’ neighborhood. Each particle is
supposed to have an immediate left and right neighbor. Therefore, y′i can be defined as:

y′i = argmin
yi

( f (yi−m), · · · , f (yi), · · · , f (yi+m)) (4)

where m is the neighborhood range. It increases with the number of iterations in this paper. A small m
can improve the particle diversity at the beginning of the optimization process and a larger m could
benefit the convergence at the latter stage of the optimization.

The n-dimensional solution vectors are decomposed into K components in the CCPSO2 algorithm.
Each component corresponds to a swarm with s dimensions, where s = n/K. Suppose that P j.xi and
P j.yi are the current position and the local optimal position of the ith particle of the jth swarm. Let
P j.ŷ be the global optimal position of the jth swarm. The current best context vector can be given by
ŷ = (P1.ŷ, P2.ŷ, · · · , Ps.ŷ).

In order to evaluate the ith particle of the jth swarm, substitute P j.xi for P j.ŷ in ŷ. Hence, define
the following combination of particles:

b( j, P j.xi) = (P1.ŷ, P2.ŷ, · · · , P j−1.ŷ, P j.xi, P j+1.ŷ, · · · , Ps.ŷ) (5)

The P j.yi can be updated as follows:{
P j.yi = P j.xi, if f (b( j, P j.xi)) < f (b( j, P j.yi))

P j.ŷ = P j.yi, if f (b( j, P j.yi)) < f (b( j, P j.ŷ))
(6)

Considering the properties of SDP, several heuristic operators for the update of the particles’
positions are introduced to improve the convergence speed of the CCPSO2 algorithm.

• Addition. If there are uncovered cells and sensors that have not been deployed in the particle, a
sensor is randomly chosen to place near one uncovered cell.

if ci = 0, then add sn+1 at point ci (7)

where ci is a binary vector representing the ith discretized cell (for details, refer to Section 4.2);
sn+1 indicates the new sensor added to the existing n sensors.

• Movement. If there are uncovered cells in the region and all sensors in the particle have been
deployed, a sensor is chosen to move a short distance towards one uncovered cell.

if ci = 0, then move s′ to point ci (8)

where s′ denotes a certain sensor around the cell ci.
• Deletion. If the distance between any deployed sensor and other sensors in the global best is less

than the sensing radius of the sensors, the deployed sensor in the particle is deleted.

if ‖p(si) − p(s j, j,i)‖ < rs, then delete si (9)

where p(si) is the position of the ith sensor and ‖·‖ refers to the Euclidean distance between p(si)

and p(s j).
• Fusion. After all the cells of region have been covered, the fusion operation can be performed. If

the distance between any two deployed sensors is less than a certain constant, the two sensors are
fused into one sensor with its position at the middle of the two sensors.

if ‖p(si) − p(s j, j,i)‖ < τ, fusion si and s j (10)

where τ represent a certain constant.
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2.2. Modified Genetic Algorithm

GA is a kind of random search method that has evolved from the evolutionary laws of the
biosphere. It could use the probabilistic optimization method to adjust search direction adaptively in
the process of solving combinatorial optimization problem. GA is one of the most ideal approaches in
solving the TSP because of its inherent parallelism and global search capability. Therefore, the TSP is
solved by GA to obtain the closed path in this paper.

Assume that there are n cities and each city is represented by an integer from 1 to n. In this way,
chromosome Rk can be described as Rk =

{
g1, g2, g3, · · · , gn

}
, gi ∈ [1, n], where gi is the ith gene and also

represents a city. Rk is a chromosome and refers to the kth feasible path as well. It is a gene sequence
consisting of n genes and each gene of the chromosome is different from each other. For example, there
are 5 cities in the TSP, then {1, 3, 4, 2, 5} is a legitimate chromosome and a possible optimal solution.
It means that the salesman visits cities 1, 3, 4, 2, and 5 in order. Suppose that X( j) represents the jth
population. It can be expressed as X( j) =

{
x j

1, x j
2, x j

3, · · · , x j
m

}
, where m is the size of the population; x j

i
refers to the ith individual of the jth population. In this paper, a random function is used to generate
an initialization population X(0) =

{
x0

1, x0
2, x0

3, · · · , x0
m

}
.

There are three basic operations in the standard GA, that is, selection operation, crossover
operation, and mutation operation. Considering the characteristics of the TSP, this paper uses
following four operations: selection operation, mutation operation, evolutionary reversal operation,
and slide operation.

The selection operation is to generate a new population with higher fitness value. It is selected by
the selection probability from the current population. The main objective of selection operation is to
inherit the high-quality genes to the next generation while ensuring fast global convergence. In this
paper, the individual with the maximum fitness value f (x j

i ) is utilized to generate a new population as
the elite individual.

Mutation operation is a very important operator of the GA. In this paper, the mutation operation
adopts a strategy of randomly exchanging two genes of one chromosome. As depicted in Figure 1a,
there is a chromosome R consisting of 7 genes and randomly generate two gene positions z1 = 2 and
z2 = 6. Then exchange the genes at these two positions to obtain the new chromosome R′.
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In order to improve the local search ability of the GA, the evolutionary reversal operation
is introduced after the selection operation and mutation operation. The evolution refers to the
unidirectionality of reversal operator, that is, after the reversal operation, the individual will perform
the operation if it becomes better, otherwise the reversal is invalid. The method is to randomly generate
two random numbers z1 and z2, and then the genes between z1 and z2 are re-sorted in reverse order.
The process of the evolutionary reversal operation is depicted in Figure 1b. Assume that there are 7
genes in one chromosome and randomly generate two gene positions z1 = 3 and z2 = 6. Then re-sort
the genes between z1 and z2 in reverse order.

Slide operation can greatly inherit the advantages of the parent individual and it can also prevent
the algorithm from falling into local optimum. Figure 1c shows the process of slide operation. Firstly,
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two gene positions z1 = 2 and z2 = 5 are randomly generated. Then rotate one gene position left
between z1 and z2.

3. Problem Formulation

3.1. Basic Assumptions

In this paper, a new combinatorial approach is proposed for multi-robot persistent coverage. The
following conditions are assumed to describe the cooperative persistent coverage.

• Each robot is supposed to be homogeneous.
• The detection zone of a sensor is simplified to a circle, and the influence of robot motion on sensing

range is not considered.
• The center of the sensor detection zone, namely the center of detection circle, is considered as the

position of the sensor.
• The position of a sensor is regarded as the robot observation point, that is, the robot waypoint.

When the robot is at the observation point, the area within the coverage of the sensor can
be detected.

• The probability density of target in each sub-region is known by the priori information, and there
are different coverage period requirements for each sub-region.

• The total velocity of each robot is set to the constant value.

3.2. Problem Statement

Suppose that there is a group of robots performing persistent coverage task over the given region.
The sensing radius of each robot is denoted as rs. The region of interest ROI consists of the feasible
region R f and the obstacle region Ro, which satisfy R f ∪ Ro = ROI and R f ∩ Ro = ∅. The obstacles
cannot be reached and would also block the sight of the sensors.

The robots are tasked to re-cover the feasible region within every T units of time in order to update
their observations continually. The coverage period T is adopted to indicate how frequently the region
should be re-covered. Some sub-regions of more importance in the feasible region may be required
to be re-covered with smaller periods. It is assumed that the coverage periods of the feasible region
and the sub-regions are known according to the prior information. As depicted in Figure 2, there are
three sub-regions (sub-regions 1, 2, and 3) and two obstacles (obstacles 1 and 2) in the given region.
Sub-regions 1 and 2 are more important and required to be re-covered with smaller coverage periods
T1 and T2, respectively. The rest of the feasible region is denoted as the sub-region 3 with coverage
period T3.
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Given the capabilities of the robots and the coverage period of each sub-region, the persistent
coverage problem is translated into how to plan the robots’ paths with the coverage periods satisfied,
using a minimum number of robots. There are two correlative questions in the persistent coverage
problem: (1) How to plan a closed path that can effectively avoid geometrical obstacles; (2) How many
robots are required at least to satisfy the coverage period constraints?

In this paper, we first consider the path planning for complete coverage in the region. Due to
the complexity caused by the obstacles, the path planning problem is decomposed into SDP and
TSP. Then, partition the path into several segments considering the sub-regions with different task
importance and the robots with optimum quantity. In order to solve the problem efficiently, we divide
the solution strategy into three steps. Firstly, the feasible region R f is covered completely using the
virtual sensors with sensing radius rv. The purpose of SDP research is to deploy the sensors in the
region to satisfy coverage requirements and ensure minimum cost [36–42]. Sensor deployment in the
feasible region can be performed in several stages, according to the coverage periods of sub-regions
from small to large. The sub-region with the smallest coverage period is preferentially deployed. Then
the sub-region with the larger coverage period is deployed until all the sub-regions are completely
covered. Secondly, taking the positions of the deployed sensors as the waypoints, the TSP is solved to
obtain the closed path which connects all the sensors. The feasible region can be covered completely if
a robot circumnavigates the closed path once. Thus, we call the closed path ‘the frame’. At last, in
consideration of the coverage period constraints and the optimum quantity of robots, the frame is
partitioned into several segments with the aim of minimizing the number of the segments. On the
basis of each partitioned segment, the closed route is generated for each robot. Furthermore, each
robot is assigned one closed route to circumnavigate in order to achieve persistent coverage of the
feasible region.

The purpose of this paper is to develop a new combinatorial approach for multi-robot persistent
coverage, which aims to cover mission domains with different task periods while guaranteeing both
the obstacle avoidance and the optimum number of robots. In this paper, the improved CCPSO2,
modified GA, and PSO are applied to design the combinatorial algorithm.

4. Combinatorial Approach for Multi-Robot Persistent Coverage

4.1. Traditional Cooperative Persistent Coverage

Multi-robot cooperative coverage can effectively improve mission efficiency in the task of persistent
coverage. In a relatively simple environment, in order to ensure complete coverage of the area, the
geometry-based approach is often used to search the area. Figure 3a illustrates an example of the
parallel scanning coverage. After determining the number of robots, the routes of each robot are
generated according to the geometric rules, in consideration of sensor’s detection width, turning
radius, and entering direction. Under this scan strategy, the increase in the number of robots widens
the overall scan radius, which reduces the search period and improves coverage efficiency. Sequential
scanning coverage is shown in Figure 3b. The method first obtains the path of a single robot persistent
coverage. Then each robot moves on the planned path sequentially. Robots are evenly distributed on
the route at a certain interval, which reduces the coverage period and achieves a better coverage. The
geometry-based approach is a common strategy for multi-robot coverage. However, this approach
is only suitable for the regular task area with no obstacles. It cannot effectively address persistent
coverage issues in complex task environments with target probabilities and obstacles.
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Area decomposition technique is another strategy for multi-robot persistent coverage. The
approach first divides the mission area into several sub-regions, and then the robots are tasked to
re-cover the respective sub-regions. The literature [43] shows a cooperative search using multiple
unmanned air vehicles (UAV). The algorithm divides mission area into several sub-regions in terms
of the UAVs’ initial positions and the percent of search area of each UAV. Then each UAV searches
respective sub-region and selects the appropriate direction to reduce the number of turns. The planning
result of Ref. [43] is illustrated in Figure 3c. The advantage of area decomposition is that the straight
part of the coverage route is longer, which can reduce the number of turns and boost the coverage
efficiency. However, it is necessary to consider the influence of obstacles on the area division when the
mission environment becomes more complicated. At this time, it is extremely difficult to divide the
region according to geometric rules. In addition, methods based on area decomposition neglect the
sub-regions in the mission area, which may have different importance and need to be re-covered with
different coverage periods.

In summary, current methods for multi-robot persistent coverage mainly have the following defects:
Problem 1. They have failed to address cooperative persistent coverage effectively in complex

mission environments with obstacles.
Problem 2. Previous works neglect the coverage period of each sub-region in the mission area.

Some sub-regions of more importance may be re-covered with different coverage periods.
Problem 3. Current methods do not consider how to divide the task region and assign the robots,

in order to improve coverage efficiency.
Based on the above facts, the combinatorial method proposed in this paper focuses on the

multi-robot persistent coverage with obstacles and different coverage period constraints, using a
minimum number of robots. Cooperative persistent coverage can be divided into the following
three steps to deal with: (1) sensor deployment in the task area; (2) path planning based on the TSP;
(3) partition of closed path considering coverage period.

4.2. Sensor Deployment in The Task Area

The coverage region is a bordered area. Once the mission area is given, it can be divided into many
rectangular cells whose side length lc is much smaller than the sensing radius rs. Let C f = {c1, c1, · · · , cm}

be the set of cells in the feasible region R f . As shown in Figure 4a, the task region is divided into
rectangular cells of 50× 50 and the side length of each cell satisfies lc � rs.
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Grey rectangles refer to the obstacles. (b) The coverage of the sensors in the presence of obstacles.
White cells indicate that they have been covered by the virtual sensors. Green cells represent that they
are uncovered by any virtual sensor.

The feasible region is covered completely using the virtual sensors with sensing radius rv, where
rv = 2rs. Suppose that S = {s1, s2, · · · , sn} is the set of the sensors. Figure 5 illustrates an example of
sensor deployment. The task area is covered by the virtual sensors. The blue line is a segment of the
frame, namely the closed path connecting all the waypoints in the mission domains. The red closed
route is generated on the basis of portioned segment and robot’s sensing range. The robot carrying
detection sensor, with sensing radius rs, is tasked to track the red route. As depicted in Figure 9, one
sensor covers two-part routes of the red closed route. Therefore, the radius of virtual sensor is twice
the sensing radius of robot, that is rv = 2rs.
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Figure 5. An example of sensor deployment. The radius of each robot is rs and the radius of the virtual
sensor is rv. The shaded area represents the field that robots have scanned.

The cell ci can be covered by the sensor s j if all the four vertices of the cell ci are within the sensing
range of the sensor s j and are not blocked by any obstacle. The coverage situation of the sensors is
shown in Figure 4b. Let ei = (p(si), gi) denote the element which embodies the basic deployment
information of the sensor si, where p(si) is the position of the sensor si, and gi is the validity flag.
Assume that gi = 1 if the sensor si is deployed, otherwise gi = 0. Thus, the deployment vector
[e1, e2, e3, · · · , ek] could represent a deployment situation of the sensors, namely a feasible solution to
SDP, where k is the maximum number of the available sensors.

Every point in the feasible region is supposed to be revisited periodically. Therefore, the feasible
region should be covered completely in SDP. Fewer sensors and less overlap of cells could cause a
shorter path, and hence improve the efficiency of persistent coverage task. Taking the objectives of the
sensor deployment into account, the fitness function of the sensor deployment is defined as:

fs(S) = λ1 × nb + λ2 × nu + λ3 × ns + λ4 × no (11)
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where S indicates a feasible solution to SDP; nb, nu, ns, and no are the number of the sensors deployed
in the obstacles, the number of the uncovered cells, the number of sensors deployed, and the number
of the overlapped cells, respectively; λ1, λ2, λ3, and λ4 represent the corresponding weighted factors,
which satisfy λ1 � λ2 � λ3 > λ4 > 0.

The fitness function is minimized based on the improved CCPSO2 algorithm to obtain the optimal
deployment vector. The CCPSO2 is adopted due to its ability for solving large-scale optimization
problems. Considering the properties of SDP, several heuristic operators are introduced to promote the
performance of the normal CCPSO2. As depicted in Figure 6, Figure 6a shows the sensor deployment
using improved CCPSO2 with several heuristic rules and Figure 6b illustrated the deployment situation
using standard CCPSO2 with no heuristic rules. There are 99 sensors used in Figure 6a while a total of
103 sensors are used in Figure 6b. According to the cost curves for two cases in Figure 6c, it can be
found that the introduction of heuristic rules can effectively improve the convergence speed of the
CCPSO2. In addition, the heuristic operators can also improve the diversity of the particles, and hence
improve the performance of the algorithm in solving SDP. Submitting (3) to (6), the pseudo-code for
sensor deployment is listed in Algorithm 1.

Algorithm 1. Pseudo-code of improved cooperatively coevolving particle swarm optimization
(CCPSO2) for sensor deployment.

Algorithm 1: Improved CCPSO2 for sensor deployment.

01: // Initialization: 26: // Update particle by heuristic rules
02: Set task parameters. 27: if rand < p

03: Set parameters of improved CCPSO2. 28:
Remove the sensor with closer

distance via Deletion operator.

04:
Randomly initialize K swarms, each
with s sensors.

29:
if the task area is covered

completely

05: // Main loop: 30:
Fuse and move sensor by Fusion

and Movement operators.
06: Repeat each iteration 31: end
07: if fs(ŷ) has not been improved, 32: else

08:
Choose value s from a predefined

set randomly, contrast K (K = n/s).
33:

Add and move sensor by
Addition and Movement operators

09: end 34: end
10: // Update optimal position 35: end
11: for each swarm j 36: // Update particle by CCPSO2 rules
12: for each particle i 37: else
13: P j.yi and P j.ŷi are updated as (6). 38: if rand < q
14: end 39: The ith particle is updated as (2).
15: for each particle i 40: end
16: P j.y′i is updated as (5). 41: else
17: end 42: The ith particle is updated as (3).

18:
Compute fitness value of b( j, P j.xi)

and y′i.
43: end

19: if fs(b( j, P j.xi)) < fs(ŷi) 44: end
20: b( j, P j.xi) = P j.ŷi 45: end
21: end 46: end
22: end 47: end
23: // Update particles in each swarm 48: // Results:
24: for each swarm j

49:
Find the optimal solution as the
sensor deployment situation.25: for each particle i
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Figure 6. (a) Sensor deployment using improved cooperatively coevolving particle swarm optimization
(CCPSO2) with heuristic rules. (b) Sensor deployment using normal CCPSO2 with no heuristic rules.
(c) Sensor deployment cost for two situations.

In this paper, the sensors are deployed to cover the sub-region with the smallest coverage period
first, then the sub-region with larger coverage period, and so on. As shown in Figure 2, there are
three sub-regions in the task area. The task coverage period satisfies T1 > T2 > T3. This means that
sub-region 1 is more important than sub-region 2, and sub-region 2 is more important than sub-region
3. Therefore, the order of sub-regions to be covered by the sensors is [sub-region 1, sub-region 2, and
sub-region 3]. After determining the coverage order, each sub-region is sequentially covered according
to Algorithm 1. The sub-regions that have been covered by the sensors in the former phases are seen
as obstacles when deploying sensors over other sub-regions in the latter phase. It should be noted that
the sensor deployment of each sub-region is optimized independently. In this way, it can reduce the
complexity of the algorithm and speed up the convergence process, as well as facilitate partition of
closed path in subsequent work.

4.3. Path Planning Based on Travelling Salesman Problem

Taking positions of deployed sensors as the waypoints, TSP is solved to obtain the frame of the
path for persistent coverage. The feasible region can be covered completely if a robot circumnavigates
the closed path once.

Let rn be the neighboring range and p(si) be the position of the sensor si. Taking waypoints as
vertices, we define the proximity graph G = (V, E), where V and E denote the vertices and edges. E
is defined as E =

{
(si, s j) ∈ V ×V : ‖p(si) − p(s j)‖ ≤ rn, si , s j

}
, where ‖p(si) − p(s j)‖ is the Euclidean

distance between the vertices si and s j. A path that connects the vertices s1 and sn is defined as
a sequence of the distinct vertices sqi(s1, sn) = [s1, s2, · · · , si, · · · , sn], which satisfies (si, si+1) ∈ E,
1 ≤ i ≤ n− 1. The graph G is connected if there is a path between any two distinct vertices. If the feasible
region is covered by the deployed sensors completely and the neighboring range rn is no smaller than
twice the virtual sensor radius rv, that is rn ≥ 2rv, the proximity graph G is connected [44]. A path that
connects the sensors si and s j is illustrated in Figure 7, where the neighboring range rn = 2rs.

Let sr(si) denote the sub-region in which the sensor si is deployed. The length of the path sqi(s1, sn)

is defined as:

l(sqi(s1, sn)) =
n−1∑
i=1

(
∥∥∥p(si) − p(si+1)

∥∥∥) + n−1∑
i=1

αI(sr(si) , sr(si+1)) (12)

where ‖p(si) − p(si+1)‖ is the Euclidean distance between the vertices si and si+1; α > 0 is a weighted
constant; (·) denotes the indicator function, which satisfies:

I(sr(si) , sr(si+1)) =

{
1, sr(si) , sr(si+1)

0, sr(si) = sr(si+1)
(13)
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Figure 7. A path that connects the sensors si and sj. Black circle is the sensing range of virtual sensor.
Black asterisk refers to the position of the sensor. Blue circle denotes the neighboring radius of the
virtual sensor.

In order to reduce the connections between different sub-regions in the frame of the path, instead
of the Euclidean distance, the distance between two sensors s1 and sn is defined as:

d(s1, sn) = min
sqi(s1,sn)

(l(sqi(s1, sn))), sqi(s1, sn) ∈ SQ(s1, sn) (14)

where SQ(s1, sn) is the set of the paths that connect the sensors s1 and sn.
In the task of cooperative persistent coverage, the path frame needs to be divided into several

segments. What is more, fewer connections among different sub-regions would be beneficial to reduce the
number of segments, i.e., the number of the robots. Therefore, in order to facilitate path segmentation in
subsequent work, it is necessary to reduce connections among different sub-regions as much as possible.
The frames obtained based on different distance definitions are presented in Figure 8. The Euclidean
distance is used for path planning in Case 1. It can be seen that the frame spanned eight times between
sub-region 1 and sub-region 2. In addition, the path frame is divided into eight segments by the boundaries.
Among them, there are four segments in sub-region 1, and four segments in sub-region 2. While in Case 2,
the distance between two sensors is defined by (14) for path planning. It is clear that the frame only crosses
twice between sub-region 1 and sub-region 2. In the same time, the path is divided into two sections, each
sub-region with a section. Obviously, the frame in Case 2, effectively reduces the connections in different
sub-regions, and the planning result is more suitable for the path segmentation.
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The shortest path that connects any two waypoints as well as its length is obtained based on the
A-star algorithm. The evaluation function is in the form of:

fa(M) = g(M) + h(M) (15)

where g(M) refers to the actual cost function of the path that has passed, from the start point to the
current point M; h(M) indicates the heuristic function of the remaining path, from the current point M
to the target point. g(M) can be formulated as:

g(M) = τ1 · f (M− 1) + τ2 ·Dcur + τ3 · Pobs (16)

where f (M− 1) is the cost value from the start point to the M− 1th point; Dcur denotes the distance
between previous point M− 1 and current point M; τ1, τ2, and τ3 are the weighting coefficients of each
item. The heuristic function can be estimated by the following expression:

h(M) = τ4 ·Dres (17)

where Dres represents the distance from current point M to the target point; τ4 is the weighting coefficient.
In this paper, modified GA is used to solve TSP on account of its inherent parallelism and global

search capability. The fitness function can be defined by:

ft(sqi(s1, sn)) =
1

l(sqi(s1, sn)) + D(sn, s1)
(18)

where sqi(s1, sn) refers to the ith feasible path; D(sn, s1) indicates the distance between the city sn and
s1, which satisfies:

D(sn, s1) = ‖p(sn) − p(s1)‖+ αI(sr(sn) , sr(s1)) (19)

where ‖p(sn) − p(s1)‖ is the Euclidean distance between the city sn and s1; α > 0 is a weighted constant;
(·) denotes the indicator function. Then, the TSP can be formulated by the modified GA as follows.

Algorithm 2. Pseudo-code of modified genetic algorithm (GA) to solve the travelling salesman problem (TSP).

Algorithm 2: Modified GA to solve TSP.

01: // Initialization: 13: switch k

02:
Obtain sensor locations from the result of
Algorithm 1.

14: case 1 No operation on tem_pop(1)

03: Set parameters of modified genetic algorithm. 15:
case 2 Perform Mutation operation on

tem_pop(2)

04: Randomly initialize 4×K populations. 16:
case 3 Perform Evolutionary reversal

operation on tem_pop(3)

05: // Main loop: 17:
case 4 Perform Slide operation on

tem_pop(4)
06: Repeat each generation 18: end

07:
Calculate individual fitness values for each

population.
19: end

08:
Selection operation: Search the individual

with the highest fitness value.
20:

Use tem_pop to generate 4×K new
populations.

09: Update optimal individual opt_pop. 21: end
10: // Generate new populations 22: // Results:
11: for k = 1 : 4 23: Get the best path found by the algorithm.
12: tem_pop(k) = opt_pop
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4.4. Partition of Closed Path Considering Coverage Period

Given the frame obtained by solving the travelling salesman problem, the path for complete
coverage can be obtained by circumnavigating the frame, as depicted in Figure 9a. The blue line is the
frame of the closed path, which connects all the waypoints in the mission area. The red closed route is
generated on the basis of the blue frame and robot’s sensing range. The robot carrying detection sensor
with sensing radius rs circumnavigates the red route to achieve full coverage of the current region.
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The radius of each robot is rs and the radius of virtual sensor is rv, which satisfies rv = 2rs. The shaded
area is the field that robots have scanned. (b) An example of path partition. Segment 1 is inside the
green box. Segment 2 is inside the cyan box. Segment 3 is inside the red box. Segment 4 is inside the
black box. Termination point of each segment is inside the purple circle.

In order to satisfy the coverage period constraints, multiple robots may be required. Taking the
coverage periods of the sub-regions into account, the frame is partitioned into several segments with
the aim of minimizing the number of the segments. On the basis of each partitioned segment, the closed
route is generated for each robot. Afterwards, each robot is assigned one closed route to circumnavigate
in order to achieve persistent coverage of the feasible region. Assume that γi refers to the normalized
length between the sensor si and sensor si+1. It can be determined by the following expression:

γi =
d(si, si+1)

Dsum
,γi ∈ [0, 1] (20)

where d(si, si+1) is the actual length of the ith segment; Dsum represents the length of the frame of the
closed path. Total path length Dsum can be given by:

Dsum =
n∑

i=1

d(si, si+1) (21)

where n is the number of sensors deployed; the sensor sn+1 refers to the sensor s1, which satisfies
d(sn, sn+1) = d(sn, s1).

Let the frame of the closed path be denoted as a closed curve. The curve equation can be expressed
as r(ϑ) : [0, 1]→ R2, r(0) = r(1) , where ϑ is the normalized length of the curve. r(0) denotes the
initial point of the curve, which is the location of sensor s1. Simultaneously, r(0) is also the initial point
of curve segmentation. Similarly, r(1) is the end point of the curve. Since the curve is closed, there is
r(0) = r(1). It should be noted that the curve equation r(ϑ) is a function of the normalized length ϑ.
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Suppose that the curve is partitioned into m segments by [θ1,θ2, · · · ,θm], where θ1 < · · · < θm.
Param θi represents the normalized length between the initial point r(0) and the termination point
r(θi) of the ith segment, which is defined as:

θi =
K∑

k=1

γk , 1 ≤ k ≤ K, 1 < K ≤ n (22)

where γk is the normalized length between the sensor sk and sensor sk+1; K refers to the serial number
of the last sensor contained in the ith segment; n is the number of sensors.

Let ri(ϑ) be the ith segment, which can be described as ri(ϑ) : (θi−1,θi]→ R2, 1 ≤ i ≤ m , where
θi is the normalized length between the r(0) and the termination point r(θi) of the current segment;
r(θm) refers to the end point r(1) of the curve; r(θ0) represents the initial point r(0) of the curve. It
should be noted that the following formula is established r(θm) = r(1) = r(0) = r(θ0). Additionally,
r(θi) and ri(θi) are the same point, which satisfies ri(θi) = r(θi) = p(sK), where p(sK) denotes the
position of the last sensor in the ith segment.

Therefore, the problem of frame partition is turned into finding the optimal termination point
r(θi) for each segment according to the coverage period constrains. The point r(θi) also represents the
best location p(sK) of the last sensor sK contained in each segment. Figure 9b illustrates an example of
path partition. The closed path is divided into four segments: r1(ϑ), r2(ϑ), r3(ϑ), and r4(ϑ). There
are eighteen sensors in the closed path. Among them, segment 1 contains four sensors from s2 to s5;
segment 2 involves four sensors from s6 to s9; segment 3 contains five sensors from s10 to s14; segment
4 includes five sensors from s15 to s18.

Let Tc(s j) be the coverage period of the sub-region where the sensor s j is deployed. Let Si be
the set of the sensors which are deployed on the segment ri(ϑ), where ϑ satisfies ϑ ∈ (θi,θi+1]. The
coverage period of the ith segment ri(ϑ) can be written in the equivalent form as follows:

Tc
i = min

s j∈Si
(Tc(s j)) (23)

Assume Rc(ri(ϑ)) is the closed curve generated by the segment ri(ϑ) based on computational
geometry. Rc(ri(ϑ)) also represents the closed route assigned to each robot. As shown in Figure 10,
red line refers to the closed route generated by the blue segment ri(ϑ). The width of the closed route
is twice the sensing radius of each robot, that is 2rs. When the obstacle blocks the closed route, the
method will re-adjust the closed route according to the threat range of the obstacle.
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where  ( )iv t   and  ( )ix t   represent the velocity and position of the  i th particle respectively;  ( )iy t  
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Figure 10. An example of the closed route generated by the segment. Green area indicates sub-region.
Grey rectangle is obstacle. The shaded area is the field that robots have scanned. The termination point
of each segment is inside the purple circle.
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The purpose of the frame partition is to minimize the number of robots performing tasks, while
meeting coverage period constraints of different sub-regions. Consequently, the objective of the frame
partition problem can be described as:

min m (24)

subject to:
Ta

i < Tc
i , ∀i ∈ {1, 2, · · · , m} (25)

where Ta
i is the time required for a robot to circumnavigate the closed route Rc(ri(ϑ)) once. Ta

i can be
obtained by the length of the closed path and robot’s velocity. It is given in the following expression as:

Ta
i =

L(Rc(ri(ϑ)))

V
,ϑ ∈ (θi−1,θi] (26)

where L(Rc(ri(ϑ))) denotes the length of the closed route Rc(ri(ϑ)); V is the velocity of robot. It is
assumed that the robots move at a constant speed for simplicity.

The frame partition problem is solved based on the PSO due to its flexibility and global optimization
capability [45]. The update of velocity and position are determined by:{

vi(t + 1) = ω(t)vi(t) + c1r1(t)(yi(t) − xi(t)) + c2r2(t)(ŷ(t) − xi(t))
xi(t + 1) = xi(t) + vi(t + 1)

(27)

where vi(t) and xi(t) represent the velocity and position of the ith particle respectively; yi(t) is the local
best position for the ith particle; yi(t) denotes the global optimal position of particles in the swarm;
ω(t) is the inertial weight; c1 and c2 are acceleration constants; r1(t) and r2(t) refer to the random
numbers, which satisfy r1(t) ∈ [0, 1], r2(t) ∈ [0, 1].

In the path partition algorithm, actual coverage time Ta
i , coverage period constraint Tc

i and the
number of segments Nseg are the main considerations for the frame partition of closed path. Thus, the
fitness function can be defined as:

fp(χ) = ξ1 × Tdi f + ξ2 ×Nseg + ξ3 × Terr (28)

where χ is a feasible solution to the frame partition; Tdi f indicates the time difference between the
actual coverage time Ta

i and coverage period constraint Tc
i , which satisfies Tcon = Ta

i − Tc
i + Tm; Terr

refers to the time offset between Ta
i and Tc

i , which satisfies Terr = Tc
i − Ta

i − Tm; ξ1, ξ2, and ξ3 are
the weighting coefficients of each item. Constant Tm represents the time margin, which can adjust
the time offset to meet the coverage period requirements. Feasible solution χ can be expressed as
χ =

{
r(θ1), r(θ2), · · · , r(θm)

}
, where r(θi) is the termination point of the ith segment; m is the number

of segments. In the path partition algorithm, the PSO optimizes a set of locations, which are the
positions of the last sensor contained in each segment. In other words, the algorithm uses the feasible
solution χ to characterize the position xi(t) in the PSO. In summary, the algorithm can be described
as follows.
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Algorithm 3. Pseudo-code of particle swarm optimization (PSO) for path partition.

Algorithm 3: Modified GA to solve TSP.

01: // Initialization: 15: if fp(yi(t)) < fp(ŷ(t))

02:
Obtain the closed path from the result of
Algorithm 2.

16: ŷ(t) = yi(t)

03: Set parameters of PSO. 17: end

04:
Randomly initialize K swarms, each with M
particles.

18: end

05: // Main loop:

19:

Obtain the optimal solution, as well as
determine the number of segments and
calculate the starting and ending position of
each segment.

06: Repeat each iteration
07: Compute inertial weight ω(t).
08: for each particle i
09: The ith particle is updated as (24).

20:
Generate the closed route for each robot on
the basis of portioned segment and robot’s
sensing range using geometry method.10:

Calculate fitness value of each particle
fp(xi(t)).

11: if fp(xi(t)) < fp(yi(t)) 21: // Results:
12: yi(t) = xi(t) 22:

Get the closed route for each robot’s
persistent coverage.13: end

14: end

4.5. The Framework of Combinatorial Method

The combinatorial method proposed in this paper, is mainly composed of the above three
algorithms, namely Algorithm 1, Algorithm 2, and Algorithm 3. As depicted in Figure 11, the
framework of combinatorial approach is proposed for multi-robot persistent coverage.Sensors 2019, 19, x  17  of  29 
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Figure 11. The flow chart of the combinatorial method proposed for cooperative persistent coverage.

The main principle is summarized as follows. Initially, set task parameters for persistent coverage,
including coverage domains, sub-region size, obstacles’ location, and so on. Then, Algorithm 1 is used
to sequentially cover the sub-regions using virtual sensors, in order of mission importance. Extract the
locations of each sensor, when the entire task area is completely covered and deployment cost is minimal.
Furthermore, taking the positions of the deployed sensors as the waypoints, Algorithm 2 solves the
TSP to obtain the frame of the closed path which connects all the sensors. Additionally, in consideration
of coverage period constraints and the optimum quantity of robots, the frame is partitioned into several
segments using Algorithm 3. Finally, generate the closed route for each robot on the basis of portioned
segment and robot’s sensing range using geometry method. Therefore, each robot can circumnavigate
one closed route to cover mission domains completely and persistently. Figure 12 further illustrates
the solution process of the combinatorial method for multi-robot persistent coverage.
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5. Numerical Results

In view of the facts that previous works neglected regarding the coverage period constraints in
different sub-regions and the number of robots used for persistent coverage task, this paper proposes
the above combined method for cooperative multi-robot persistent coverage. In this section, the
numerical results are presented to demonstrate the proposed approach. Simulation is implemented in
Matlab. All algorithms are written by ourselves and we do not use any toolbox.

5.1. Multi-robot Persistent Coverage

The mission area is assumed to be a square with side length 120 m. There are two rectangular
obstacles and two sub-regions with smaller coverage periods in the region of interest, as depicted in
Figure 2. The coverage period constraints for each sub-region are shown in Table 1. Suppose that the
velocity of each robot is a constant value of 20 m/s. Tables 2–4 list the parameters in the combinatorial
scheme for cooperative persistent coverage.

Table 1. Coverage periods for each sub-region.

Sub-region Coverage Periods Tc
i (s) Sub-region Coverage Periods Tc

i (s)

1 8.00 3 40.00
2 20.00

Table 2. Parameters of Algorithm 1 in Figure 13.

Parameter Value Parameter Value

The number of iterations NITE = 150 Min speed of particle update VMIN = −0.1
The number of swarms NSWA = 30 Max inertial weight AMAX = 0.9

Particle number of each swarm NPAR = 50 Min inertial weight AMIN = 0.4
The number of max sensors SMAX = 160 Acceleration constant c1 c1 = 2

Max speed of particle update VMAX = 0.1 Acceleration constant c2 c2 = 2

Table 3. Parameters of Algorithm 2 in Figure 13.

Parameter Value Parameter Value

The number of generations NGEN = 10000 Population size NPOP = 600
The number of points NPOI = 96

Figure 13 illustrates the results of the path planning for multi-robot persistent coverage, in allusion
to the task area situation shown in Figure 2. It can be found that the proposed method can achieve
persistent coverage for the mission area using a minimum number of robots, while avoiding obstacles
in complex environments. Table 5 lists the coverage periods of each partition and actual time required
to circumnavigate the closed route in Figure 13.
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Table 4. Parameters of Algorithm 3 in Figure 13.

Parameter Value Parameter Value

The number of iterations NITE = 50 Max inertial weight AMAX = 0.9
The number of swarms NSWA = 500 Min inertial weight AMIN = 0.4

Particle number of each swarm NPAR = 1000 Acceleration constant c1 c1 = 2
Max speed of particle update VMAX = 0.1 Acceleration constant c2 c2 = 2
Min speed of particle update VMIN = −0.1Sensors 2019, 19, x  19  of  29 
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Figure 13. Simulation results under parameters in Tables 2–4. (a) Sensor deployment for complete
coverage; (b) Sensor deployment cost; (c) Path planning result; (d) The changing process of path length;
(e) The closed route for each robot; (f) Frame partition cost.



Sensors 2019, 19, 1994 20 of 28

Table 5. Coverage periods and actual coverage time for each route.

Route Coverage Periods Tc
i (s) Actual Coverage Time Ta

i (s)

Path 1 40.00 36.37
Path 2 20.00 18.81
Path 3 40.00 37.29
Path 4 8.00 6.75
Path 5 8.00 7.19

As shown in Figure 13a, the mission area is completely covered by 96 virtual sensors, whose
sensing radius is 10. Among them, there are 10 sensors in the sub-region 1, 15 sensors in the sub-region
2, and 71 sensors in the sub-region 3. Figure 13b shows the evolution of the fitness function of the
sensor deployment. The optimal cost of its initial swarm is 5743. At last, the fitness value stabilized at
3600 after the 139 iterations. The path planning result for 96 waypoints is illustrated in Figure 13c. If
a robot circumnavigates the closed path once, the task area can be covered completely. The history
of closed path length is presented in Figure 13d. The closed path length tends to be stable after the
1722 generation, reaching the minimum of 61,025.99 by the 7113 generation. The value 61,025.99 is the
minimum length calculated by (12), and the actual distance of the closed path is 1027.40. As depicted
in Figure 13e, there are five closed routes generated for robots on the basis of portioned segment and
robot’s sensing range. Further, each closed route is assigned to one robot. It can be found that each
robot can track its respective closed route to cover the task area completely and persistently. Figure 13f
illustrates the changing process of cost function defined by (28). The path partition cost reaches a
minimum of 5709.23 after the update of 168th iteration.

5.2. Simulation Results Under Different Coverage Periods

To justify the effectiveness of the proposed combinatorial scheme, this part presents some
simulation results with different coverage period constraints. As depicted in Figure 14, there are six
simulation results of the path planning for multi-robot persistent coverage, under different coverage
period constraints. The simulation parameters used in Figure 14 are the same as in Section 5.1. Table 6
lists the coverage period Tc

i and actual time Ta
i required for each robot to circumnavigate its own closed

route in allusion to different coverage period constraints. It can be found from the simulation results
that the actual coverage time used of each robot satisfies the requirements of the coverage period
constraints. In addition, the combined method can adaptively adjust the number of closed routes
according to the coverage period constraints. Therefore, the approach can achieve optimization of the
number of robots used.

There are five closed routes in Figure 14a. It is found from the Case 1 in Table 6 that each generated
closed route meets the requirements of the coverage period constraints, namely Ta

i < Tc
i . As shown in

Figure 13, it takes about 37.50 s for two robots to circumnavigate the closed routes in sub-region 3.
Similarly, it takes 18.81 s for one robot to circumnavigate the closed routes in sub-region 2. If coverage
period constraints are changed to the Case 2, the simulation result is shown in Figure 14b. In such
case, the approach may generate one closed route for sub-region 2 according to the above situation.
However, if this is done, the combined method will generate four closed routes for sub-region 3,
because coverage period constraints of sub-region 3 in Case 2 do not satisfy the actual coverage time
of sub-region 3 in Figure 13. As a result, the total routes will become six. In contrast, the technique
increases the number of routes in sub-region 2 to satisfy the coverage period constraints of the task
area. In this way, the total routes will become five as in Case 2. Obviously, the number of routes in
Figure 14b is one less. It can be found that the combinatorial approach is able to allocate an optimal
number of robots to perform persistent coverage. Figure 14c–e show the planning results for persistent
coverage under corresponding coverage period constraints. It can be easily found from Figure 14e
and Table 6 that the actual coverage time from the 8th route to 11th route in Case 6 is slightly higher
than the coverage period constraints. The reason is that the closed routes of other regions cannot
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compensate for the length of routes in sub-region 3, under the premise of satisfying their own coverage
period constraints. In addition, if it is simply to meet the coverage period requirements, the cost of
adding a closed route to sub-region 3 is much greater than the cost of Case 6. Therefore, the method
sacrifices the coverage periods of some routes for the minimum coverage cost. In other words, the
combined approach can tolerate the loss of coverage accuracy to obtain greater coverage gain.Sensors 2019, 19, x 21 of 28 
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Table 6. Coverage periods and actual coverage time for each route.

Result Route Sub-region Tc
i (s) Ta

i (s) Result Route Sub-region Tc
i (s) Ta

i (s)

Case 1

Path 1 2 10.00 9.33

Case 2

Path 1 2 20.00 19.47
Path 2 2 10.00 8.68 Path 2 2 20.00 19.41
Path 3 3 40.00 38.39 Path 3 3 30.00 28.77
Path 4 1 12.00 10.95 Path 4 1 12.00 10.95
Path 5 3 40.00 38.22 Path 5 3 30.00 29.03

Case 3

Path 1 2 7.00 6.30

Case 4

Path 1 2 10.00 9.33
Path 2 2 7.00 5.74 Path 2 2 10.00 8.74
Path 3 2 7.00 5.91 Path 3 2 10.00 6.35
Path 4 2 7.00 5.57 Path 4 2 20.00 18.48
Path 5 3 40.00 36.22 Path 5 3 20.00 18.83
Path 6 1 12.00 10.95 Path 6 1 12.00 10.95
Path 7 3 40.00 38.22 Path 7 3 20.00 18.92

Path 8 3 20.00 18.65

Case 5

Path 1 2 10.00 6.94

Case 6

Path 1 2 10.00 9.53
Path 2 2 10.00 8.82 Path 2 2 10.00 9.75
Path 3 2 10.00 9.34 Path 3 2 10.00 8.97
Path 4 3 20.00 18.28 Path 4 3 10.00 9.05
Path 5 3 20.00 19.27 Path 5 3 10.00 9.41
Path 6 1 8.00 7.24 Path 6 3 10.00 9.05
Path 7 1 8.00 7.40 Path 7 1 12.00 10.95
Path 8 3 20.00 17.20 Path 8 3 10.00 11.64
Path 9 3 20.00 18.52 Path 9 3 10.00 10.53

Path 10 3 10.00 10.90
Path 11 3 10.00 10.41

5.3. Cooperative Coverage in More Complex Mission Environments

To demonstrate the versatility of the combined approach, the task area is reset using special or
irregular graphics. As depicted in Figure 15, the mission area is a pentagon. There are three sub-regions
and two obstacles in the task area. Sub-region 1 is a hexagonal area and sub-region 2 is a circular area.
The rest of the feasible region is denoted as the sub-region 3. The coverage periods of each sub-region
satisfy T1 > T2 > T3.
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Assume that the velocity of each robot is a constant value of 10 m/s. Table 7 lists the parameters
for Algorithm 1 in Figure 15. The parameters used for Algorithm 2 and 3 are the same as in Section 5.1.
In allusion to the task situation shown in Figure 15, path planning results for cooperative persistent
coverage are presented in Figure 16. Table 8 lists the period requirement and actual time required to
circumnavigate the closed route in Figure 16.
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Table 7. Parameters of Algorithm 1 in Figure 16.

Parameter Value Parameter Value

The number of iterations NITE = 200 Min speed of particle update VMIN = −0.1
The number of swarms NSWA = 40 Max inertial weight AMAX = 0.9

Particle number of each swarm NPAR = 60 Min inertial weight AMIN = 0.4
The number of max sensors SMAX = 210 Acceleration constant c1 c1 = 2

Max speed of particle update VMAX = 0.1 Acceleration constant c2 c2 = 2Sensors 2019, 19, x  24  of  29 
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Figure 16. Simulation results under parameters in Tables 7 and 8. (a) Sensor deployment for complete
coverage; (b) Sensor deployment cost; (c) Path planning result; (d) The changing process of path length;
(e) The closed route for each robot; (f) Frame partition cost.
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Table 8. Coverage periods and actual coverage time for each route.

Route Tc
i (s) Ta

i (s) Route Tc
i (s) Ta

i (s)

Path 1 45.00 44.12 Path 5 10.00 7.86
Path 2 45.00 37.65 Path 6 10.00 8.00
Path 3 12.00 10.12 Path 7 45.00 39.14
Path 4 45.00 39.17

As shown in Figure 16a, the feasible region is completely covered by 83 virtual sensors. Among
them, there are 7 sensors in sub-region 1, 5 sensors in sub-region 2, and 71 sensors in sub-region 3.
Figure 16b describes the evolution of the fitness function of the sensor deployment. The optimal cost
of its original swarm is 7613. At last, the fitness value stabilized at 5321. The path planning result for
83 waypoints is shown in Figure 16c. The history of closed path length is presented in Figure 16d. The
closed path length tends to be stable after the 5156 generation, reaching the minimum of 61,025.99. As
depicted in Figure 16e, there are seven closed routes generated for robots on the basis of portioned
segment and robot’s sensing range. Further, each closed route is allocated to one robot. Each robot can
track its respective closed route to cover the task area completely and persistently. Figure 16f depicts
the changing process of cost function defined by (28). The path partition cost reaches a minimum of
9343.48 after the update of the 102nd iteration. It can be found that the combinatorial method can be
adapted to multi-robot persistent coverage in more complex mission environments, while guaranteeing
both the obstacle avoidance and coverage period constraints.

6. Discussion

The main idea of the paper is to develop a new path planning strategy for multi-robot persistent
coverage. In the meanwhile, the proposed scheme considers the coverage period constraints of different
sub-regions in the mission domains, and can achieve the collaborative persistent coverage in more
complex mission environments using an optimal number of the robots, while guaranteeing both
obstacle avoidance and coverage period constraints.

On the basis of the theoretical analysis and numerical simulation, the solution strategy of proposed
method can be divided into three steps. The first step is to cover the task area completely using the
virtual sensors with minimum cost. According to the coverage periods of sub-regions from small to
large, sensor deployment in the feasible region can be performed in several stages. The sub-region
with the smallest coverage period is primarily deployed, and then the sub-region with the larger
period is deployed until all the sub-regions are completely covered. After determining the coverage
order, the sub-regions are sequentially covered by using Algorithm 1. The sensor deployment of each
sub-region is optimized independently to reduce the complexity of the algorithm and speed up the
convergence process. When the feasible area is completely covered, the second step is to obtain the
frame by using Algorithm 2. Taking the position of the deployed sensor as the waypoint, a closed path
connecting all waypoints can be acquired by solving the TSP. Moreover, the shortest path that connects
any two waypoints is obtained based on the A-star algorithm. The proposed approach introduces the
idea of sensor deployment to divides path planning issues into SDP and TSP in order to effectively
cope with the planning puzzle caused by environmental obstacles. Simulation results show that the
method can effectively improve the adaptability and robustness of the algorithm to the more complex
environment. Given the closed frame, the third step is to generate the closed route for each robot
by using Algorithm 3. Before generating the closed routes, it is first necessary to divide the path
frame into several segments on the basis of the coverage period constraints. Actually, the purpose
of the frame partition is to divide the frame into the least number of segments under the premise
of satisfying the coverage period constraints. Afterwards, the computational geometry technique is
utilized to generate the closed route for each robot on the basis of each partitioned segment. Finally,
each closed route is allocated to one robot to circumnavigate periodically in order to achieve persistent
coverage of the feasible region. Numerical results indicate that the combinatorial approach is able to
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allocate an optimal number of robots to perform persistent coverage and can adaptively adjust the
number of robots used according to the coverage period constraints. In conclusion, the persistent
coverage achieved in this paper has the following characteristics: (1) cooperative persistent coverage
for multiple robots is achieved; (2) the planning puzzle caused by environmental obstacles is solved;
(3) the coverage period constraints of different sub-regions are considered; (4) the number of robots
used can be adaptively adjust according to the coverage period constraints; (5) the optimal number of
robots is utilized to perform the persistent coverage task.

Similar works for multi-robot cooperative coverage can be found in [13,46]. Karapetyan et al. [13]
present two approximation heuristics based on boustrophedon cellular decomposition for solving the
multi-robot complete coverage. The first algorithm is a direct extension of the work of Xu et al. [10]
for multi-robot systems. The solution process can be divided into three steps. The approach first
partitions the task area into nonoverlapping cells. Then it solves the Chinese postman problem to
find a single optimal route that covers these cells. Finally, the algorithm splits the resulting route
between multiple robots using the k-postman approximation algorithm proposed by [47]. Different
from the first method, the second scheme first divides the task area into approximately equal partitions
between robots by using greedy approach, then it utilizes the coverage algorithm proposed by [10]
to plan the coverage route for each sub-region. The algorithms proposed by Karapetyan et al. can
commendably solve the problem of area decomposition and route planning for complex environments
with obstacles, and provide a new solution for collaborative coverage problems in complex task areas.
Compared with the combinatorial approach proposed in this paper, the works of Karapetyan et al.
mainly have the following differences: (1) the methods proposed by [13] achieve the complete coverage
of the given area, not a periodic persistent coverage; (2) the number of robots performing cooperative
coverage is artificially determined and not adaptively adjusted according to task requirements; (3)
the sub-regions with different task importance in the mission area are not considered, similarly the
coverage period constraints of different sub-regions are neglected. Palacios-Gasós et al. [46] develop an
online algorithm for multi-robot persistent coverage in which each robot locally finds the optima paths
and coverage actions to maintain the desired coverage level over the whole area. Firstly, the method
divides the task area into several particular regions by using Voronoi diagrams, one for each robot, to
avoid long shifts and conflicts with the other robots. Then, each robot creates a list of potential goals
that includes the points of its region in which the coverage level can be improved the most. Next, the
algorithm calculates the candidate paths to all potential goals from the list using the fast-marching
method. Finally, the optimal path is selected to calculate the optimal coverage action and control the
movement of the robot. The distributed algorithm proposed by [46] can actively select the coverage
goals in a continuous environment and plan the optimal paths to such goals. Furthermore, the dynamic
window approach for navigation is introduced to efficiently improve the algorithm competitive in
terms of flexibility and robustness in changing environments. The work of Palacios-Gasós et al. can
implement multi-robot cooperative persistent coverage effectively and reach the requirement of the
desired coverage level quickly. Similarly, the method proposed by [46] neglects the coverage period
constraints of the sub-regions with different task importance in the mission area. Moreover, the number
of robots used is also preset and not adaptively adjusted according to task requirements. However,
Palacios-Gasós et al. present a novel path planning for solving multi-robot persistent coverage in
complex task environments.

The proposed method in this paper is an offline method for multi-robot persistent coverage and
lacks experiment results. Palacios-Gasós et al. present a new online algorithm for solving multi-robot
persistent coverage in complex task areas. The future work will focus on the online path planning for
cooperative persistent coverage with reference to the work of Palacios-Gasós et al. and give the actual
experiments for proving the effectiveness of the proposed approach. In addition, future research will
be also centered on the planning of dynamic sub-regions, namely, the sub-region and coverage period
are not fixed by the prior information. Furthermore, we will promote the proposed algorithm by using
the more advanced machine learning algorithms [48,49] for multi-robot persistent coverage.
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7. Conclusions

This paper presents a new combinatorial method for multi-robot persistent coverage in complex
mission environments using an optimal number of robots.

(1) The proposed method achieves path planning for cooperative persistent coverage, in complex
task areas. The path planning problem is decomposed into the sensor deployment problem and the
travelling salesman problem. The planning technique, based on sensor deployment, effectively solves
the obstacle avoidance in a complex environment.

(2) Sub-regions with different task importance in the mission area are considered in this paper.
Moreover, the combined method can adaptively adjust the number of closed routes according to
the coverage period constraints of different sub-regions, while also optimizing the number of robots
performing the task.

According to the aforementioned description of the combinatorial approach, the planning results
of the proposed method are highly effective for solving the cooperative persistent coverage. From the
global perspective, the design approach takes the coverage period as the main basis and generates
the closed routes for each robot in terms of the mission environment. Furthermore, each robot can
circumnavigate one closed route to cover task domains completely and persistently.
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