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Abstract: The progression of the early stages of female breast and colon cancer to metastatic disease
represents a major cause of mortality in women. Multi-drug chemotherapy and/or pathway selective
targeted therapy are notable for their off-target effects and are associated with spontaneous and/or ac-
quired chemotherapy resistance and the emergence of premalignant chemo-resistant cancer-initiating
stem cells. The stem cell populations are responsible for the evolution of therapy-resistant metastatic
disease. These limitations emphasize an unmet need to develop reliable drug-resistant cancer stem
cell models as novel experimental approaches for therapeutic alternatives in drug discovery platforms.
Drug-resistant stem cell models for breast and colon cancer subtypes exhibit progressive growth
in the presence of cytotoxic chemo-endocrine therapeutics. The resistant cells exhibit upregulated
expressions of stem cell-selective cellular and molecular markers. Dietary phytochemicals, nutri-
tional herbs and their constituent bioactive compounds have documented growth inhibitory efficacy
for cancer stem cells. The mechanistic leads for the stem cell-targeted efficacy of naturally occurring
agents validates the present experimental approaches for new drug discovery as therapeutic alternatives
for therapy-resistant breast and colon cancer. The present review provides a systematic discussion
of published evidence on (i) conventional/targeted therapy for breast and colon cancer, (ii) cellular
and molecular characterization of stem cell models and (iii) validation of the stem cell models as an
experimental approach for novel drug discovery of therapeutic alternatives for therapy-resistant cancers.
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1. Introduction

Despite advances in conventional and/or targeted therapy, female breast and colon
cancer represent major causes of mortality in women. The American Cancer Society es-
timated the projected combined incidence of newly diagnosed breast and colon cancers
as 333,230 and the number of cancer-related deaths as 68,060 in 2022 [1]. Multi-drug
conventional chemotherapy for breast and colon cancer includes the use of several mech-
anistically distinct cytotoxic pharmacological agents. In contrast, molecularly targeted
pathway-selective therapeutics include small molecule inhibitors such as selective estrogen
receptor modulators/degraders, cyclin-dependent kinase inhibitors, aromatase inhibitors,
non-steroidal anti-inflammatory drugs, selective cyclooxygenase inhibitors and selective
ornithine decarboxylase inhibitors for the two organ site cancers [2].

Long-term therapeutic interventions using these pharmacological agents are notable
for their off-target effects. In addition, conventional/targeted chemo-endocrine therapy
is associated with spontaneous and/or acquired therapy resistance and the emergence of
chemo-resistant cancer-initiating premalignant stem cell populations that are at risk for
developing metastatic lesions that may be susceptible to natural products [3]. These limita-
tions inherent to current chemo-endocrine therapy emphasize the need to develop reliable
stem cell models for breast and colon cancers and to identify efficacious pharmacological
agents and natural products that inhibit cancer stem cells.
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It is interesting to note that estrogens affect the carcinogenic process in the breast, as
well as in the colon. The role of estrogens in breast cancer is well-documented. The natural
estrogen estradiol 17-β functions as a natural ligand to estrogen receptors α and β that
represent ligand-regulated transcription factors. Genomic signal transduction involves a
complex cascade of events culminating with estrogen response element-mediated target
gene expression. Estrogen receptor-α (ER-α) is noted for its growth promoting effects [4].
In contrast, ER-β-mediated signal transduction involves a distinct transcriptional activ-
ity, leading to the negative regulation of growth in endocrine responsive target cells [5].
However, the role of estrogens in colon cancer is less defined. Published evidence suggests
that ERs function as inhibitory modifiers for colon cancer. In the Apc MIN/+ model for
genetically predisposed colon cancer, a lack of ER-α and ER-β accelerates colon carcinogen-
esis [6]. ER-β functions as a negative growth regulator in colon cancer, and several naturally
occurring phyto-estrogens function as potent ER-β agonists [7,8]. Collectively, this evidence
suggests that ER-β agonists may function as effective negative growth regulators of breast
and colon cancers.

Natural products including dietary phytochemicals, micro-nutrients, nutritional herbs
and their constituent bioactive compounds represent relatively nontoxic agents. In tra-
ditional Chinese medicine, herbal formulations, prepared mostly from nutritional herbs,
have been used to treat cancer patients [9–11]. These natural products, because of their
documented long-term human consumption and preclinical growth inhibitory efficacy, may
represent testable therapeutic alternatives in treating therapy-resistant breast and colon
cancers.

Drug-resistant cancer-initiating stem cells evolve into metastatic phenotypes through
multi-step cascades involving the activation of survival pathways and epithelial–mesenchymal
transition [12–14]. These aspects of cancer stem cell biology represent a scientifically robust
rationale for the drug discovery of novel agents effective against cancer stem cells.

The main objective of the present review is to discuss published evidence relevant
to (i) conventional/targeted therapy for breast and colon cancers and their limitations,
(ii) cancer stem cell biology and the development of breast and colon cancer stem cell
models and (iii) the validation of stem cell-based experimental approaches as a platform
for novel drug discovery for therapy-resistant breast and colon cancers.

2. Experimental Models
2.1. Parental Breast and Colon Cancer Cell Lines

Breast and colon carcinoma-derived established cell lines provide valuable cellular
models for clinical cancer subtypes. Human female breast carcinoma-derived cell lines
differ in the expression status of hormone receptors and growth factor receptors, and
represent valuable cellular models for luminal A, luminal B, HER-2-enriched and triple-
negative breast cancer subtypes. Human colon carcinoma-derived cell lines include the
HCA-7 model (wild type APC, wild type, β-catenin), the SW480 model (mutant APC,
wild type β-catenin) and the HCT-116 model (wild type APC, mutant β-catenin). It is
notable that only the HCA-7 model was derived from a female patient, while the other two
models were derived from male patients. Colonic epithelial cell lines have been established
from female mice that express germline mutations in clinically relevant Apc and DNA
mismatch genes [15–18]. These cell lines exhibit hyper-proliferation, accelerated cell-cycle
progression, downregulated apoptosis anchorage, independent growth in vitro and tumor
formation in vivo. The cell lines carrying the Apc gene mutation exhibit chromosomal insta-
bility and predominantly the aneuploid phenotype, while those carrying DNA mismatch
repair gene mutations exhibit micro-satellite instability and predominantly the diploid
phenotype [19–21].

The characteristics of parental cell lines are described in Table 1. These cell lines are
developed for clinically relevant luminal A and triple-negative breast cancer subtypes
and for genetically predisposed familial adenomatous polyposis (FAP) and hereditary
non-polyposis colon cancer (HNPCC) subtypes. It is notable that these aberrantly hyper-
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proliferative cell lines exhibit AI colony formation in vitro and tumor development in
in vivo. AI colony formation represents a specific and sensitive in vitro surrogate end point
for tumorigenic transformation. Experimental modulation of this end point facilitates the
quantitation of risk for cancer development.

Table 1. Cellular models for breast and colon cancer.

Parental Cells
Clinical and Biological Markers

Clinical Subtype
ER PR HER-2 AICF Tumor

Breast

184-B5 - - - - - Normal breast
MCF-7 + + + + + Luminal A
MDA-MB-231 - - - + + Triple-negative

Colon Apc [+/+] Mlh1 [+/+]

C57 COL + + - - Normal colon
1638N COL - + + + Apc mutation codon 1638. FAP
Mlh1/1638N COL - - + + HNPCC

ER, estrogen receptor-α; PR, progesterone receptor; HER-2, human epidermal growth factor receptor-2;
AICF, anchorage independent colony formation; Apc, adenomatous polyposis coli genotype; Mlh1, Mut-L
genotype; FAP, familial adenomatous polyposis; HNPCC, hereditary non-polyposis colon cancer.; Genotype [+/+],
status of alleles.

2.2. Conventional/Targeted Therapy

Clinically relevant conventional and targeted therapeutic options are described in
Table 2. These pharmacological agents are notable for their off-target effects, sponta-
neous/acquired therapy resistance and the emergence of drug-resistant cancer stem cell
population [22,23]. Table 2 provides examples of mainstream therapeutic options for breast
cancer subtypes such as luminal A, luminal B and triple-negative breast cancer (TNBC).

Table 2. Conventional chemo-endocrine therapy and targeted therapy for breast cancer.

Organ Type
Therapy

Clinical Subtype
Conventional Targeted

Breast Multi-drug combination
DOX, PCT, CPT

SERM, CDKI,
AI, HER-2 inhibitors

Luminal A, Luminal B,
TNBC

DOX, doxorubicin; PCT, paclitaxel; CPT, carboplatin; SERM, selective estrogen receptor modulator; CDKI, cyclin
dependent kinase inhibitor; AI, aromatase inhibitor; HER-2, human epidermal growth factor receptor-2, TNBC;
triple-negative breast cancer.

Table 3 exemplifies mainstream treatment options for colon cancer that include geneti-
cally predisposed familial adenomatous polyposis (FAP), hereditary non-polyposis colon
cancer (HNPCC) and sporadic colon cancer subtypes.

Table 3. Conventional chemotherapy and targeted therapy for colon cancer.

Organ Type
Therapy

Clinical Subtype
Conventional Targeted

Colon Multi-drug combination
5-FU, OPN, ITC

NSAID
COX-2 inhibitors
ODC inhibitors

FAP, HNPCC
sporadic cancer

5-FU, 5-fluro-uracil; OPN, oxaliplatin; ITC, irinotecan; NSAID, non-steroidal anti-inflammatory drugs; COX-2,
cyclooxygenase-2; ODC, ornithine decarboxylase; FAP, familial adenomatous polyposis; HNPCC, hereditary
non-polyposis colon cancer.

2.3. Pharmacological Inhibition

The susceptibility of the cell lines to prototypic chemo-endocrine therapeutics facil-
itates the selection of appropriate experimental models. The cells treated with the thera-
peutic agents at their respective maximal cytostatic (IC90) concentrations inhibit anchorage
independent colony formation. The selective estrogen receptor modulator tamoxifen (TAM)
represents the endocrine treatment of choice for the luminal A breast cancer subtype. Treat-
ment of the MCF-7 model for the luminal A subtype with TAM reduces the number of
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AI colonies. Cytotoxic chemotherapy with doxorubicin (DOX) represents the treatment
of choice for the triple-negative subtype. Treatment of the MDA-MB-231 model for the
triple-negative subtype with DOX reduces the number of AI colonies.

The inhibitory effects of pharmacological agents for colon cancer are illustrated in
Figure 1A,B. The pharmacological agents for the FAP model include difluro-methyl or-
nithine (DFMO), celecoxib (CLX), 5-fluoro-uracil (5-FU) and sulindac (SUL). These agents
at their respective maximal cytostatic (IC90) concentrations lead to a significant reduction in
AI colony number. The pharmacological agents for the HNPCC model include SUL, DFMO
and 5-FU. These agents at their respective maximally cytostatic (IC90) concentrations lead
to a significant inhibition of the number of AI colonies. It is notable that the rank order of
inhibitory efficacy of the pharmacological agents for AI colony formation in the FAP model
is DFMO > CLX > 5-FU = SUL, and for the HNPCC model it is SUL = DFMO = 5-FU. These
data in rank order suggest that the mechanisms responsible for growth inhibitory response
may differ in two models.
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Figure 1. Growth inhibitory effects of pharmacological agents on colon cancer models. (A) Reduction
in AI colony number by treatment with DFMO, CLX, 5-FU and SUL in the FAP model for colon
cancer. EtOH versus DFMO and CLX p = 0.038; EtOH versus 5-FU and SUL p = 0.04. (B) Reduction in
AI colony number by treatment with SUL, DFMO and 5-FU in the HNPCC model. EtOH versus SUL
and DFMO p = 0.037; EtOH versus 5-FU p = 0.04. Data analyzed by ANOVA with Dunnett’s multiple
comparison post-hoc test. AI, anchorage independent; EtOH, ethanol; DFMO, difluoro-methyl
ornithine; CLX, celecoxib; 5-FU, 5-fluoro-uracil; SUL, sulindac.
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These experiments compare the data from the multiple treatment groups to a common
control group. The statistical analyses of these data are performed by analysis of variance
(ANOVA) and Dunnett’s multiple comparison post-hoc test with a threshold of α = 0.05,
using the Microsoft Excel 2013 XLSTAT-Base software.

2.4. Drug-Resistant Stem Cell Models

In stem cell biology, the stem cell population plays important roles in normal and
cancerous growth. In normal epithelial organ sites, stem cells regulate cell proliferation
and apoptosis for cellular homeostasis and tissue regeneration. Cell signaling pathways
such as Wnt/β-catenin, Notch and Hedgehog are responsible for the maintenance of the
normal stem cell population [24]. Cancer stem cells represent a minor subpopulation
of chemo-endocrine therapy-resistant cancer-initiating premalignant cells intrinsic to the
primary cancer. In cancer stem cells, normal regulatory pathways are disrupted, and
cancer cell survival pathways are activated. These survival pathways facilitate signaling
via RAS/BRAF/ MEK/ERK, PI3K/AKT and mTOR pathways, resulting in a growth
advantage to the cancer cell phenotype and effective drug resistance [13,22,25].

The common and unique characteristics of normal and cancer stem cells have been
utilized to develop reliable stem cell models to understand normal stem cell biology
and to facilitate mechanism-based investigations focused on drug discovery for testable
alternatives for therapy-resistant cancer. For example, stem cell signaling pathways such as
Wnt, Hedgehog NOTCH and p38 MAPK [26,27], and cell surface markers such as CD44,
CD133 and ALDH1 [28,29] may represent therapeutic targets for pharmacological small
molecule inhibitors as well as for naturally occurring compounds.

In addition to the stem cell models for breast and colon, similar models for other
organ site cancer are developed. For example, the models for head and neck cancer utilize
stem cell-enriched tumor spheroids [30]. Stem cell models for pancreas utilize pluripotent
stem cells [31,32]. These stem cell models provide valuable experimental approaches to
investigate phenotypic pluripotency, plasticity, therapy-resistant tumor progression and to
identify new compounds that may be effective in targeting stem cell population [33,34].

For the isolation of chemo-resistant breast and colon cancer stem cells, growth re-
sistance to prototypic chemo-endocrine therapeutics is used to select putative stem cell
phenotypes.

The selection of putative drug-resistant stem cells for breast and colon cancer models
is described in Table 4.

Table 4. Drug-resistant stem cell models.

Agent Concentration Stem Cell Model

Breast

Tamoxifen (TAM) 1.5 µM TAM-R Luminal A
Doxorubicin (DOX) 0.5 µM DOX-R TNBC

Colon

Sulindac (SUL) 10 µM SUL-R, FAP
5-fluoro-uracil (5-FU) 0.2 µM 5-FU-R, HNPCC

TAM-R, tamoxifen resistant; DOX-R, doxorubicin resistant; TNBC, triple-negative breast cancer; SUL-R, sulin-
dac resistant; FAP, familial adenomatous polyposis; 5-FU-R, 5-fluoro-uracil resistant; HNPCC, hereditary non-
polyposis colon cancer (Data summarized from [35,36]).

Long-term maintenance of the cells at high concentrations of TAM and DOX for breast
cancer and SUL and 5-FU for colon cancer results in the elimination of drug-sensitive phe-
notypes, as evidenced by the decreased viable cell number, and the progressive growth of
the resistant phenotypes, as evidenced by the increased number of tumor spheroids [35,36].
Actively growing putative stem cells are expanded in the presence of cytotoxic concen-
trations of TAM or DOX. The putative stem cells exhibit an increased number of tumor
spheroids (TS) in the TAM-R model for Luminal A breast cancer subtype, and in DOX-R
model for TNBC subtype. The data presented in Figure 2A–D illustrate the effective isola-
tion of putative stem cells in the breast cancer models. The statistical significance of the
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data for viable cell number is determined by the two-sample Student’s t test, and that for
tumor spheroid number is determined by the Chi square (X2) test.
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Figure 2. Isolation of drug-resistant putative stem cells in breast cancer models. (A) Decreased viable
cell number by treatment with TAM in TAM-S cells. EtOH versus TAM p = 0.01. (B) Increased tumor
spheroid number in TAM-R cells. TAM-S versus TAM-R p = 0.01. (C) Decreased viable cell number
by treatment with DOX in DOX-S cells. EtOH versus DOX p = 0.01. (D) Increased tumor spheroid
number in DOX-R cells. DOX-S versus DOX-R p = 0.01. Data analyzed by the two-way Student’s t test.
TAM, tamoxifen; TAM-S, TAM sensitive; TAM-R, TAM resistant; EtOH, ethanol; DOX, doxorubicin;
DOX-S, DOX sensitive; DOX-R, DOX resistant (data summarized from [35,37]).

The putative stem cells exhibit an increased number of tumor spheroids in SUL-R for
the FAP subtype and in the 5-FU-R model for the HNPCC subtype. The data presented
in Figure 3A–D illustrate the effective isolation of putative stem cells in the colon cancer
models. The statistical significance of the data on viable cell number is analyzed by the
two-sample Student’s t test, and that for tumor spheroid number is analyzed by the X2 test.

The characterization of drug-resistant stem cells is accomplished by determining the
status of select stem cell-specific cellular and molecular markers. These markers included
the cell surface proteins CD44 and CD133, and nuclear transcription factors NANOG,
OCT-4 and c-Myc. Several nuclear transcription factors such as OCT-4, Klf-4, SOX-2
and c-Myc also represent essential factors for the survival of induced pluripotent stem
cells [38,39]. These molecular endpoints are quantified by cellular uptake of relevant FITC
conjugated antibodies, and the data are expressed as log mean relative fluorescent units
per 104 fluorescent events [40]. The data summarized in Table 5 demonstrate that the
drug-resistant phenotypes exhibit upregulated expressions of the molecular markers for
cancer stem cells.
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Figure 3. Isolation of drug-resistant putative stem cells in colon cancer models. (A) Deceased viable
cell number by treatment with SUL in SUL-S cells. EtOH versus SUL p = 0.01. (B) Increased tumor
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5-FU resistant (Data summarized from [36,37]).
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Table 5. Marker expression in breast and colon cancer stem cell models.

Organ Type
Molecular Marker

Clinical Subtype
CD44 NANOG OCT-4

Breast

TAM-R + + + Luminal A

DOX-R + + + TNBC

Colon CD44 CD133 c-Myc

SUL-R + + + FAP

5-FU-R + + + HNPCC
Expression of CD, cluster of differentiation; NANOG, DNA binding homeobox transcription factor; OCT-4,
octamer binding transcription factor-4; c-Myc, cellular Myc. Data expressed as log mean RFU and + symbol
denotes upregulated expression relative to the drug-sensitive phenotype. TAM-R, tamoxifen-resistant; DOX-R,
doxorubicin-resistant; SUL-R, sulindac-resistant; 5-FU-R, 5-fluoro-uracil-resistant; RFU, relative fluorescent unit
(Data summarized from [37]).

3. Experimental Modulation

Evidence from integrative oncology has documented that herbal formulations used in
traditional Chinese medicine represent effective interventions for the prevention/treatment
of cancer [9–11]. Recent evidence has also suggested that natural products such as dietary
phytochemicals [41,42], natural products [43] and Chinese nutritional herbs, as well as their
constituent bioactive compounds [44], function as negative growth regulators via targeting
cancer stem cell signaling pathways to overcome chemo-resistance.

3.1. HER-2-Enriched Breast Cancer

For the treatment of the hormone receptor positive/HER-2 positive luminal B and
hormone receptor negative/HER positive HER-2-enriched breast cancer subtypes, the
small molecule inhibitor of EGF and /HER-2 receptors lapatanib is commonly used. The
184-B5/HER cell line represents a cellular model for the hormone receptor-negative HER-
2-positive HER-2-enriched breast cancer subtype. The 184-B5/HER cells provided the
lapatinib-resistant (LAP-R) stem cell model that was developed by the selection and expan-
sion of the surviving cell population in the presence of LAP. The data in Table 6 illustrate
that the naturally occurring terpene carnosol effectively inhibits tumor spheroid formation
and downregulates the expression of CD44, NANOG and OCT-4. The statistical signifi-
cance of the data for TS are determined by the X2 test, and that for CD44, NANOG and
OCT-4 are determined by the two-sample Student’s t test.

Table 6. Experimental modulation of stem cell markers in the lapatinib-resistant (LAP-R) breast
cancer model.

Treatment Concentration
Stem Cell Markers

TS CD44 NANOG OCT-4

DMSO 0.1% 14.8 ± 1.9 20.8 ± 4.4 11.8 ± 3.1 14.2 ± 3.8
CSOL 5 µM 1.9 ± 0.2 2.9 ± 0.6 2.7 ± 0.7 2.9 ± 0.9
X2 7.74
p-value 0.010 0.010 0.020 0.020
Inhibition 87.2% 86.0% 77.1% 79.6%

TS, tumor spheroid number; CD44, cluster of differentiation 44; NANOG, DNA binding homeobox transcription
factor; OCT-4, octamer binding transcription factor-4. Data expressed as log mean RFU. DMSO, dimethyl sulfoxide;
CSOL, carnosol; RFU, relative fluorescent unit (Data summarized from [37]).
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3.2. FAP Model for Colon Cancer

The non-steroidal anti-inflammatory drug sulindac (SUL) has documented preclinical
efficacy in the 850MIN/+ mouse model for FAP syndrome. SUL is also used in the clinical
therapy of FAP patients and patients with sporadic colon cancer.

The 1638N COL cells provided the sulindac-resistant (SUL-R) stem cell model that
was developed by the selection and expansion of surviving cell population in the presence
of SUL. The data in Table 7 illustrate that curcumin (CUR), a bioactive agent present in the
Asian spice turmeric, inhibits TS formation and downregulates the expressions of CD44,
CD133 and c-Myc. The statistical significance of the data for TS are determined by the
X2 test, and that for CD44, CD133 and c-Myc are determined by the two-sample Student’s
t test.

Table 7. Experimental modulation of stem cell markers in the Sulindac-resistant SUL-R colon
cancer model.

Treatment Concentration
Stem Cell Markers

TS CD44 CD133 c-Myc

EtOH 0.01% 20.1 ± 4.0 15.9 ± 3.4 16.7 ± 3.4 8.3 ± 1.8

CUR 10 µM 4.0 ± 0.3 3.5 ± 0.3 5.3 ± 0.5 3.8 ± 0.4

X2 7.74

p-value <0.01 0.01 0.01 0.03

Inhibition 80.1% 77.9% 68.3% 54.2%
TS, tumor spheroid number; CD, clusters of differentiation; c-Myc, cellular Myc. Data expressed as RFU.
EtOH, ethanol; CUR, curcumin; RFU, relative fluorescent unit (Data summarized from [36]).

4. Conclusions

The development of drug-resistant stem cell models for breast and colon cancer
subtypes validates mechanism-driven experimental approaches that may prioritize drug
discovery of novel alternatives that target drug-resistant stem cells. The data discussed
in the present review provide a scientifically robust rationale for additional experiments
focusing on the experimental modulation of ubiquitous transcription factors in cell signaling
pathways of drug-resistant cancer stem cells [11–14,37,41–46].

5. Future Research

Spontaneous or acquired resistance to conventional and molecularly targeted therapy,
and potential cross-resistance to individual therapeutic agents represent a formidable
challenge for new drug discovery of stem cell targeting compounds [12–14,47–49].

Telomerase, an RNA–protein complex, adds hexameric repeats of 5′-TTAGGG-3′ to
the telomeres and regulates DNA replication in normal proliferating cells prior to the onset
of replicative senescence. Somatic cells lack the expression of telomerase. However, in
immortalized cells and in cancer-derived cells, this enzyme is re-expressed in cells that
escape replicative senescence [50,51]. Differentiation-inducing agents, natural products
and small molecule inhibitors may represent novel testable alternatives for telomerase
inhibitory activity.

Small molecule inhibitors functioning as epigenetic modifiers [33,34] may represent
testable alternatives for drug resistant stem cells. Evidence has been published from
organoid cultures for head and neck cancer [30], non-small cell lung cancer [52], and
pancreatic ductal adenocarcinoma [31,32,53,54]. This evidence provides scientifically robust
rationale for future research directions. Collectively, the mechanistic leads for telomerase
inhibitors and epigenetic modifiers suggest their efficacy independent of therapy resistance
in cancer stem cells.

It needs to be recognized that data generated from established cell lines are dependent
on extrapolation for their clinical relevance and translatability. Future investigations focus-
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ing on the development of stem cell models from patient-derived therapy-resistant tumor
samples, tumor organoids [55–60] and ex vivo organ culture explants [61,62] may reduce
the need for extrapolation, and facilitate the discovery of novel efficacious compounds.
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