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as master regulators of ageing and life 
span that are conserved in yeast, nema-
todes, flies and mammals.1

However, two important technical ad-
vances have provided new insight in to 
the biology of brain aging. Micro-array 
technology has made global gene ex-
pression analysis possible in human and 
model organism leading to the identifi-
cation of evolutionary conserved changes 
during ageing. Functional brain imaging 
technology has enabled us to study the 
cognitive networks in the ageing human 
brain. The present review seeks to pres-
ent a discussion on Neuro-anatomical 
and molecular alterations integrated 
with ageing process, mitochondrial dys-
function and autophagy related to age-
ing, alteration in gene expression during 
normal and degenerative ageing and its 
interaction with reactive oxygen species. 
The impact of dietary restriction as a pre-
ventive measure has also been discussed.

Neuro anatomical and Cellular Changes 
during Normal and Degenerative Brain 
Ageing  

Brain aging is characterized by a pletho-
ra of anatomical changes which are the 
consequence of molecular and cellular 
alterations. Early studies suggested that  
substantial neuronal loss occurs in the 
ageing neocortex and hippocampus which 
are the most vulnerable regions of age-
ing. However, recent studies showed that 
neuronal loss was not significant in most 
regions of the ageing neocortex and hip-
pocampus.5 In contrast dendritic branch-
ing could increase in some hippocampal 

regions in aged individuals6 while ageing 
prefrontal cortex (PFT) showed variable 
changes in dendritic branching patterns.5 
Many investigations have reported in-
creased dendritic extent in dentate gy-
rus (a subregion of hippocampus) of old 
compared with middle aged humans.7 In 
other subregions of human hippocam-
pus including areas CA1

8 (Carnuammonis) 
and CA3

9 and the subiculum,10 there is no 
change in dendritic branching with age. 
The morphology of PFC neurons seems to 
be more vulnerable to the effects of age-
ing than that of hippocampal neurons. 
In rat, dendritic branching of pyramidal 
neurons decreases with age in superficial 
Cortical layers.11 A reduction in dendritic 
branching with age has also been ob-
served in anterior cingulate layer V of rat12 
and the human medial PFC13. The data 
available, however, on spine density also 
suggested its region specific alterations5. 
The hippocampal region in aged human 
showed no significant reduction in spine 
density.15,16 In addition to these changes 
reduction in synapse number is also mark-
able in aged brains. An early electron 
microscopic study at the perforant path 
granule cell synapse showed 27% de-
crease in axodendritic synapse number 
in the middle molecular layer of dentate 
gyrus in aged rates as compared with that 
of young rats.17,18  These neuro anatomical 
changes, however, result in impaired neu-
ro plasticity and ultimately alter the net-
work dynamics of neural ensembles that 
support cognition. At the cellular level, 
however, an extensive loss of myelinated 
nerve fibres from the white matter of the 
human cerebral hemispheres during nor-

Introduction

Brain ageing is characterized by many 
physical, chemical or biological changes in 
the status of neurons which is often mani-
fested as deterioration in the Cognitive 
function and demetia.1 This phenominan is 
one of the most striking because it is the 
major risk factor for most common neuro-
degenerative diseases including alzheim-
er’s disease (AD), parkinson’s disease (PD), 
amylotrophic lateral sclerosis (ALS) and 
stroke. Recent studies indicate that normal 
brain aging is associated with subtle mor-
phological and functional alterations in 
specific neuronal circuits rather then large 
scale loss of neurons.2 The loss of neurons, 
however in normal brain aging is com-
pensated by expanding dendritic arbors 
and synaptic contacts whilst in age related 
neurodegenerative disorders, dendritic ar-
bors and synaptic connections are lost and 
compensation doest not occur.3 

In fact, aging of the brain in diverse 
mammalian species shares many com-
mon features such as dendritic regression 
in pyramidal neurons, synaptic atrophy, 
decrease of striatal dopamine receptors, 
accumulation of fluorescent pigments, 
cyto skeletal abnormalities and reactive 
astrocytes and microglia.4

Although age associated defects in par-
ticular neuronal circuits have been de-
scribed, the molecular basis of aging 
brain still remains debatable. Fortunately 
the last 15 years have witnessed a signifi-
cant increase in our knowledge of the ba-
sic molecular mechanisms of aging. Most 
remarkably, functional genetic analysis 
has identified signaling pathways that act 
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mal ageing has been reported19 with the 
greatest reduction in the PFC and corpus 
callosum.20,21 In addition, alterations in 
their myelin sheaths with age are also re-
ported.22 Electron microscopic study has 
shown that integrity of myelin sheath is 
disrupted with age. Overall break down 
of myelin sheaths would cause disrup-
tion of conduction along nerve fibres and 
a reduction in the connectivity between 
parts of the brain,22 consequently causing 
reduced speed of information.

Chemical and Neurophysiological 
Changes

Brain ageing is not merely accompanied by 
morphological and anatomical deteriora-
tion but a large number of neurochemical 
and neurophysiological alterations are also 
witnessed in an integrated form. Reduc-
tions are found in neurochemical systems 
most notably in dopaminergic, noradren-
ergic, and cholinergic pathways23–26 thus 
resulting in increased cognitive impair-
ments and dementia. In the human and 
rhesus macaque pre frontal cortex (PFC) 
the secretion of inhibitory neurotransmit-
ter gama – amino butyric acid (GABA) is 
diminished in aging brain due to reduced 
gene expression thus altering the balance 
between inhibitory and excitatory neuro-
transmission.27 This may contribute to in-
creased neural activity in PFC which could 
predispose individuals to excitotoxicity and 
neurodegenerative pathology. Positron 
Emission Tomography (PET) in humans 
have shown significant decrease in dopa-
mine synthesis,28 notably in the striatum 
and extrastreatal regions excluding mid 
brain.29 Significant age related decrease in 
dopamine receptors D1, D2 and D3 are also 
noticed, particularly receptors binding in 
to caudate nucleus and putamen.30,31

PET studies in humans have also shown 
decrease in the level of serotonin receptor 
S2 in the caudate nucleus, putamen and 
frontal cortex in aging brains34 as well as 
a decreased binding capacity of the sero-
tonin transportor, 5HHT, in the thalamus 
and the mid brain.35 In addition glutamate 
also shows decreased level in aging brains 
particularly in parietal gray matter, basal 
ganglia and frontal white matter.36,37 How-
ever, electrical properties of the neurons 
remain constant over the life span in all 
the subrigions of the hippocampus.38

In contrast numerous studies have shown 
an increase in Ca++ conductance in aged 
neurons. CA1 pyramidal cells in the aged 
hippocampus have an increased density 
of L – type Ca++ channels.39 In addition 
to changes in Ca++ channels, impaired 

intraneuronal calcium buffering capac-
ity may increase cytoplasmic free Ca++ 
levels.19

A major neuronal calcium buffering pro-
tein, calbindin 1 has been reported to be 
reduced in basal forebrain cholinergic and 
cortical neurons in aging human and non-
human primates.40 More over these dec-
rements could be attributed to reduced 
in RNA expressions of calbindin and Ca++ 
channel genes, in PFC41. It is proposed 
therefore that impaired Ca++ homeostasis 
could lead to altered synaptic plasticity.

Alterations in gene expression in  
ageing brain 

There are ample evidence suggesting 
that cognitive impairments and neurode-
generative disorders may be associated 
with specific changes in gene expression. 
Gene expression profiling studies of age-
ing mouse, rat, monkey and human have 
shown significant alteration in the ex-
pression of synaptic genes.42–45 More than 
150 genes have been noted to undergo 
age-dependent expression changes in 
these organisms which may be up regu-
lated or down regulated.1 

Most of the micro-array studies have shown 
reduced expression of genes involved in 
mitochondrial energy metabolism which 
may become more pronounced in humans 
with cognitive decline and AD.46–48 Another 
significant set of genes which shows in-
creased expression during aging is that in-
volved in stress response pathways.1 Gene 
expression studies of the ageing neocortex 
in mice, monkey and humans has shown 
age-dependent up regulation of the apoli-
poprotein D gene.49 The expression of this 
gene in Drosophila extends life span play-
ing role as a lipid antioxidant conferring 
resistance to oxidative stress.49–51 Moreover 
apolipoprotein D expression is induced in 
the brains of individuals with AD. In over 
all picture however genes responsible for 
glial activity, myelin proteins, metal ion 
homeostasis, immune response and stress 
response in humans show upregulated 
gene expression while genes pertaining to 
mitochondrial function, neural plasticity, 
ubiquitin – proteaosome pathways show 
down regulated expression in human age-
ing brains.7

In addition, genes involved in synap-
tic functions that mediate memory and 
learning including glutamate receptor sub 
unites, synaptic vesicle proteins and mem-
bers of major signal transduction systems 
that mediate long term potentiation 
showed down regulated expression.19

Moreover, genes involved in stess response 
including antioxidant defense, DNA repair 
and immune function constitute larg-
est category of age upregulated genes.19 
Among the gene expression profiling stud-
ies of the ageing brain to neurodegenera-
tive disorders such as AD, up regulated 
expression of signaling and tumor sup-
pressor genes and down regulated expres-
sion of protein folding, metabolism and 
energy related gene has been reported.46

Mitochondrial dysfunction 

Many gene expression profiling studies 
have clearly shown a progressive degen-
eration in mitochondrial function which 
could contribute to the accelerated age-
ing particularly in brain, since brain and 
muscle are more susceptible to mitochon-
drial dysfunction. Mitochondrial oxidative 
phophorylation is the key source of en-
ergy intensive ion fluxes and axonal trans-
port in the projection neurons of cerebral 
cortex which degenerate in alzheimer’s 
desease.19 These neurons, therefore, are 
highly vulnerable to mitochondrial dys-
function. Respiratory chain enzymes and 
mitochondrial DNA are the prime targets 
of mitochondrial damage52 (Fig. 1).

Generation of Reactive Oxygen  
Species (ROS) 

Due to irregularities in the electron trans-
port chain in mitochondria during pro-
gressive aging many super oxides are  
generated as a byproduct which may 
cause damage to respiratory chain pro-
teins and mitochondrial DNA. In normal 
course mitochondria passes sufficient 
machinery to counter these ROS in form 
of antioxidant enzymes including Cu-Zn 
super oxide dismutase, cytochrome oxi-
dase and redox reactions mediated by cy-
tochrome C.19 In case of aging, the action 
of these antioxidants is diminished, re-
sulting in local oxidative damage to mito-
chondrial proteins and DNA. Super Oxide 
Dismutase (SOD) reacts with superoxide 
radicles and converts them in to hydrogen 
peroxide (H2O2) which is a stable molecule 
and may diffuse into cytoplasm where it is 
enzymatically neutralized by cytoplasmic 
glutathione peroxidase and peroxisomal 
catalase. However besides super oxides 
and H2O2, redox mediated iron is a ma-
jor sourse of ROS mediated cellular dam-
age.19 Elevated levels of redox – active iron 
accumulates in normal ageing brain and 
in several neurodegenerative diseases.50   

Gene profiling studies, however, have 
shown the age related reduced expression 
of mitochondrial genes in organisms rang-
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Fig. 1: Molecular pathways showing Role of ROS, DR and IIS in neural ageing: Dysfunctional 
mitochondria and ubiquitinated protein aggregates, promote ageing (  indicate inhibition;→ 
shows activation).

ing from nematode to humans.5,6,19,54,55 
Conversely augmented mitochondrial 
function has been shown to extend life 
span.56 Targeted over expression of the 
antioxidant enzyme catalase specifically  
in rat mitochondria extends the life 

span.57 Although the actual mechanism 
that extends the life span in organisms is 
still debatable, one hypothesis is that effi-
cient electron transport chain (ETC) func-
tion reduces the generation and release 
of ROS. In addition, many nuclear tran-

Fig. 2: Neurodegeneration and accelerated brain ageing.

scripts that declined in the aging brains 
are required for mitochondria function.54 
These included NADP transhydrogenase, 
ubiquinol – cytochrome C reductase com-
plex, subumite VIII of cytochrome Coxi-
dase and gama and delta subunites of F1 
particle.19 All these components are the 
integral members of ETC. This profile sug-
gests that mitochondria function may be 
compromised in ageing brains.

Of late many interesting microarray stud-
ies have shown contradictory findings to 
above mentioned facts regarding role of 
mitochondrial dysfunction in ageing.1

CKL – I is required for synthesis of  
ubiquinone, a key component of ETC. 
CLK – I mutants have reduced respiratory 
chain but have long life spans.58 Subse-
quent studies based on RNA interference 
screens found that reduction of function 
in many genes affecting ETC can increase 
life span.59,60 This effect appears to be 
dose dependent because a modeost re-
duction in ETC activity can increase life 
span whereas a more severe reduction 
shorten it.56 Recent evidence suggests 
that this life span extension may be medi-
ated by nuclear transcriptional response 
to mitochondrial defects termed as ret-
rograde response involving the induction 
of oxidative stress resistance and xeno-
biotic detoxification genes.61 Moreover 
in Drosophila and a mouse model with 
a reduced expression of ETC components 
in neurons life span is extended.62,63 In-
triguingly this mouse model also shows 
protection against neuronal excitotoxic-
ity.19 The signaling mechanisms, howev-
er, mediating increased longevity in this 
context are not well known. It is probable 
that ROS in a modestly increased concen-
tration may act as signaling molecule to 
promote longevity. This observation fur-
ther raises the possibility that the initial 
decline in mitochondrial gene expression 
during brain aging may be a part of an 
active compensatory mechanism that in-
creases stress resistance.

Autophagy and protein homeostasis 
as a regulatory mechanisms in aging 
brains

Recent studies in worms, flies and mouse 
have established autophagy of mitochon-
dria as a key component to extend life 
span64–66 and reduced autophagy may 
contribute to neuro degeneration.66,67 
Reduced autophagy, however in neuro 
degenerating brains in flies and mice is 
accompanied by aggregation of ubiquiti-
nated proteins, similar to those observed 
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in human neurodegenerative disorder such 
as Huntington’s disease (HD) and AD.1 The 
clearance of a mutant protein huntingtin 
in HD is directly under the regulation of ex-
pressed BECN I.68 In addition to BECN I a 
number of other genes related to autoph-
agy have been reported to be declined in 
brain ageing (T Lu and BA Yankner, unpub-
lished results). Thus, accumulation of dys-
functional protein in reduced autophagy 
may contribute to severe ROS generation 
and the release of redox active iron leading 
to neuronal impairements. 

Two significant pathways accelerating 
neural aging 

Target of rapamycin (TOR) pathway nor-
mally inhibits autophagy, contributing in 
impaired protein homeostasis. Reduced 
TOR signaling has been reported to extend 
life span in yeast, worms, flies, mice.69,70 
Though the extent to which TOR signaling 
affects life span is unknown but together 
with autophagy this has significant role in 
age dependent neurodegenerative diseas-
es caused by protein aggregates. Another 
significant signaling mechanism contribut-
ing to brain aging is insulin/IGF – I signal-
ing (IIS) pathway. Reduced IIS pathway has 
been shown to extend life span in worms, 
flies and mammal.71 In contrast, in mam-
mals, insulin and IGF – I are neurotrophic 
and promote neuronal survival by inhibit-
ing apoptosis.72 These can also promote 
learning and memory in humans and ani-
mal models.71,72 There exists a dichotomy 
therefore, between neuro-protective ef-
fects of insulin and IGF – I and their ad-
verse effects on life span. Interestingly the 
effects on life span parallel the effects on 
neurodegeneration. Knockout mouse of 
Irs2 or IGF – I receptor can reduce cogni-
tive impairment and neurodegeneration 
in models of AD.73,74 In patients with AD, 
reduced expression of IGF signaling is re-
ported.75 The role of IIS pathway is there-
fore debatable about its response as an  
effective neuro-protector as well as indica-
tor of neuro-degenerative process.

Delaying the Effects of Neural  
Ageing 

After having a thorough review over cellu-
lar and molecular components and path-
ways of brain ageing, it is worthwhile to 
discuss the preventive measures of cogni-
tive impairments and neuro degenerative 
processes. Brain supportive healthy diets 
including omega 3 fatty acid, vitamin C, 
vitamin E (an effective anti-oxidant) vi-
tamin B12, vitamin B6, folic acid iron, cal-
cium, zink, docosa hexaenoic acid (DHA) 
and breast milk proteins have been pri-

marily reported to delay the effects of 
normal brain aging and cognitive decline.

Recent investigation on the impact of di-
etary restriction (DR) as brain aging and 
neuro degenerative disorders have shown 
many striking features. Dietary restriction 
(reduction in diet without causing malnu-
trition) has been reported to play multi-
dimentional roles at cellular and molecular 
levels. DR has been reported to reduce age 
related gene expression alterations upto 
substantial level associated with stress and 
immune responses respectively.54 These ef-
fects of DR on immune stress related tran-
scripts indicates that both autoimmunity 
and oxidative damages are reduced in the 
brains of DR mice.76 In addition to its sup-
pressive role on many gene transcripts, DR 
is shown to induce many gene expressions.

One of the largest classes of transcripts 
induced by DR (9%) comprised growth 
and neurotrophic factors including the 
develop mentally regulated homeo-
box genes which might be involved in 
neural development and gene encod-
ing neuroserpin, a factor that promotes 
neural plasticity.3 Other transcripts that 
are induced by DR include transform-
ing growth factor (TF) and brain de-
rived neurotrophic factor (BDNF) which 
can protect neurons against excitotoxic 
and metabolic insults.77 Other genes to 
be induced under DR influence are that  
related to DNA synthesis. This observa-
tion might be related to increased neu-
rogenesis in rodents under DR.78 These 
gene profiling studies are supportive of 
the fact that modulation of energy me-
tabolenin, oxidative stress, ion homeosta-
sis by DR could affect brain ageing in the 
mouse3 (Fig. 3). More recent studies have 

shown that enhancement of BDNF and 
other neurotrophic factors due to DR, ex-
erts beneficial effects on synaptic plastic-
ity and might therefore facilitate learning 
and memory.79 The capacity of the brain 
for neurogenesis might decrease in age-
ing80 and DR has been shown to increase 
the number of newly generated neural 
cells in dentate gyrus of the rat hippo-
campus.78 HSP – 70 and GRP – 78 proteins 
which protect neurons against excitotoxic 
and oxidative insults81,82 have been noted 
to be increased in cortical, strial and hip-
pocampal neurons of DR rats.83,84

In addition to its protective role in normal 
brain ageing, DR is reported to exert pro-
tective role against neurodegenerative 
disorder AD85 and PD.86

However in addition to multifaceted con-
tribution of DR in protection of normal 
brain ageing and neurodegenerative dis-
order, regular  physical exercise has been 
shown to increase neurogenesis and neu-
rotrophic factors.87 Over the past decade 
a number of epidemiological studies have 
shown a decreased risk for PD and demen-
tia of subjects who exercise regularly.88–90 

Conclusion

Gene expression profiling and brain imag-
ing techniques have given a new insight 
to the cellular, molecular and behavioral 
alterations in aging brains. After having 
an overview over the recent develop-
ments on neural ageing, in the present 
review neural ageing has been discussed 
as the consequence of decreased neuro-
genesis and synaptic plasticity, altered 
neuro chemical and signaling pathways, 
reduced white matter, mitochondrial dys-
function, enhanced stress responses and 

Fig. 3: Anti ageing components and their role in prevention of brain ageing. 
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accumulation of ROS and dysfunctional 
proteins, reduced antioxidative, DNA 
repair enzymes and decreased immune 
responses etc. At the molecular level, 
however, it is due to alterations in the ex-
pression of a wide array of genes involved 
in these processes.

Moreover, neocortex, hippocampus and 
striatal centres are the most vulnerable 
areas, affected in aging with a variable 
degree of changes in their subcentres. 
Therapeutic and preventive measures 
have also been briefly discussed, with 
particular reference to DR since recent 
studies are focused on it. Hence, manage-
ment of these canditions through medical 
and life style interventions is likely to ben-
efit in order to cope with these age relat-
ed impairments. Moreover, the function 
of nervous system depends upon highly 
specific intricate intercellular signaling 
networks whose regulatory mechanisms 
extend beyond gene transcription. It is, 
therefore essential to understand such 
mechanisms at the level of protein inter-
actions within individual cells, organelles 
and synapses.3 It is, therefore, impera-
tive prospect to explore this molecular 
dynamics through combined proteomic 
and brain imaging techniques in a more 
comprehensive manner.
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