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In the original particle swarm optimisation (PSO) algorithm, the particles’ velocities and positions are updated after the whole
swarm performance is evaluated.This algorithm is also known as synchronous PSO (S-PSO).The strength of this update method is
in the exploitation of the information. Asynchronous update PSO (A-PSO) has been proposed as an alternative to S-PSO. A particle
in A-PSO updates its velocity and position as soon as its own performance has been evaluated. Hence, particles are updated using
partial information, leading to stronger exploration. In this paper, we attempt to improve PSO by merging both update methods
to utilise the strengths of both methods. The proposed synchronous-asynchronous PSO (SA-PSO) algorithm divides the particles
into smaller groups. The best member of a group and the swarm’s best are chosen to lead the search. Members within a group
are updated synchronously, while the groups themselves are asynchronously updated. Five well-known unimodal functions, four
multimodal functions, and a real world optimisation problem are used to study the performance of SA-PSO,which is comparedwith
the performances of S-PSO and A-PSO. The results are statistically analysed and show that the proposed SA-PSO has performed
consistently well.

1. Introduction

Particle swarm optimisation (PSO) was introduced by Ken-
nedy and Eberhart in 1995 [1]. It is a swarm-based stochastic
optimisation algorithm that mimics the social behaviour of
organisms such as birds and fishes. These organisms’ success
in looking for food source is achieved through individual
effort as well as corporation with surrounding neighbours.
In PSO, the individuals are represented by a swarm of agents
called particles. The particles move within the search area
to find the optimal solution by updating their velocity and
position.These values are influenced by the experience of the
particles and their social interactions.The PSO algorithm has
been successfully applied in various fields, such as human
tremor analysis for biomedical engineering [2, 3], electric
power and voltage management [4], machine scheduling [5],
robotics [6], and VLSI circuit design [7].

Since its introduction, PSO has undergone numerous
evolutionary processes. Many variations of PSO have been
proposed to improve the effectiveness of the algorithm. Some
of the improvement involves introduction of a new parameter
to the algorithm such as inertia weight [8] and constriction
factor [9], while others focus on solving specific type of
problems such asmultiobjective optimization [10, 11], discrete
optimization problems [12, 13], and dynamic optimization
problems [14].

Here we focus on the effect of the particles’ update seque-
nce on the performance of PSO. In the original PSO, a
particle’s information on its neighbourhood’s best found
solution is updated after the performance of the whole swarm
is evaluated. This version of PSO algorithm is known as syn-
chronous PSO (S-PSO). The synchronous update in S-PSO
provides the perfect information concerning the particles,
thus allowing the swarm to choose a better neighbour and
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exploit the information provided by this neighbour. How-
ever, this strategy could cause the particles to converge too
fast.

Another variation of PSO, known as asynchronous PSO
(A-PSO), has been discussed by Carlisle and Dozier [15]. In
A-PSO, the best solutions are updated as soon as a particle’s
performance has been evaluated.Therefore, a particle’s search
is guided by the partial or imperfect information from
its neighbourhood. This strategy leads to diversity in the
swarm [16], wherein the particles updated at the beginning
of an iteration use more information from the previous
iterationwhile particles at the end of the iteration are updated
based on the information from the current iteration [17].
In several studies [15, 16, 18], A-PSO has been claimed to
perform better than S-PSO. Xue et al. [19] reported that
asynchronous updates contribute to a shorter execution time.
Imperfect information due to asynchronous updates causes
the information of the current best found solution to be
communicated to the particlesmore slowly, thus encouraging
more exploration. However, a study conducted by Juan et al.
[20] reported that S-PSO is better than A-PSO in terms of the
quality of the solution and also the convergence speed. This
is due to the stronger exploitation.

The synchronicity of the particles influences exploration
and exploitation among the particles [17]. Exploration and
exploitation play important roles in determining the quality
of a solution. Exploration in asynchronous update ensures
that the search space is thoroughly searched so that the
area containing the best solution is discovered. However,
exploitation in synchronous update helps to fine tune the
search so that the best solution can be found. Hence, in
this paper, we attempt to improve the PSO algorithm by
merging both synchronous and asynchronous updates in
the search process so that the advantages of both methods
can be utilised. The proposed algorithm, which is named
as the synchronous-asynchronous PSO (SA-PSO), divides
the particles into smaller groups. These groups are updated
asynchronously, while members within the same group
are updated synchronously. After the performance of all
the particles in a group is evaluated, the velocities and
positions of the particles are updated using a combination
of information from the current iteration of their own
group and the groups updated before them, as well as the
information from the previous iteration of the groups that
have not yet been updated. The search for the optimal
solution in SA-PSO is led by the groups’ best members
together with the swarm’s best. This strategy is different
from the original S-PSO and A-PSO, where the search is led
by the particles’ own experience together with the swarm’s
best.

The rest of the paper is organised as follows. The S-PSO
and A-PSO algorithms are discussed in Section 2. The pro-
posed SA-PSO algorithm is described in detail in Section 3.
In Section 4, the performance of the SA-PSO algorithm is
evaluated using ten benchmark functions comprising of five
unimodal functions, four multimodal functions, and a real
world optimisation problem. The results of the tests are
presented and discussed in Section 5. Our conclusions are
presented in Section 6.

2. Particle Swarm Optimisation

2.1. Synchronous PSO. In PSO, the search for the optimal
solution is conducted by a swarm of 𝑃 particles. At time 𝑡,
the 𝑖th particle has a position, 𝑥

𝑖
(𝑡), and a velocity, V

𝑖
(𝑡). The

position represents a solution suggested by the particle while
velocity is the rate of change from the current position to
the next position. At the beginning of the algorithm, these
two values (position and velocity) are randomly initialised.
In subsequent iterations, the search process is conducted
by updating the position and velocity using the following
equations:

V
𝑖 (𝑡) = 𝜔V

𝑖 (𝑡 − 1) + 𝑐1𝑟1 (𝑝Best𝑖 − 𝑥𝑖 (𝑡 − 1))

+ 𝑐
2
𝑟
2
(𝑔Best − 𝑥

𝑖 (𝑡 − 1)) ,

(1)

𝑥
𝑖 (𝑡) = V

𝑖 (𝑡) + 𝑥𝑖 (𝑡 − 1) . (2)

To prevent the particles from venturing too far from the
feasible region, the V

𝑖
(𝑡) value is clamped to ±𝑉max. If the

value of 𝑉max is too large, then the exploration range is too
wide. Conversely, if the value of 𝑉max is too small, then the
particles will favour the local search [21]. In (1), 𝑐

1
and 𝑐
2
are

the learning factors that control the effect of the cognitive
and social influence on a particle. Typically, both 𝑐

1
and 𝑐
2

are set to 2 [22]. Two independent random numbers 𝑟
1
and

𝑟
2
in the range [0.0, 1.0] are incorporated into the velocity

equation. These random terms provide stochastic behaviour
to the particles, thus encouraging them to explore a wider
area. Inertia weight, 𝜔, which is a term added to improve the
PSO’s performance, controls the particles’ momentum.When
a good area is found, the particles can switch to fine tuning by
manipulating𝜔 [8]. To ensure convergence, a time decreasing
inertia weight is more favourable than a fixed inertia weight
[21]. This is because a large inertia weight at the beginning
helps to find a good area through exploration and a small
inertia weight towards the end—when typically a good area
is already found—facilitates fine tuning. The small inertia
weight at the end of the search reduces the global search
activity [23].

An individual success in PSO is affected not only by the
particle’s own effort and experience but also by the infor-
mation shared by its surrounding neighbours. The particle’s
experience is represented in (1) by 𝑝Best

𝑖
, which is the best

position found so far by the 𝑖th particle. The neighbours’
influence is represented by 𝑔Best, which is the best position
found by the swarm up to the current iteration.

The particle’s position, 𝑥
𝑖
(𝑡), is updated using (2), in

which a particle’s next search is launched from its previous
position and the new search is influenced by the past search
[24]. Typically, 𝑥

𝑖
(𝑡) is bounded to prevent the particles from

searching in an infeasible region [25]. The quality of 𝑥
𝑖
(𝑡) is

evaluated by a problem-dependent fitness function. Each of
the particles is evaluated to determine its current fitness. If
a new position with a better fitness than the current fitness
of 𝑔Best or 𝑝Best

𝑖
or both is found, then the new position

value will accordingly be saved as 𝑔Best or 𝑝Best
𝑖
; otherwise

the old best values will be adopted. This update process
continues until the stopping criterion is met, when either the
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Figure 1: S-PSO flowchart.

maximum iteration limit,𝑇, is achieved or the target solution
is attained.Therefore, for a swarmwith𝑃 number of particles,
themaximumnumber of fitness evaluation in a run is (𝑃×𝑇).

The original PSO algorithm is shown in the flowchart
of Figure 1. As shown in the algorithm, the particles’ 𝑝Best

𝑖

and 𝑔Best updates are conducted after the fitness of all the
particles has been evaluated. Therefore, this version of PSO
is known as synchronous PSO (S-PSO). Because the 𝑝Best

𝑖

and 𝑔Best are updated after all the particles are evaluated, S-
PSO ensures that all the particles receive perfect and complete
information about their neighbourhood, leading to a better
choice of 𝑔Best and thus allowing the particles to exploit this
information so that a better solution can be found. However,
this possibly leads the particles in S-PSO to converge faster,
resulting in a premature convergence.

2.2. Asynchronous PSO. In S-PSO, a particle must wait for
the whole swarm to be evaluated before it can move to a
new position and continue its search.Thus, the first evaluated
particle is idle for the longest time, waiting for the whole
swarm to be updated. An alternative to S-PSO is A-PSO,
in which the particles are updated based on the current
state of the swarm. A particle in A-PSO is updated as soon
as its fitness is evaluated. The particle selects 𝑔Best using
a combination of information from the current and the
previous iteration. This is different from S-PSO, in which
all the particles use information from the same iteration.
Consequently, in A-PSO, particles of the same iterationmight
use various values of 𝑔Best, as it is selected based on the
available information during a particle’s update process.
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Figure 2: A-PSO flowchart.

The flowchart in Figure 2 shows the A-PSO algorithm.
The flow of A-PSO is different than S-PSO; however the
fitness function is still called for 𝑃 times per iteration, once
for each particle. Therefore, the maximum number of fitness
evaluation is (𝑃×𝑇).This is similar to S-PSO.The velocity and
position are calculated using the same equations as S-PSO.

Other than the variety of information, the lack of syn-
chronicity in A-PSO solves the issue of idle particles faced
in S-PSO [26]. An asynchronous update also enables the
update sequence of the particles to change dynamically or a
particle to be updated more than once [26, 27]. The change
in the update sequence offers different levels of available
information among the particles, and such differences can
prevent the particles from being trapped in local optima [17].

3. The Proposed Synchronous-Asynchronous
PSO (SA-PSO)

In this paper, the PSO algorithm is improved bymerging both
update methods. The proposed algorithm, synchronous-
asynchronous PSO (SA-PSO), divides the particles into
smaller groups. In S-PSO andA-PSO, the particles learn from
their own best experience, 𝑝Best𝑐

𝑖
and 𝑔Best. However, in the

proposed algorithm, instead of using their own experience,
the particles learn from their group’s performance.

The algorithm proposed is presented in the flowchart
shown in Figure 3. The algorithm starts with initialisation
of particles. The particles in SA-PSO are divided into 𝐶

groups, each of which consists of 𝑁 number of particles.
Initially,𝐶 central particles, one for each group, are randomly
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initializedwithin the search space.This is followed by random
placement of𝑁 − 1 number of members for each group. The
distances of members are within the radius of ±Δ from the
central particle of their respective groups. Therefore, Δ is the
maximum distance of a particle from the central particle of
its group. This parameter is only used once throughout the
execution of the algorithm—during the initialisation phase.
Group memberships remain fixed throughout the search
process. The total number of particles, 𝑃, is 𝐶 × 𝑁 for the
SA-PSO algorithm.

The groups are updated one by one; that is, asynchronous
update is used across groups. The particles from the group
that is being updated use three groups of information to
update their velocity. The first group of information is the
current information of the particles’ group members; the
particles use this information to try to match their group’s
best performer. The particles also use recent information
from the groups that were updated earlier and information
from the previous iteration for the groups to be updated later.

When a group is updated, the group members’ velocity
and position updates are performed after the whole group
performance is evaluated. Therefore, the particles in a group
are updated synchronously.

When a group evaluates the performance of its members,
the fitness function is called for 𝑁 times. One by one of the
groups’ members are updated in an iteration. Since there is
𝐶 number of groups, hence the fitness function is called for
𝐶 × 𝑁 times, which is equivalent to 𝑃 times per iteration.
Therefore, although the particles in SA-PSO are divided into

Table 1: Parameters setting for S-PSO, A-PSO, and SA-PSO.

Parameter Value
Number of runs for each experiment 500
Number of iterations 2000
Velocity clamping, 𝑉max 4
Range of inertia weight, 𝜔 0.9–0.4
Learning factors
𝑐
1

2
𝑐
2

2

groups, the maximum number of fitness evaluation per run
is the same as S-PSO and A-PSO which is (𝑃 × 𝑇).

The velocity at time 𝑡 of 𝑖th particle that belongs to 𝑐th
group, V𝑐

𝑖
(𝑡), is updated using the following equation:

V𝑐
𝑖
(𝑡) = 𝜔V𝑐

𝑖
(𝑡 − 1) + 𝑐1𝑟1 (𝑐Best𝑐 − 𝑥

𝑐

𝑖
(𝑡 − 1))

+ 𝑐
2
𝑟
2
(𝑔Best − 𝑥𝑐

𝑖
(𝑡 − 1)) .

(3)

Equation (3) shows that the information used to update the
velocity are 𝑐Best

𝑐
and 𝑔Best. 𝑐Best

𝑐
is the best member of

𝑐th group, where 𝑐 is [1, 𝐶], and it is chosen among the
particle’s best of 𝑐th group, 𝑝Best𝑐

𝑖
. This value, together with

the swarm’s best, 𝑔Best, leads the particles’ search in the SA-
PSO algorithm. The 𝑔Best is updated after all once a new
𝑐Best
𝑐
outperforms 𝑔Best. Thus, 𝑔Best is the best 𝑐Best

𝑐
. The

communication among the groups in SA-PSO is conducted
through the best performing member of the groups. The
position of the particle, 𝑥𝑐

𝑖
(𝑡), is updated using

𝑥
𝑐

𝑖
(𝑡) = V𝑐

𝑖
(𝑡) + 𝑥

𝑐

𝑖
(𝑡 − 1) . (4)

The algorithm is ended when either the ideal fitness is
achieved or maximum iteration is reached.

The SA-PSO algorithm takes advantage of both A-
PSO and S-PSO algorithms. In A-PSO, the particles are
updated using imperfect information, which contributes to
the diversity and exploration. In S-PSO, the quality of the
solution found is ensured by evaluating the performance of
the whole swarm first. The S-PSO particles are then updated
by exploiting this information. The asynchronous update
characteristic of A-PSO is imitated by SA-PSO by updating
the groups one after another. Hence, members of a group
are updated using the information from mixed iterations.
This strategy encourages exploration due to the imperfect
information. However, the performance of all members of
a group in SA-PSO is evaluated first before the velocity and
position update process starts.This is the synchronous aspect
of SA-PSO. It provides the complete information of the group
and allows the members to exploit the available information.

4. Experiments

The proposed SA-PSO and the existing S-PSO and A-PSO
were implemented using MATLAB. The parameter settings
are summarised in Table 1. Each experiment was subjected to
500 runs. The initial velocity was set to random value subject
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Figure 4: Continued.
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Figure 4: Results of experiments on unimodal functions.

to the velocity clamping range, ±𝑉max. The position of the
particles was randomly initialised within the search space.
A linear decreasing inertia weight ranging from 0.9 to 0.4
was employed to encourage fine tuning towards the end of
the search. The cognitive and social learning factors were set
to 2 which is a typical value for 𝑐

1
and 𝑐
2
. The search was

terminated either due to the number of iterations reaching
2000 or the ideal solution being found. The maximum
number of iteration is set to 2000 to limit the computational
time taken. The final 𝑔Best values were recorded. The setting
for the additional parameters in SA-PSO is given in Table 2.
Exclusively for SA-PSO, the members of the groups were
randomly initialised with their distance to group centres,
Δ. The group centres were randomly initialised within the
boundary of the search space.

A group of benchmark test problems had been iden-
tified for assessing the performance of the proposed SA-
PSO and the original S-PSO and A-PSO algorithms. The
benchmark test problems consist of five unimodal functions,
four multimodal functions, and one real world optimisation

Table 2: Parameters setting for the additional parameters in SA-
PSO.

Parameter Value
Number of groups, 𝐶 5
Group size (particles per
group) 10

Initial distance to group
centre, Δ

50% of the length of the
search space

problem, namely, frequency-modulated (FM) sound wave
synthesis which is taken from CEC2011 competition on
testing evolutionary algorithms on real world optimisation
problems [28]. These functions are given in Table 3. All
functions used are minimisation functions with ideal fitness
value of 𝑓(𝑥) = 0. The dimension of the unimodal and
multimodal problems, 𝑛, was set to 30. The search spaces
for these problems are therefore high dimensional [29, 30].
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Table 3: Test functions.

Function type Function name Equation

Unimodal

Quadric
𝑓
1
(𝑥) =

𝑛

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

where −100 ≤ 𝑥
𝑗
≤ 100

Quartic
𝑓
2
(𝑥) =

𝑛

∑

𝑖=1

𝑖𝑥
4

𝑖

where −1.28 ≤ 𝑥
𝑖
≤ 1.28

Rosenbrock 𝑓
3
(𝑥) =

𝑛−1

∑

𝑖=1

[100(𝑥
2

𝑖
− 𝑥
𝑖+1
)
2

+ (𝑥
𝑖
− 1)
2

]

where −2.048 ≤ 𝑥
𝑖
≤ 2.048

Spherical/De Jong’s
𝑓
4
(𝑥) =

𝑛

∑

𝑖=1

𝑥
2

𝑖

where −5.12 ≤ 𝑥
𝑖
≤ 5.12

Hyperellipsoid
𝑓
5
(𝑥) =

𝑛

∑

𝑖=1

𝑖𝑥
2

𝑖

where −5.12 ≤ 𝑥
𝑖
≤ 5.12

Multimodal

Ackley 𝑓
6
(𝑥) = 20 + 𝑒 − 20 exp[−0.2√ 1

𝑛

𝑛

∑

𝑖=1

𝑥
2

𝑖
] − exp[1

𝑛

𝑛

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)]

where −32.768 ≤ 𝑥
𝑖
≤ 32.768

Griewank
𝑓
7
(𝑥) = 1 +

1

4000

𝑛

∑

𝑖=1

𝑥
2

𝑖
−

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

)

where −600 ≤ 𝑥
𝑖
≤ 600

Rastrigin
𝑓
8
(𝑥) = 10𝑛 +

𝑛

∑

𝑖=1

[𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
)]

where −5.12 ≤ 𝑥
𝑖
≤ 5.12

Salomon 𝑓
9
(𝑥) = 1 − cos(2𝜋√

𝑛

∑

𝑖=1

𝑥
2

𝑖
) + 0.1√

𝑛

∑

𝑖=1

𝑥
2

𝑖

where −600 ≤ 𝑥
𝑖
≤ 600

Real world problem FM sound wave

𝑦 (𝑡) = 𝑥
1
sin (𝑥

2
𝑡𝜃 + 𝑥

3
sin (𝑥

4
𝑡𝜃 + 𝑥

5
sin (𝑥

6
𝑡𝜃)))

𝑦
0
(𝑡) = (1) sin ((5) 𝑡𝜃 + (−1.5) sin ((4.8) 𝑡𝜃 + (2.0) sin ((4.9) 𝑡𝜃)))

𝑓
10
(𝑥) =

100

∑

𝑡=0

(𝑦 (𝑡) − 𝑦
0
(𝑡))
2

where 𝜃 = 2𝜋

100
and −6.4 ≤ 𝑥

𝑖
≤ 6.35

Note that the FM sound wave problem is a six-dimensional
problem.

The solutions found by the algorithms tested are pre-
sented here using boxplot. A boxplot shows the quality and
also the consistency of an algorithm’s performance. The size
of the box shows the magnitude of the variance of the results;
thus a smaller box suggests a consistent performance of the
algorithm. Because the benchmark functions used in this
study areminimisation problems, a lower boxplot is desirable
as it indicates better quality of the solutions found.

The algorithms are compared using a nonparametric test
due to the nature of the solutions found, where they are not
normally distributed. The test chosen is the Friedman test
with significance level 𝛼 = 0.05. This test is suitable for
comparison ofmore than two algorithms [31].The algorithms
are first ranked based on their average performance for
each benchmark function. The average rank is then used
to calculate the Friedman statistic value. According to the
test, if the statistic value is lesser than the critical value,
the algorithms tested are identical to each other; otherwise,

significant differences exist. If a significant difference is
found, the algorithms are then compared using a post hoc
procedure. The chosen post hoc procedure here is the Holm
procedure. It is able to pinpoint the algorithms that are not
identical to each other, a result that cannot be detected by the
Friedman test.

5. Results and Discussion

5.1. SA-PSO versus S-PSO and A-PSO. The boxplots in
Figure 4 show the quality of the results for unimodal test
functions using the three algorithms. The results obtained
by S-PSO and A-PSO algorithms contain multiple outliers.
These out-of-norm observations are caused by the stochastic
behaviour of the algorithms. The proposed SA-PSO exhibits
no outliers for the unimodal test functions. The particles in
SA-PSO are led by two particles with good experience, 𝑔Best
and 𝑐Best

𝑐
, instead of 𝑔Best only like S-PSO and A-PSO.

Learning from 𝑐Best
𝑐
of each group reduces the effect of the

stochastic behaviour in SA-PSO.
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Figure 5: Results of experiments on multimodal functions.
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Table 4: Friedman test on the results of the experiments.

S-PSO A-PSO SA-PSO

Quadric Mean 305.4320 131.4246 0.0537
Friedman rank 3 2 1

Quartic Mean 1.9524 3.0793 0.0000
Friedman rank 2 3 1

Rosenbrock Mean 58.7646 71.5899 37.9161
Friedman rank 2 3 1

Spherical Mean 0.0963 0.1628 0.0000
Friedman rank 2 3 1

Hyperellipsoid Mean 0.4151 2.5037 0.0000
Friedman rank 2 3 1

Ackley Mean 0.0941 0.0898 0.0000
Friedman rank 3 2 1

Griewank Mean 317.8628 371.7447 0.0071
Friedman rank 2 3 1

Rastrigin Mean 38.6035 42.2694 36.1207
Friedman rank 2 3 1

Salomon Mean 0.3227 0.3211 0.3263
Friedman rank 2 1 3

FM sound wave Mean 5.7751 5.4484 5.7402
Friedman rank 3 1 2

Average Friedman rank 2.3 2.4 1.3

Table 5: Holm procedure on the results of the experiments.

Dataset 𝑧 𝑃 Holm
A-PSO versus SA-PSO 2.4597 0.0139 0.0167
S-PSO versus SA-PSO 2.2361 0.0253 0.0250
S-PSO versus A-PSO 0.2236 0.8231 0.0500

Table 6: Experimental setup for size of groups.

Number of particles Size of groups
20 4
25 5
30 6
35 7
40 8
45 9
50 10

The presence of the outliers makes it difficult to observe
the variance of the results through the box plot. Therefore,
the outliers are trimmed in the boxplots of Figures 4(b), 4(d),
4(f), 4(h), and 4(j). The benchmark functions tested here
are minimisation functions; hence, a lower boxplot indicates
better quality of the algorithm. It can be observed from the
figure that SA-PSO continuously gives good performance in
all the unimodal functions tested. The sizes of the boxplots
show that the SA-PSO algorithm provides a more consistent
performance with smaller variance.

Table 7: Experimental setup for number of groups.

Number of particles Number of groups
20 4
25 5
30 6
35 7
40 8
45 9
50 10

The results of the test onmultimodal problems are shown
in the boxplots in Figure 5. S-PSO and A-PSO have outliers
for Ackley and Rastrigin while SA-PSO only has outliers
in the results of Rastrigin. The Rastrigin function has a
nonprotruding minima, which complicates the convergence
[32]. However, SA-PSOhas fewer outliers compared to S-PSO
and A-PSO.This observation once again proves the efficiency
of learning from two good particles, 𝑔Best and 𝑐Best

𝑐
.

Similar to the boxplots for unimodal test functions,
the boxplots, after trimming of the outliers, show that the
variance of the solutions found by SA-PSO is small. The
variance proves the consistency of SA-PSO’s performance.
SA-PSO foundmuch better results for the Griewank function
compared to the other two algorithms.

The three algorithms tested have similar performance for
the FM sound wave parameter estimation problem as shown
in Figure 6. However, from the distribution of the solution in
the boxplot, it could be seen that SA-PSO and A-PSO have
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Table 8: Average results on the experiments involving the size of group.

Size of groups Quadric Quartic Rosenbrock Spherical Hyperellipsoid Ackley Griewank Rastrigin Salomon
4 1.3459 5.183𝐸 − 11 45.3448 4.285𝐸 − 08 4.805𝐸 − 07 0.0184 0.0081 51.6422 0.3847
5 0.7224 1.289𝐸 − 12 41.0048 0.445 2.275𝐸 − 08 0.0089 0.0074 46.2869 0.3663
6 0.3932 1.925𝐸 − 13 41.5781 4.594𝐸 − 10 4.621𝐸 − 09 1.3387𝐸 − 05 0.007 43.886 0.3505
7 0.223 1.09𝐸 − 14 38.6543 7.226𝐸 − 11 7.833𝐸 − 10 6.9718𝐸 − 06 0.0072 41.6152 0.3396
8 0.1357 1.485𝐸 − 15 38.4704 1.637𝐸 − 11 2.455𝐸 − 10 3.5115𝐸 − 06 0.0068 39.9117 0.3315
9 0.0896 2.63𝐸 − 16 39.4469 6.376𝐸 − 12 8.392𝐸 − 11 1.9843𝐸 − 06 0.0073 38.2884 0.3297
10 0.0537 4.735𝐸 − 17 37.9161 4.086𝐸 − 12 2.704𝐸 − 11 1.1777𝐸 − 06 0.0071 36.1207 0.3263

Table 9: Average results on the experiments involving the number of groups.

Number of groups Quadric Quartic Rosenbrock Spherical Hyperellipsoid Ackley Griewank Rastrigin Salomon
4 1.1854 0.262 45.3952 2.864𝐸 − 06 4.349𝐸 − 07 0.0167 0.0073 51.9996 0.3941
5 0.7224 1.289𝐸 − 12 41.0048 0.445 2.275𝐸 − 08 0.0089 0.0074 46.2869 0.3663
6 0.462 1.381𝐸 − 13 39.7459 9.038𝐸 − 10 9.866𝐸 − 09 0.0027 0.0073 43.3588 0.3453
7 0.3886 9.477𝐸 − 14 39.66 1.205𝐸 − 10 1.79𝐸 − 09 9.4418𝐸 − 06 0.0071 40.1133 0.3297
8 0.3013 2.671𝐸 − 14 40.0051 5.109𝐸 − 11 7.606𝐸 − 10 6.1644𝐸 − 06 0.0075 38.2584 0.3193
9 0.25 5.154𝐸 − 15 40.682 0.1889 3.668𝐸 − 10 4.2811𝐸 − 06 0.0067 36.3674 0.3141
10 0.2111 3.448𝐸 − 15 37.3187 1.824𝐸 − 11 2.134𝐸 − 10 3.1415𝐸 − 06 0.0068 35.7875 0.3093

S-PSO A-PSO SA-PSO
0

5

10

15

20

25

Figure 6: Results of experiments on parameter estimation for FM
sound wave.

slightly better performance than S-PSO as more solutions
found are at the lower part of the box.

In Table 4, the Friedman test is conducted to analyse
whether significant differences exist between the algorithms.
The performances of the algorithms for all test functions are
ranked based on their mean value. The means used here are
calculated inclusive of the outliers because the outliers are
genuine outliers that are neither measurement nor clerical
errors and are therefore valid solutions.Themeans are shown
in the boxplots (before trimming of outliers) using the ∗
symbol. According to the Friedman test, SA-PSO ranked
the best among the three algorithms. The Friedman statistic
value shows that significant differences exist between the
algorithms.Therefore, the Holm procedure is conducted, and
the three algorithms are compared against each other. The
results in Table 5 show that there is significant difference

between SA-PSO and the A-PSO algorithm. The Holm
procedure also shows that the performance of SA-PSO is on
a par with S-PSO.

5.2. Effect of SA-PSO Parameters. The number of particles
can influence the size and the number of groups. To study
the effect of these parameters, the number of particles is
varied from 20 to 50. Only test functions one to nine are used
here as they have similar dimension.There are 7 experiments
conducted each for size of the groups and number of groups
as listed in Tables 6 and 7. In the experiments for the size of
the group, the number of groups is fixed at 5 and the size of
the groups is increased from 4 to 10 members. The effect of
the number of groups is studied using groups of 5 members;
the number of groups is increased from 4, 5, 6, 7, 8, 9, and
10.

The average results for the effect of size of groups and
number of groups are presented in Tables 8 and 9. Generally
the results show that, similar to the original PSO algorithm,
the number of particles affects the performance of SA-PSO.
A higher number of particles, that is, bigger groups or higher
number of groups, contributes to a better performance.
However, the effect is also influenced by the test function.
This can be observed in Figure 7, for quadric and Ackley
functions, the effect is more obvious compared to other
functions.

Friedman test is performed on the experimental results
in Tables 8 and 9. The test is conducted to study the effect of
number of group and group’s size on SA-PSO’s performance.
The average rank is presented in Table 10.

The result of Friedman test shows that significant dif-
ference exists in the SA-PSO performance for different
number of groups. Hence, Holm procedure is conducted
and its statistical values are tabulated in Table 11. The result
of the Holm procedure shows that significant differences
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Figure 7: Continued.
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Figure 7: Effect of number of groups and group size.
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Table 10: Friedman test on the effect of number of groups and group
size.

Number of groups 4 5 6 7 8 9 20
Average Friedman
rank 6.50 6.11 4.61 3.56 3.44 2.67 1.11

Size of groups 4 5 6 7 8 9 20
Average Friedman
rank 6.89 6.00 4.78 3.89 2.67 2.56 1.22

Table 11: Holm procedure on the effect of number of groups.

Dataset 𝑃 𝑧 Holm
4 groups versus 10 groups 0.0000 5.2918 0.0024
5 groups versus 10 groups 0.0000 4.9099 0.0025
4 groups versus 9 groups 0.0002 3.7643 0.0026
6 groups versus 10 groups 0.0006 3.4369 0.0028
5 groups versus 9 groups 0.0007 3.3824 0.0029
4 groups versus 8 groups 0.0027 3.0005 0.0031
4 groups versus 7 groups 0.0038 2.8914 0.0033
5 groups versus 8 groups 0.0088 2.6186 0.0036
5 groups versus 7 groups 0.0121 2.5095 0.0038
7 groups versus 10 groups 0.0164 2.4004 0.0042
8 groups versus 10 groups 0.0219 2.2913 0.0045
6 groups versus 9 groups 0.0562 1.9094 0.0050
4 groups versus 6 groups 0.0636 1.8549 0.0056
9 groups versus 10 groups 0.1266 1.5275 0.0063
5 groups versus 6 groups 0.1408 1.4730 0.0071
6 groups versus 8 groups 0.2519 1.1456 0.0083
6 groups versus 7 groups 0.3000 1.0365 0.0100
7 groups versus 9 groups 0.3827 0.8729 0.0125
8 groups versus 9 groups 0.4450 0.7638 0.0167
4 groups versus 5 groups 0.7025 0.3819 0.0250
7 groups versus 8 groups 0.9131 0.1091 0.0500

exist between SA-PSO implementations if the populations in
each implementation consist of unequal number of groups
and the difference in the number of groups is greater than
three.

The Friedman test performed on the effect of the group
size shows that the SA-PSO implemented with groups of
different sizes are significantly different. This observation
is further studied using Holm procedure as in Table 12.
The outcome of Holm procedure reveals that significant
difference exists between two implementations of SA-PSO
algorithm if the difference in the group size is greater than
three particles.

Δ is a new parameter introduced in SA-PSO. It represents
the maximum distance of a particle to its group head during
the initialisation stage of the algorithm. The value of Δ
determines the distribution of the particles within the search
space. A small Δ will result in close groups, while a large
Δ will result in groups with a bigger radius. The effect of Δ
is tested here, and the test parameters are listed in Table 13.
For each of the test functions, the Δ value is set to 1%, 5%,

Table 12: Holm procedure on the effect of group size.

Dataset 𝑃 𝑧 Holm
4 members versus 10 members 0.0000 5.5646 0.0024
5 members versus 10 members 0.0000 4.6917 0.0025
4 members versus 9 members 0.0000 4.2552 0.0026
4 members versus 8 members 0.0000 4.1461 0.0028
6 members versus 10 members 0.0005 3.4915 0.0029
5 members versus 9 members 0.0007 3.3824 0.0031
5 members versus 8 members 0.0011 3.2733 0.0033
4 members versus 7 members 0.0032 2.9459 0.0036
7 members versus 10 members 0.0088 2.6186 0.0038
6 members versus 9 members 0.0291 2.1822 0.0042
4 members versus 6 members 0.0382 2.0731 0.0045
5 members versus 7 members 0.0382 2.0731 0.0050
6 members versus 8 members 0.0382 2.0731 0.0056
8 members versus 10 members 0.1561 1.4184 0.0063
9 members versus 10 members 0.1904 1.3093 0.0071
7 members versus 9 members 0.1904 1.3093 0.0083
5 members versus 6 members 0.2301 1.2002 0.0100
7 members versus 8 members 0.2301 1.2002 0.0125
4 members versus 5 members 0.3827 0.8729 0.0167
6 members versus 7 members 0.3827 0.8729 0.0250
8 members versus 9 members 0.9131 0.1091 0.0500

Table 13: Test parameters for experiment on the effect of Δ.

Parameter Value
Number of runs for each experiment 500
Number of iterations 2000
Velocity clamping, 𝑉max 4
Range of inertia weight, 𝜔 0.9–0.4
Learning factors
𝑐
1

2
𝑐
2

2
Number of groups 5
Group’s size 6

10%, 50%, and 100% of the length of the search space. The
average performance for different values of Δ is listed in
Table 14.

The Friedman statistic shows that using differentΔ values
makes no significant difference to SA-PSO, thus showing that
the performance of SA-PSO is not greatly affected by the
choice of Δ. This result is confirmed by boxplots in Figure 8
where the sizes of the box in most of the test functions are
similar to each other.

6. Conclusion

A synchronous-asynchronous PSO algorithm (SA-PSO) is
proposed in this paper. The particles in this algorithm are
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Figure 8: Continued.
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Figure 8: Effect of Δ.
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Table 14: Friedman test on the effect of Δ.

1% 5% 10% 50% 100%

𝑓
1

Mean 0.3812 0.3944 0.3839 0.3932 0.3738
Friedman rank 2 5 3 4 1

𝑓
2

Mean 0.0732 ∗ 𝑒 − 12 0.1061 ∗ 𝑒 − 12 0.0612 ∗ 𝑒 − 12 0.1925 ∗ 𝑒 − 12 0.1401 ∗ 𝑒 − 12

Friedman rank 2 3 1 5 4

𝑓
3

Mean 38.4925 40.8531 39.8487 41.5781 40.5706
Friedman rank 1 4 2 5 3

𝑓
4

Mean 0.3428 ∗ 𝑒 − 09 0.2885 ∗ 𝑒 − 09 0.9245 ∗ 𝑒 − 09 0.2542 ∗ 𝑒 − 09 0.2786 ∗ 𝑒 − 09

Friedman rank 4 3 5 1 2

𝑓
5

Mean 0.2956 ∗ 𝑒 − 08 0.2979 ∗ 𝑒 − 08 0.3365 ∗ 𝑒 − 08 0.4385 ∗ 𝑒 − 08 0.4271 ∗ 𝑒 − 08

Friedman rank 1 2 3 5 4

𝑓
6

Mean 0.1400 ∗ 𝑒 − 04 0.1180 ∗ 𝑒 − 04 0.1210 ∗ 𝑒 − 04 0.1339 ∗ 𝑒 − 04 0.1753 ∗ 𝑒 − 04

Friedman rank 4 1 2 3 5

𝑓
7

Mean 0.0072 0.0069 0.0073 0.0070 0.0073
Friedman rank 3 1 4.5 2 4.5

𝑓
8

Mean 44.8242 44.4277 44.0441 43.8860 44.2639
Friedman rank 5 4 2 1 3

𝑓
9

Mean 0.3479 0.3515 0.3457 0.3505 0.3521
Friedman rank 2 4 1 3 5

Average Friedman rank 2.67 3 2.61 3.22 3.5

updated in groups; the groups are updated asynchronously—
one by one—while particles within a group are updated
synchronously. A group’s search is led by the group’s best
performer, 𝑐Best

𝑐
, and the best member of the swarm, 𝑔Best.

The algorithm benefits from good exploitation and fine
tuning provided by synchronous update while also taking
advantage of the exploration by the asynchronous update.
Learning from 𝑐Best

𝑐
also contributes to the good perfor-

mance of the SA-PSO algorithm. Overall, the performance
of the algorithm proposed is better and more consistent than
the original S-PSO and A-PSO.
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