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For decades, perception was considered a unique ability of biological systems, little understood in
its inner workings, and virtually impossible to match in artificial systems. But this status quo was
upturned in recent years, with dramatic improvements in computer models of perception brought
about by “deep learning” approaches. What does all the ruckus about a “new dawn of artificial
intelligence” imply for the neuroscientific and psychological study of perception? Is it a threat, an
opportunity, or maybe a little of both?

WHILE WE WERE SLEEPING...

My personal journey in the field of perception science started about 20 years ago. For as long as
I can remember, we perception scientists have exploited in our papers and grant proposals the
lack of human-level artificial perception systems, both as a justification for scientific inquiry, and
as a convenient excuse for using a cautious, methodical approach—i.e., “baby steps.” Visual object
recognition, for example, seemed such an intractable problem that it was obviouslymore reasonable
to study simple stimuli (e.g., Gabor patches), or to focus on highly specific sub-components of
object recognition (e.g., symmetry invariance). But now neural networks, loosely inspired by the
hierarchical architecture of the primate visual system, routinely outperform humans in object
recognition tasks (Krizhevsky et al., 2012; Sermanet et al., 2013; Simonyan and Zisserman, 2014; He
et al., 2015; Szegedy et al., 2015). Our excuse is gone—and yet we are still nowhere near a complete
description and understanding of biological vision.

It would take a monastic life over the last 5 years to be fully unaware of the recent
developments in machine learning and artificial intelligence. Things that robots could only do
in science fiction movies can now be performed by our smartphones, sometimes without our
even noticing. We talk to Siri, Cortana, Google Assistant, or Alexa; they understand, obey, and
respond with naturalistic speech and an occasional joke. Any language can be comprehended
and translated near-instantaneously (Johnson et al., 2016; van den Oord et al., 2016). The
same methods that have been used to crack Natural Language Processing (NLP) have also
been applied to the creation of novel music (Hadjeres and Pachet, 2016; van den Oord et al.,
2016) (youtube.com/watch?v=LSHZ_b05W7o or youtu.be/QiBM7-5hA6o), or to writing new
texts, from novels to TV show scripts to fake (but eerily credible) Donald Trump tweets
(twitter.com/deepdrumpf). Chatbots based on these algorithms are set to replace humans in many
online services.

The staggering “creativity” of machines is also expressed in the field of image processing and
machine vision. Human-level object recognition networks trained by “deep learning” were only the
beginning. Now complex scenes can be analyzed to precisely localize and identify each object and
its relation to others, and to provide a natural text description, e.g., “two children are playing ball
on the beach” (Karpathy and Fei-Fei, 2015; Vinyals et al., 2016). By inverting the analysis process
(“deconvolution”), novel images can be synthesized, giving such networks the ability to “dream”
(Mordvintsev et al., 2015), but also to perform useful image processing feats. You can take a portrait
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and make the person smile, or look younger (Figure 1). You can
give a holiday picture and have it painted like a Renoir (Gatys
et al., 2015; Dumoulin et al., 2016). You can input an old black-
and-white photo and have it colorized (Isola et al., 2016; Zhang
et al., 2016). You can give a 3-color doodle (“here goes the lake,
here are some trees, and there is the sky”) and have a realistic
photo synthesized (Champandard, 2016; Isola et al., 2016). You
can give a line drawing and turn it into a real object (Isola et al.,
2016). You can give a low-resolution picture and have its original
resolution restored (Dong et al., 2015; Romano et al., 2016). You
can give a text description, and have a novel, never-seen before
picture generated from scratch (Mansimov et al., 2015; Nguyen
et al., 2016). There does not seem to be any limit to what can be
done, except for human imagination (and training datasets).

Meanwhile, the field of Perception Science still struggles to
explain how sensory information is turned into meaningful
concepts by the human (or animal) brain, let alone understanding
imagination, or artistic creativity. This, then, is the rather
pessimistic take on the impact of this machine learning
revolution for Perception Science: It forces us to take a good, hard

FIGURE 1 | A “variational auto-encoder” (VAE) deep network (13 layers) was trained using an unsupervised “generative adversarial network” procedure (VAE/GAN,

Goodfellow et al., 2014; Larsen et al., 2015) on a labeled database of 202,599 celebrity faces (15 epochs). The latent space (1024-dimensional) of the resulting

network provides a description of numerous facial features that could approximate face representations in the human brain. (A) A picture of the author as seen (i.e.,

“encoded”) by the network is rendered (i.e., “decoded”) in the center of the panel. After encoding, the latent space can be sampled with simple linear algebra. For

example, adding a “beard vector” (obtained by subtracting the average latent description of 1000 faces having a “no-beard” label from the average latent description

of 1000 faces having a “beard” label) before decoding creates a realistic image of the author with a beard. The same operation can be done (clockwise, from right) by

adding average vectors reflecting the labels “bald,” “old,” “young,” or “smile.” In short, the network manipulates concepts, which it can extract from and render to

pixel-based representations. It is tempting to envision that the 1024 “hidden neurons” forming this latent space could display a pattern of stimulus selectivity

comparable to that observed in certain human face-selective regions (Kanwisher et al., 1997; Tsao et al., 2006; Freiwald et al., 2009; Freiwald and Tsao, 2010).

(B) Since the network (much like the human brain) was trained solely with upright faces, it inappropriately encodes an upside-down face, partly erasing important

facial features (the mouth) and “hallucinating” inexistent features (a faint nose and mouth in the forehead region). This illustrates how human-like perceptual behavior

(here, the face inversion effect) can emerge from computational principles. The database used for training this network is accessible from

mmlab.ie.cuhk.edu.hk/projects/CelebA.html (Liu et al., 2015).

look at our slow progress. While we were arguing over the details,
somebody figured out the big picture.

WHAT DREAMS MAY COME

But there are, of course, arguments against such a dark depiction.
For one thing, machine learning still has a long way to go.
There are many areas of perception science where deep neural
networks (DNNs) haven’t been applied yet, or have not yet
met the anticipated success: For example, motion processing,
ocular disparity and depth processing, color constancy, grouping
and Gestalt laws, attention, perceptual multi-stability, or multi-
sensory integration, just to name a few. On the other hand, it
can be mathematically demonstrated that whenever there exists
a reasonable solution to map inputs onto outputs, deep learning
has the ability to find it. And by definition, for any perceptual
science problem there is at least one reasonable solution: The
one implemented in our brains. So these apparent limitations
of deep learning are unlikely to hold for very long: They will be
easily cracked, as soon as scientists harness sufficient motivation
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(which often hinges on the prospect of commercial applications),
can properly assess the relevant input and output spaces, and can
gather enough training data.

Moreover, there are concerns about the biological plausibility
of current machine learning approaches. If our brains’ abilities
are emulated by algorithms that could not possibly exist in the
human brain, then these artificial networks, however powerful,
cannot really inform us about the brain’s behavior. Such concerns
include the great reliance of deep neural networks on supervised
learning methods using large datasets of labeled exemplars. In
contrast, humans can often learn without explicit supervision
or “labels.” Unsupervised learning methods do exist for artificial
neural networks, but they often give rise to a feature space
that is insufficiently powerful and needs to be complemented
by supervised fine-tuning in order to allow, for example, for
accurate object recognition (Hinton et al., 1995, 2006; Hinton
and Salakhutdinov, 2006). The large amounts of labeled training
data required for deep learning can themselves be viewed as
implausible. Most important perhaps is the inexistence of a
generally accepted equivalent solution to the back-propagation
algorithm in biological brains: This algorithm is the cornerstone
of deep learning (LeCun et al., 2015), which allows gradient-
descent optimization of connection weights to be performed
iteratively (via the so-called “chain rule”) through the multiple
layers of a network. Furthermore, there are crucial aspects of
biological neural networks that are plainly disregarded in the
major deep learning approaches. In particular, most state-of-the-
art deep neural networks do not use spikes, and thus have no
real temporal dynamics to speak of (just arbitrary, discrete time
steps). This simplification implies that such networks cannot help
us in understanding dynamic aspects of brain function, such as
neural synchronization and oscillatory communication. Finally,
the most successful deep networks so far have strongly relied on
feed-forward architectures, whereas the brain includes massive
feedback connections. The popular recurrent neural networks
(RNN) are an exception (Hochreiter and Schmidhuber, 1997;
Pascanu et al., 2013), but even they have specific short-range
feedback loops that do not compare with the brain’s long-range
connectivity (and the existence of communication “hubs,” like the
thalamus).

All these deviations from known biological properties, often
motivated by considerations of computational efficiency, do not
constitute real barriers, and recent work is starting to reconcile
machine learning and brain reality on most of these fronts.
Unsupervised and semi-supervised learning methods have been
suggested that require no or only few occasional labels to be
provided (Anselmi et al., 2013; Doersch et al., 2015; Wang and
Gupta, 2015). Some of these methods can also learn features
and representations from one or just a few exemplars, a form
of “one-shot learning” on par with human capabilities (Anselmi
et al., 2013; Rezende et al., 2016; Santoro et al., 2016). At least
certain forms of backpropagation appear compatible with a
number of biological observations, e.g., spike timing-dependent
plasticity (Scellier and Bengio, 2016). Deep neural networks that
use spikes are becoming commonplace (Yu et al., 2013; Cao
et al., 2015; Diehl et al., 2015; Hunsberger and Eliasmith, 2016;
Kheradpisheh et al., 2016a; Lee et al., 2016; Zambrano and Bohte,

2016), and attempts have also been made to introduce oscillatory
components in deep networks (Rao and Cecchi, 2011, 2013;
Reichert and Serre, 2013). Finally, new DNN architectures are
emerging with long-range feedforward (Huang et al., 2016a,b)
and feedback connectivity (Pascanu et al., 2013; Zilly et al., 2016).
In summary, it would be shortsighted to discard deep learning as
irrelevant for understanding biological perception, simply based
on its currently imperfect biological plausibility.

A possibly deeper limitation of machine learning lies in the
argument that merely replicating behavior in an artificial system
does not imply any understanding of the underlying function. In
this view, we perception scientists are still left with all the work to
do for the latter. But now, we are not limited anymore to studying
biological systems through measurements of external behavior or
through sparse and nearly-random samplings of neural activity—
we can also scrutinize their artificial cousins, the deep neural
networks, for which every neuron’s activation function is readily
accessible, and in which systematic investigations can thus prove
much easier.

A WAKE-UP CALL FOR PERCEPTION
SCIENCE

Thankfully, there are many other reasons to view the recent
machine learning advances in an optimistic light. It is likely
that the image and sound synthesis abilities of deep networks
(e.g., Figure 1) will serve in the near future as a significant
source of well-controlled experimental stimuli, and innovative
new experimental designs. Gradient descent can be applied, for
example, to create images of objects that will be recognized by
humans but not by state-of-the-art deep networks (by designing
a “loss function” ensuring that image content is preserved in
early layers of the network, but abolished in the final layers),
or conversely, non-sense images that “fool” a deep network into
recognizing a given object (by inverting the aforementioned loss
function) (Nguyen et al., 2014). Which brain regions would
respond to the latter, and which to the former? Howwould event-
related potentials, or brain oscillatory activity, react to each image
type? Could certain “selective” behaviors (e.g., rapid selective eye
movements) be preserved in the absence of explicit recognition?

Deep learning can also turn out to be a source of
powerful new data analysis tools. Neuroscience and psychological
experiments produce masses of data that can prove challenging
for conventional analysis methods. Some 10 or 12 years ago,
multivariate pattern analysis (MVPA) methods promised to open
new avenues for neuroscience research (Haynes and Rees, 2005;
Kamitani and Tong, 2005). Similarly, deep networks could now
become a key to reveal the complex mapping between sensory
inputs, brain signals and behavioral outputs, and unlock the
mysteries of the brain.

Moreover, deep neural networks are also suited to serve a
more indirect role in Perception Science, not as a methods tool
but as a source of inspiration for existing and novel theories about
brain function. Many studies have already started to characterize
the existing relations (and differences) between patterns of
activity obtained from specific layers of deep networks, and from
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specific brain regions (Cadieu et al., 2014; Khaligh-Razavi and
Kriegeskorte, 2014; Güçlü and van Gerven, 2015; Cichy et al.,
2016a,b) or from human behavior (Kheradpisheh et al., 2016b,c).
As alluded to in Figure 1B, the powerful latent representation
spaces generated by deep neural networks could be used, for
example, to study the face inversion effect. They could also help
address the debate between expertise vs. domain-specificity in
face processing (Kanwisher et al., 1997; Gauthier et al., 1999,
2000; Tarr and Gauthier, 2000; Rossion et al., 2004; Tsao et al.,
2006; Freiwald et al., 2009; Freiwald and Tsao, 2010), or between
modular vs. distributed object representations (Haxby et al., 2001;
Reddy and Kanwisher, 2006), and possibly many others.

Finally, and perhaps most importantly, we should view the
amazing recent progress of machine learning as a wake-up call,
an occasion to abandon our excuses, and a reason to embolden
our approaches. No more “baby steps” for us—the time is ripe to
address the big picture.

FORWARD-LOOKING STATEMENT

How does our journal fit in this global context? As usual,
Frontiers in Perception Science will continue to welcome
all original research papers that explore perception in and
across any modalities, whether in animals, humans or—why
not?—machines, using methods drawn from neuroscience and
psychology (but also mathematics, engineering, and computer
science). The main criterion for publication is scientific rigor
and soundness applied to the study’s motivations, methods,
and interpretation. Perceived impact or newsworthiness are
not relevant factors. While plagiarism is evidently prohibited,
explicit replications of previous studies will be viewed favorably.
Importantly, these (and any other) papers can equally report
positive or negative outcomes –as long as the methodology is
rigorous. We hope that we can thereby contribute to resorbing
the current confidence crisis in neuroscience and psychology

(Ioannidis, 2005; Simmons et al., 2011; Open Science, 2015;
Gilbert et al., 2016). Finally, the journal publishes a number
of article formats that are complementary to original research
and constitute an important resource for the field, such as
methods articles, reviews ormini-reviews, perspectives, opinions,
and commentaries, hypothesis & theory papers. For these
publications as well, the main criterion remains scientific rigor
and soundness.

To conclude, as the above arguments should make clear, I
believe that the success of deep learning at emulating biological
perception is a game-changer that our field cannot ignore. It
would be like lighting a fire by hitting stones, with a flamethrower
lying on our side. On the other hand, while I formulate the
convergence between biological and machine perception (Cox
and Dean, 2014; Kriegeskorte, 2015; Marblestone et al., 2016)
as both a wish and a prediction for the future of Perception
Science as a whole, it is evident that many individual papers or
researchers in the field will not be systematically concerned with
deep learning. That’s still okay—if that is your case, Frontiers
in Perception Science will remain a venue of choice for your
paper. Just don’t motivate it by the “inability of machine

perception to achieve human-level performance”: That would be
shortsighted.
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