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ABSTRACT Dynamic control of gene expression is a hallmark of the circadian system. In mouse liver,
approximately 5–20% of RNAs are expressed rhythmically, and over 50% of mouse genes are rhythmically
expressed in at least one tissue. Recent genome-wide analyses unveiled that, in addition to rhythmic
transcription, various post-transcriptional mechanisms play crucial roles in driving rhythmic gene expression.
Alternative polyadenylation (APA) is an emerging post-transcriptional mechanism that changes the 39-ends
of transcripts by alternating poly(A) site usage. APA can thus result in changes in RNA processing, such as
mRNA localization, stability, translation efficiency, and sometimes even in the localization of the encoded
protein. It remains unclear, however, if and how APA is regulated by the circadian clock. To address this, we
used an in silico approach and demonstrated in mouse liver that 57.4% of expressed genes undergo APA
and each gene has 2.53 poly(A) sites on average. Among all expressed genes, 2.9% of genes alternate their
poly(A) site usage with a circadian (i.e., approximately 24 hr) period. APA transcripts use distal sites with
canonical poly(A) signals (PASs) more frequently; however, circadian APA transcripts exhibit less distinct
usage preference between proximal and distal sites and use proximal sites more frequently. Circadian APA
transcripts also harbor longer 39UTRs, making them more susceptible to post-transcriptional regulation.
Overall, our study serves as a platform to ultimately understand the mechanisms of circadian APA
regulation.
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Post-transcriptional regulation is an integral part of controlling gene
expression and can influence when, where, and how much protein will
be generated (Keene 2010). The mammalian molecular clock system
utilizesmultiple post-transcriptionalmechanisms, including alternative
splicing, mRNA stability, translation, exosome, andmiRNA regulation,
to drive robust circadian gene expression (Kojima and Green 2015;
Green 2017). Genome-wide studies demonstrated that approximately
5–20% of RNAs are expressed rhythmically in mouse liver, and over

50% of mouse genes are rhythmically expressed in at least one tissue,
even though these percentages vary among studies due to the difference
in experimental conditions and statistical analyses in detecting rhyth-
micity (Duffield 2003; Fang et al. 2014; Zhang et al. 2014; Janich et al.
2015; Kojima and Green 2015; Sato et al. 2017; Guan et al. 2018). These
rhythmic gene expressions were thought to be driven primarily by
rhythmic transcription; however, more recent transcriptome studies
challenged the current belief and highlighted the importance of post-
transcriptional regulation. For example, approximately 80% of all
rhythmically expressed RNAs do not undergo rhythmic de novo tran-
scription. Moreover, oscillating mRNA levels are not a prerequisite for
rhythmic protein accumulation (Reddy et al. 2006; Koike et al. 2012;
Menet et al. 2012; Mauvoisin et al. 2014; Robles et al. 2014). These
studies clearly emphasize that it is not just transcription, but, rather, an
intricate interplay between transcriptional and post-transcriptional reg-
ulation that is required to generate rhythmicity in gene expression.

One important mechanism of post-transcriptional regulation is the
control of poly(A) tails. Despite the traditional view that poly(A) tail
formation is a static and non-regulatory process, recent studies clearly
demonstrated that poly(A) tails undergo dynamic regulation both in
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length and location to, ultimately, alter the fate of mRNAs. We and
others identified mRNAs with rhythms in their poly(A) tail length
(Robinson et al. 1988; Gerstner et al. 2012; Kojima et al. 2012) and
demonstrated that this rhythmicity correlates with protein accumula-
tion (Kojima et al. 2012). Differential usage of poly(A) sites, an event
termed alternative polyadenylation (APA), yields transcripts differing
in their 39-ends, and can impact downstream RNA processing, such as
mRNA stability (Mayr and Bartel 2009; Gupta et al. 2014), translation
(Mayr and Bartel 2009; Lau et al. 2010; Pinto et al. 2011; Gruber et al.
2014; Masamha et al. 2014), subcellular localization of mRNAs
(An et al. 2008; Djebali et al. 2012; Neve et al. 2016), or even localization
of the encoded protein (Berkovits and Mayr 2015). APA regulation is
widespread and prevalent, affecting�50% of genes inmammals as well
as in other taxa, such as plants and flies (Tian et al. 2005; Tian and
Manley 2016).

APA occurs in response to a variety of extracellular stimuli (An et al.
2008; Chang et al. 2015), changes in physiological conditions (Takagaki
et al. 1996; Takagaki andManley 1998; Sandberg et al. 2008;Wang et al.
2008; Ji et al. 2009; Ji and Tian 2009; Shepard et al. 2011), or patho-
logical conditions (Mayr and Bartel 2009; Singh et al. 2009). It remains
elusive, however, whether the circadian clock system also regulates
poly(A) site locations. Interestingly, the protein levels of a few compo-
nents of the 39-end processingmachinery, such as CSTF77 (gene name:
CSTF3) or NUDT21 (gene name: CPSF5), are rhythmic in mouse liver
(Mauvoisin et al. 2014; Robles et al. 2014), raising the possibility that
APA is under circadian regulation. In fact, statistical analyses using
circadianmicroarray datasets indicated that APA is under the circadian
regulation in mouse white fat and liver (Liu et al. 2013; Ptitsyna et al.
2017). Although microarrays and RNA-seq both effectively quantify
transcriptional levels and the results are reasonably correlated between
the two technologies, RNA-Seq outperforms microarrays (even tiling
arrays) in detecting transcripts with low abundance, distinguishing
various isoforms, and enabling the detection of differentially expressed
genes with higher fold-change (Agarwal et al. 2010; Zhao et al. 2014).

By using circadian RNA-seq datasets in mouse liver, here we report
that 57.4% of all genes expressed undergo APA with, on average, 2.53
alternative polyadenylated transcripts per gene. Notably, 2.9% of all
expressed genes (or 4.5%of genes undergoingAPA regulation) alternate
their poly(A) site usage with a circadian period. Distal poly(A) sites and
canonical poly(A) signals (PASs) are more frequently used among all
APA genes. This was also the case among circadian APA genes; how-
ever, rhythmic APA genes have less distinct differences in poly(A) site
strength between proximal and distal sites and use proximal sites more
frequently. In addition, circadian APA transcripts displayed longer
39UTRs, which are generally rich in cis-regulatory elements, increasing
the opportunity to be subjected to post-transcriptional regulation.
These characteristics among circadian APA genes will ultimately help
us understand the mechanisms of circadian APA regulation.

MATERIALS AND METHODS

Alignment of short reads
Short read files from liver RNA-seq datasets were downloaded from the
NCBISRAdatabaseprojects: SRP036186 inFASTQformat (Zhang et al.
2014), SRP014751 (Koike et al. 2012) and SRA025656 (Vollmers et al.
2012) in CSFASTA format with QUAL files. All reads were aligned
to the mm9 genome using TopHat version 1.3.3 and Bowtie version
0.12.7 (Trapnell et al. 2009). To maximize the efficiency of mapping
to the transcripts, rather than the genomes, we used a guide GFF file
of M. musculus (-G option in TopHat) compromising the 39-ends of
all transcripts in mouse tissues (Hoque et al. 2013). Reads that were

mapped tomultiple regions were discarded. Single end SOLiD colorspace
reads were aligned with the following options: -Q –C –-library-type
fr-second strand –G TandemUTR_ALE.mm9.gff3. Paired-end Illu-
mina reads were aligned with the following options: -r 200–library-type
fr-firststrand –G TandemUTR_ALE.mm9.gff3. Read mapping rates
were �61–65% for the dataset produced from the Illumina platform
(Zhang et al. 2014), while these from the SOLiD platform (Koike et al.
2012; Vollmers et al. 2012) were considerably lower (�21–30% and
�16–20%, respectively). This may be due to high ribosomal RNA
content in the library preparations and/or the inherent problems that
arise from converting the SOLiD sequence data file from colorspace to
basespace, which is known to have high error rates (Ondov et al.
2008). The resulting BAM files were separated into strand-specific
files using SAMtools.

Quantification of poly(A) site usage frequency by MISO
We applied the Mixture-of-Isoforms probabilistic model (MISO) and
calculated “c values” of each transcript (Katz et al. 2010). To this end,
we first discarded genes with,20 reads in their 39UTRs using the GTF
39-end annotation files (Hoque et al. 2013) with the default settings. For
both APAALE and APAUTR, we first eliminated isoforms whose average
c values for all time points were , 0.1. We also eliminated isoforms
whose c values were 0 at 2 or more time points for the datasets that
have 2 circadian cycles, or at 1 or more time points for the dataset that
has only1 circadian cycle.We also eliminated transcripts whose average
Transcripts Per Million (TPM) of all time points were , 1 (see next
section for RNA quantification methods).

To simplify the subsequent analyses, we then extracted the two
transcripts isoforms with the highest c numbers (average of all time
points) for each gene. If the second highestc value was identical among
two or more isoforms, we treated each combination (of highest and
second highest transcripts) as independent and kept all the combina-
tions. We defined the “APA index” of these combinations by calculat-
ing = c proximal - c distal. Therefore, a negative APA index represents
transcripts whose distal site usage was more frequent than proximal
usage, while a positive APA index represents transcripts whose prox-
imal site usage was more frequent than distal site usage.

Rhythmicity Detection by MetaCycle
All circadian parameters were detected using MetaCycle with the
function meta2d (Wu et al. 2016). A period window was set to 20 to
28 hr. The datasets were then filtered for rhythmicity with meta2d
output values of P , 0.05 and Meta2d rAmp . 0.1 (for APA index)
or. 0.01 (for RNA abundance). A slightly lower threshold of P, 0.06
and Meta2d rAmp .0.09 was used to detect one transcript (Ccdc93)
that was represented by all three datasets.

Gene ontology analysis
Gene ontology (GO) analyseswere performedusingDAVID (Huang da
et al. 2009a; Huang da et al. 2009b). “Functional Annotation Cluster-
ing” featurewas used, and the clusters with an Enrichment Score. 1.33
(i.e., equivalent of p-value, 0.05) were listed in Table S2.

39RACE assay
39- Rapid Amplification of cDNAEnds (39RACE) assay was performed
as previously described elsewhere (Scotto-Lavino et al. 2006). Briefly,
total RNAswere extracted frommouse liver using TRIZOL (Life Tech),
treated with TURBO DNase I (Life Tech) for 30min at 37C, and then
5ug of which was subjected to cDNA synthesis using SuperScript
II (Life Tech). To specifically amplify target transcripts, nested
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PCR was performed for all of the genes. The first PCR was performed
using primers Qo and Gene Specific Primer 1 (GSP1), followed by
Qi and GSP2 with 1/200 diluted DNA samples from the first PCR.
The images shown in Figure 2E are the results of the second PCR.
Primer sequences are as follows: QTVN reverse transcription: 59-
CCAGTGAGCAGAGTGACGAGGACTCGAGCTCAAGCTTTTTTT-
TTTTTTTTTTVN-39, 3RACE_Qo: 59-CCAGTGAGCAGAGTGACG-39,
3RACE_Qi: 59-GAGGACTCGAGCTCAAGC-39, Akr1c6_GSP1:
59- ACTGGAGGTCCATTTTGTGC-39, Akr1c6_GSP2: 59- CTTGTG-
CCAGATGTCACTGC-39, D930014E17Rik_GSP1: 59- CCCAG-
GGACCTATTCTGTCA-39, D930014E17Rik_GSP2: 59- GCTCCAGT-
GCCTTATCCAAG-39, Sppl3_GSP1: 59-AGTTTACCTGGCTTCCT-
CGC-39, Sppl3_GSP2: 59-TGATAGACTTGTGGGCTGTG-39, Oit3_
GSP1: 59-CTGCAGAGCCAGACACTGAC-39, Oit3_GSP2: 59-
CCCCTCTAGAACGACTTCCTG-39

DATA AVAILABILITY
The authors state that all data necessary for confirming the conclu-
sions presented in the article are represented fully within the article.
Supplemental material available at Figshare: https://doi.org/10.25387/
g3.6741623.

RESULTS

Identification of circadian APA genes
Our in silico strategy to identify transcripts undergoing circadian APA
is described in Figure 1. First, we retrieved circadian transcriptome
datasets from the Sequence Read Archive (SRA) at the National Insti-
tutes of Health (NIH) (https://www.ncbi.nlm.nih.gov/sra). Three data-
sets (Koike et al. 2012; Vollmers et al. 2012; Zhang et al. 2014) met our
criteria that 1) the samples were harvested in a constant dark condition,
2) the datasets provided strand-specific information, which was crit-
ical for the downstream analyses because 39-ends of transcripts some-
times overlap between genes, and 3) the samples were taken from
mouse liver in which many other circadian genome-wide analyses
have been performed (i.e., Nascent-seq, GRO-seq, ribosome profiling,
proteomics, etc.).

In order to identify APA in the selected datasets, we applied the
Mixture of Isoforms Model (MISO) algorithm (Katz et al. 2010), a
probabilistic framework that identifies differentially regulated isoforms
from transcriptome data. MISO was originally intended to detect alter-
native splicing, but later implemented to detect alternative polyadeny-
lation by incorporating user-defined poly(A) site annotation data
(Katz et al. 2010; Hooper 2014).We choseMISO over other algorithms,
such as DaPars, QAPA, and APAtrap (Xia et al. 2014; Ha et al. 2018;
Ye et al. 2018) that identify 39-ends of transcripts de novo and thus
require significantly higher read depth. The three circadian transcrip-
tome datasets only had 10-30Mmappable and usable reads. Using pre-
defined poly(A) sites that had been detected in mouse tissues including
liver (Hoque et al. 2013), MISO identifies two types of alternatively
polyadenylated isoforms: alternative poly(A) sites within 39UTRs
(APAUTR), and alternative 39-terminal exons (ALE) flanking the last
intron (APAALE). MISO subsequently quantifies the relative expression
levels of alternatively polyadenylated isoforms and returns “c values,”
which represent the expression levels of alternatively polyadenylated
isoforms relative to that of all transcripts at a given time point. The sum
of c values, therefore, is 1 for each transcript at each time point. We
used c values as the poly(A) site usage frequency of each alternatively
polyadenylated isoform.

From the threemouse liver circadian transcriptomes,MISOdetected
approximately 5,000 APAALE and 16,000 APAUTR isoforms that met

our filtering criteria (see Materials and Methods), consisting of approx-
imately 8,000 unique genes (4,000 genes for APAALE and 7,500 genes for
APAUTR) (Table 1). The average poly(A) sites per genewere 2.53 (Table 1),
which is similar to what was observed in other mouse tissues, where it
ranged from 1.5 to 4.0 (Tian et al. 2005; Hoque et al. 2013). Out of the
approximately 8000 genes that were expressed, genes that had multiple
poly(A) sites represented 57.4% (Table 2). This is also comparable to
what has been reported in other mouse tissues, such as retina (49%),
EST database (47%), fibroblasts (66%), and cell line mixtures (78.5%)
(Tian et al. 2005; Hoque et al. 2013; Xiao et al. 2016; Hu et al. 2017).

Usingc values of each isoform at each time point, we next sought to
identify genes that underwent circadian APA regulation. To simplify
the statistical analyses and decrease complexity, we focused only on
APAUTR, which comprised �75% of all the APA detected in our anal-
yses (Table 1). We also focused on only the two most frequently used
isoforms (i.e., the two transcripts with the highest averagec values across
all time points). This is justified, as the average number of poly(A)
sites (including those with a single poly(A) site) was 2.53 (Table 1).
We subsequently calculated the “APA index (=c proximal- c distal),”
which represents the difference in the c values between the two
APAUTR isoforms. Thus, genes with negative APA indexes use the
distal poly(A) site (i.e., produce a longer transcript) more frequently,
while genes with positive APA indexes use the proximal poly(A) site
(i.e., produce a shorter transcript) more frequently. We then applied
the rhythmicity detection algorithm MetaCycle (Wu et al. 2016) to
detect rhythmic APA events (Figure 1).

We identified 269 (Dataset 1: 3.3%), 157 (Dataset 2: 2.0%), and
297 transcripts (Dataset 3: 3.2%), whose APA index was rhythmic
(Figure 2A-C, Table S1). We experimentally validated the 39-end
sequences of both proximal and distal poly(A) sites for selected genes
by 39- Rapid Amplification of cDNA ends (RACE) (Figure 2D-E).
The 39-end sequences were further verified by Sanger sequence and
these matched with annotated 39-end in the bioinformatical analyses
(Hoque et al. 2013) (data not shown).

Figure 1 Schematic representation of our strategy to identify circadian
APA genes. Briefly, we obtained three circadian transcriptome
datasets from NCBI SRA. We then applied the Mixture-of-Isoforms
probabilistic model (MISO) to detect alternatively polyadenylated
transcripts. MISO further calculated “c values” of each transcript that
represent the expression levels of alternatively polyadenylated iso-
forms relative to that of the total transcript within each sample
(i.e., each time point). We subsequently extracted isoforms whose
c numbers (average of all time points) were the two highest to simplify
the analyses, and then designated the “APA index” of this combina-
tion for each time point, by calculating = c proximal - c distal. The rhyth-
micity of the APA index was assessed by MetaCycle. White/black bars
and gray/black bars indicate light:dark (LD) = 12:12 or constant dark
(DD) conditions, respectively, at which tissues were harvested.
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Eleven genes were found to be rhythmic in at least two datasets
(Ado, Cnot7, Cyhr1, Mapk8, Paqr9, Srsf10, and Tnfaip2 between
Dataset 1 and 3, Ccdc93, Ctbs, and Sdccag3 between Dataset 1 and 2,
andHspa4 between Dataset 2 and 3) (Figure 2F). An additional 9 genes
(Magi1,Mrps5, Oxr1, Pcf11, Samhd1, Ssh1, Ttpal, Vsp26a, Zfp259) had
APA indexes that were rhythmic in two datasets; however, we did not
categorize these genes as “overlapping” because, although one isoform
was commonly detected in two datasets, the other isoform (typically the
second highest c value) was not identical between the two datasets. Of
note, we found one transcript (Ccdc93) that was represented by all three
datasets when we slightly lowered the rhythmicity detection threshold
(Table S1). Nevertheless, the small overlap between datasets is probably
due to the differences in experimental conditions, such as the duration
of sampling (24 hr for Dataset 2, and 48 hr for Dataset 1 and 3), the
sampling interval (4 hr for Dataset 1, 3 hr for Dataset 2, and 6 hr for
Dataset 3, the sampling start time (CT 0 for Datasets 1 and 2, and CT
22 for Dataset 3), and the source RNA used for library construction
(ribosomal depleted RNA for Dataset 1 and poly(A)+ enriched RNA for
Datasets 2 and 3), as well as technical noise over the course of exper-
iments and analyses (Conesa et al. 2016).

One remarkable feature of APA is the global shortening or length-
ening of transcripts (Flavell et al. 2008; Mayr and Bartel 2009). How-
ever, we did not detect any particular time points during which the
APA index was disproportionally enriched (Figure 2G), although each
dataset exhibited unique patterns (Supplemental Figure 1). This is in
contrast to transcription and translation, both of which are under
global regulation in mouse liver, peaking during early subjective night
(Koike et al. 2012; Menet et al. 2012; Jouffe et al. 2013; Janich et al.
2015). This is also in stark contrast with circadian poly(A) tail length
regulation, where the rhythmicity of poly(A) tail length peaks predom-
inantly at subjective night (Kojima et al. 2012).

In order to shed light on the cellular processes that are regulated
by circadian APA genes, we performed a gene ontology analyses
using DAVID (Huang da et al. 2009a; Huang da et al. 2009b). The
top 10 pathways/processes that were significantly enriched, were
“Transcription,” “Nucleotide/ATP-binding,” “Metal(zinc)-binding,”
“Endocytosis,” “Protein transport,” “Cell cycle,” “RNA-binding,”
“Endoplasmic reticulum,” “Fibronectin type-II,” and “Biological
rhythms” (Table S2). Notably, “Transcription” had the highest
enrichment score in all three datasets (Table S2). It is possible
that circadian APA indirectly regulates rhythmic transcription

by affecting RNA stability or translation efficiency, for example,
of those genes functioning in transcription.

Canonical PASs at distal sites are more frequently used
in mouse liver, although proximal poly(A) sites more
frequently used among rhythmic APA transcripts
To shed light into the mechanism of circadian APA regulation, we next
characterized the relative distance, location, sequence, and frequency of
alternative poly(A) sites, and compared these characteristics between
rhythmic and all APA transcripts (control). In mouse liver, we found that
the relative 39UTR length difference between alternatively polyadenylated
transcripts is longer among rhythmic APA transcripts (median: 427 nt)
compared to control APA transcripts (median: 359 nt) (Mann-Whitney-
Wilcoxon test: P = 0.02806) (Figure 3A). Interestingly, the 39UTR length
of short isoforms was not different between all (median: 768.5 nt) and
rhythmic APA transcripts (median: 772 nt) (Figure 3B). In contrast, the
39UTR length of long isoforms was increased in rhythmic APA (median:
1811 nt) compared to all APA transcripts (median:1700.5 nt) (Mann-
Whitney-Wilcoxon test: P = 0.02052) (Figure 3B). These data suggest that
the long isoforms of rhythmicAPA transcripts containmore cis-regulatory
elements and are more likely subject to post-transcriptional regulation.

The most frequently detected PAS is AAUAAA, accounting
for �60% of PASs among all expressed cDNAs/ESTs in human and
mouse (Beaudoing et al. 2000; Tian et al. 2005). Another approx-
imately 20 PAS variants have been observed, albeit less frequently
(ex., AUUAAA: �15%), while some transcripts do not contain an
obvious PAS at all (Beaudoing et al. 2000; Tian et al. 2005). Our analysis
revealed that 64.2% of single PAS genes contained the canonical signal,
AAUAAA, and 17.7% contained the variant AUUAAA within 40 nt
from the 39-end of each transcript (Table 3). In contrast, genes possess-
ing more than one PAS (i.e., APA genes) had lower AAUAAA usage
and only 43.2% possessed AAUAAA, whereas 17.4% contained
AUUAAA (Table 3). The actual percentage may be even lower, since
we counted the samemotif twice if both poly(A) sites are within 40 nt of
one another, which was the case for 7.9% of genes.

The canonical PAS (AAUAAA) has been considered strongest
among other variants, due to its high prevalence among cDNAs/ESTs
(Beaudoing et al. 2000; Tian et al. 2005). By using the average c values
across all time points as an indicator of poly(A) site strength, we found
that the isoforms with canonical PASs were indeed more frequent in
mouse liver (Figure 4A, S2A). The median c value for isoforms with

n Table 1 Numbers of APA isoforms and genes detected by MISO from mouse transcriptome data

Dataset
APAALE

isoform
APAUTR

isoform
Total

isoforms
APAALE unique

gene
APAUTR unique

gene
Total unique

gene
APAALE per

gene
APAUTR per

gene
PAS per
gene

Dataset1 5,091 16,223 22,124 3,765 7,362 8,171 0.62 1.99 2.61
Dataset2 4,416 13,501 17,917 3,306 6,848 7,668 0.58 1.76 2.34
Dataset3 5,839 18,445 24,284 4,606 8,125 9,174 0.64 2.01 2.65
Average 5,115 16,056 21,172 3,892 7,445 8,338 0.61 1.93 2.53

n Table 2 Numbers of genes/transcripts that possess single or multiple PASs

Dataset
Single PAS
genes (ALE)

Single PAS
genes (UTR)

Unique Single
PAS genes (%)

Multiple PAS
transcripts (ALE)

Multiple PAS
transcripts

(UTR)
Multiple PAS
genes (ALE)

Multiple PAS
genes (UTR)

Unique Multiple
PAS genes (%)

Dataset1 2,499 1,657 3758 (41.3) 3,402 14,566 1,262 4,737 5338 (58.7)
Dataset2 2,492 1,002 3228 (41.0) 1,924 12,499 812 4,198 4645 (59.0)
Dataset3 3,694 2,036 5059 (44.4) 2,145 16,409 912 5,970 6236 (55.6)
Average 2,895 1,565 4,015 (42.6) 2,490 14,491 995 4,968 5,406 (57.4)
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AAUAAA was 0.41, whereas that of other variants was 0.30 in all APA
transcripts (Mann-Whitney-Wilcoxon test: P , 2.2e-16) (Figure 4A,
S2A). This trend was also observed among rhythmic APA transcripts,
in which the median c value for isoforms with AAUAAA was 0.39,
whereas that of other variants was 0.30 (Mann-Whitney-Wilcoxon test:
P , 2.2e-16) (Figure 4A, S2A).

Each tissue has a different frequency for the poly(A) site usage,
with the distal sites generally being more frequently used in non-
proliferating cells (Hoffman et al. 2016), such as hepatocytes that
make up �80% of the liver. We found that distal sites were stronger
than proximal sites in mouse liver, as the median c value of distal
sites was 0.38, while that of proximal sites was 0.31 among all APA

transcripts (Mann-Whitney-Wilcoxon test: P , 2.2e-16) (Figure 4B,
S2B). Distal sites were also stronger among rhythmic APA transcripts,
as the median c value of distal sites was 0.36, while that of proximal
sites was 0.33 (Mann-Whitney-Wilcoxon test: P, 2.2e-16). Interest-
ingly, however, the difference between proximal and distal sites was
smaller in rhythmic APA transcripts (D median cdistal-proximal = 0.03),
compared to control APA transcripts (Dmedian cdistal-proximal = 0.07).
This was not due to differences in the distribution of c values between
all and rhythmic APA transcripts, as the median c value that includes
both proximal and distal sites were the same (median c = 0.39) for
both all and rhythmic APA transcripts (Figure 4B, S2B). Rather, this
was because rhythmic APA transcripts use proximal poly(A) sites

Figure 2 Identification of circadian APA genes. (A) Phase-sorted heat map of the APA index of circadian APA genes. Red and blue colors indicate
higher or lower APA index, respectively. Each row represents one gene. (B-C) Examples of circadian APA gene. (B) The APA index profiles
(=cproximal - cdistal) of Akr1c6 (Dataset 2), D930014E17Rik (Dataset 2), Sppl3 (Dataset 1), and Oit3 (Dataset 3) over the circadian cycles. (C)
Individual c values for transcripts with either proximal (red) and distal (blue) poly(A) site usage over the circadian cycles. Data from Dataset
2 were double-plotted for easier visualization of rhythmicity. (D) 39-end structures of APA example genes. STP: stop codon, pAprox: proximal
poly(A) site, pAdis: distal poly(A) site, big navy box with white arrowheads: protein-coding region, navy line: 39UTR. Black arrows represent the
locations of the primers used in the 39RACE assay in (E). (E) 39RACE assay. Numbers on the left represent the DNA size makers. (F) Venn Diagram
of the number of circadian APA transcripts among the three datasets. (G) Circular histogram plots of circadian APA index. Each wedge represents
a 2-h bin. Gray or black bars indicate subjective day or night, respectively.
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more frequently, as the median c values of proximal sites higher
among rhythmic APA transcripts (median: 0.33) compared to all
APA transcripts (median: 0.31) (Mann-Whitney-Wilcoxon test:
P = 0.02134). This was further supported through comparison of the
APA index, which represents the relative strength between proximal
and distal poly(A) sites. We found that rhythmic APA transcripts had
slightly, but significantly, higherAPA index (median: -0.025) compared
to all APA transcripts (median: -0.04) (Mann-Whitney-Wilcoxon test:
P = 0.02811) (Figure 4C), indicating that rhythmic APA transcripts use
proximal poly(A) sites more frequently.

Genes that have more than one poly(A) site often have canonical
PASs at the most distal site, while variants tend to be found at more
proximal sites, despite that promoter-proximal poly(A) sites have a
natural advantage over distal ones to be transcribedfirst and can be used
more frequently (Beaudoing et al. 2000; Tian et al. 2005; Davis and
Shi 2014). This was also the case in mouse liver, and transcripts with a
variant at a proximal site and AAUAAA at a distal site were most
frequent among both all and rhythmic APA transcripts (Figure 4D,
S3A). In addition, rhythmic APA transcripts tended to have higher
APA indices relative to all transcripts, regardless of the combination
of PASs at proximal and distal poly(A) sites (Figure 4E, S3B), consistent
with our earlier observation (Figure 4C).

These resultsdemonstrate that canonicalPAS(AAUAAA)anddistal
sites are most commonly used in mouse liver. Rhythmic APA genes, in
contrast, have less distinct differences in poly(A) site strength between
proximal and distal sites and use proximal sites more frequently. Pre-
sumably, this allows the daily poly(A) site switch to be more amenable.

DISCUSSION
In this study, we identified and characterized transcripts undergoing
rhythmic alternative polyadenylation (APA) in mouse liver, using

existing circadian transcriptome datasets combined with a probabilistic
algorithm, MISO (Katz et al. 2010; Koike et al. 2012; Vollmers et al.
2012; Zhang et al. 2014). Identification of differentially expressed tran-
scripts from transcriptome data has been a challenge, because distin-
guishing full-length isoforms from partially reconstructed fragments is
not always possible and requires greater sequencing depth and more
powerful statistical methods (Trapnell et al. 2009; Katz et al. 2010).
MISO circumvents this issue by inverting the process by which reads
are first produced and then inferring the underlying isoform abun-
dances that best explain the observed reads. Our in silico analysis iden-
tified 712 transcripts (or 2.9% of all expressed genes) that undergo
circadian APA regulation in mouse liver.

The number of circadian APA genes we detected in our analysis was
smaller than a previous report, which identified 1153 circadian APA
genes inmouse liver derived frommicroarray data (Liu et al. 2013). It is
unclear how much our list of APA genes overlaps with the previous
report, as the identity of these transcripts, except for a few, was not
revealed (Liu et al. 2013). The difference in the number is most likely
due to the frequency of tissue sampling, in which the liver samples were
taken: every 1 hr (Hughes et al. 2009; Liu et al. 2013) or every 3-6 hr
(this study). The other likely causes include the amplitude cutoff, the
gene expression cutoff (i.e., presence vs. absence), the rhythmicity
detection algorithm, and quantification method of the APA switch
(i.e., “APA index” = c proximal - c distal vs. “the ext/com-ratio”
(=c distal / c proximal)). Most notably, our use of transcriptome data
constitutes a significant advantage over that of microarray data, as it
allowed us to pinpoint the exact 39-end locations of each transcript and
characterize features commonly found in circadian APA genes. Tiling
arrays have higher probe density than conventional microarrays, and
yet do not have the sensitivity and accuracy to distinguish isoforms, due
to their probe length (�25-60mer) and spacing (�400-10,000 nt on

Figure 3 Rhythmic APA genes have longer 39UTRs.
(A) Difference in the 39UTR length between APA
transcripts. (B) Distributions of 39UTR length of the
short (i.e., proximal poly(A) site usage) and long (i.e.,
distal poly(A) site usage) isoforms. All: n = 15246,
and rhythmic: n = 723. Box-whisker plots with quar-
tiles (box) and quartile 6 1.5 interquartile range
(whiskers). �; P , 0.05. (Mann-Whitney-Wilcoxon
Test). pAprox: proximal poly(A) site, pAdis: distal
poly(A) site.

n Table 3 APA transcripts and their PAS types

Dataset Single PAS Multiple PAS

AAUAAA (%) AUUAAA (%) AAUAAA (%) AUUAAA (%)

Dataset1 1004 (60.6) 276 (16.7) 6380 (46.8) 2606 (17.9)
Dataset2 650 (64.8) 186 (18.6) 5330 (42.6) 2096 (16.8)
Dataset3 1364 (67.0) 363 (17.8) 6985 (42.6) 2762 (16.8)
Combined 3018 (64.2) 825 (17.6) 18695 (43.0) 7464 (17.2)
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average) (Liu 2007; Agarwal et al. 2010; Zhao et al. 2014). In addition,
our use of three independent datasets alleviated observing dataset-
specific effects (for example, Figure 2G, Supplemental Figure 1-3).

Although the mechanisms of the circadian APA are not fully un-
derstood, we found several interesting characteristics that are unique to
rhythmicAPAtranscripts.One suchcharacteristic is that rhythmicAPA
genes have less distinct differences in poly(A) site strength between
proximal and distal sites (Figure 4), possibly due to the lower frequency
of canonical PAS usage among rhythmic APA genes (Table 3). This
presumably allows the daily poly(A) site switch to bemore feasible. The
most likely mechanism is that the cis-elements specifically found in the
long isoform (i.e., distal poly(A) site usage) either activate or repress
one poly(A) site usage over another by interacting with trans-factors.
It is also possible that these interactions affect the RNA processing
(i.e., mRNA stability, translation, and localization) (Di Giammartino
et al. 2011;Mayr 2016). To support this, circadianAPA transcripts have
a larger difference in the 39UTR length between the APA isoforms
(Figure 3). Identifying these cis-elements and understanding how their
interaction with trans-factors affect the target poly(A) site choice in a

circadian manner will, thus, help us better understand the mechanisms
circadian APA regulation in the future.

Since components of the cleavage and polyadenylationmachinery,
e.g., CSTF77 and NUDT21, are expressed rhythmically in mouse liver
(Mauvoisin et al. 2014; Robles et al. 2014), it is tempting to speculate
that they are involved in regulating circadian APA at least for some
genes. Changes in the levels of the other core components for cleav-
age and polyadenylation machinery, including CSTF-64/CSTG2,
CSTF-64t, CFI-68/CPSF6, CFI-25/CPSF5, FIP1L1, and PCF11 as well
as auxiliary factors such as PABPN1, PTBP, RBBP6, and PAF1C, have
all been shown to impact poly(A) site choices (Takagaki et al. 1996;
Takagaki and Manley 1998; Kubo et al. 2006; de Klerk et al. 2012;
Jenal et al. 2012; Martin et al. 2012; Yao et al. 2012; Yao et al. 2013;
Di Giammartino et al. 2014; Lackford et al. 2014; Masamha et al. 2014;
Gennarino et al. 2015; Li et al. 2015; Domingues et al. 2016; Yang et al.
2016). These proteins may also be involved in regulating circadian
APA, although this remains to be investigated.

Despite the advances of sequencing technology and analytical tools
that expand our ability to detect APA events, consequences of APA are

Figure 4 Hepatic APA genes use distal poly(A) sites and canonical PASs more frequently, but circadian APA genes have less distinct
difference. (A) Distributions of c values in APA transcripts that have a canonical PAS (AAUAAA) or other PAS variants. All: AAUAAA; n = 14632,
others; n = 15860, and rhythmic: AAUAAA; n = 724, others; n = 722. (B) Distributions of c values in transcripts that use distal or proximal
poly(A) sites. All: proximal = 15246 and distal = 15246, Rhythmic: proximal = 723 and distal = 723. (C) Distribution of the APA index between
all (N= 15246) and rhythmic (N= 723) APA transcripts. (D) Percentages of each PAS combination group. All: N = 15246, Rhythmic: N= 723.
Numbers in parentheses indicate the number of transcripts that fall under each combination group. (E) Distribution of the APA index in each
PAS group. All the box-whisker plots represent quartiles (box) and quartile 6 1.5 interquartile range (whiskers). �; P , 0.05. ���; P , 0.005
(Mann-Whitney-Wilcoxon Test).
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still largely unknown. We measured the correlation between protein
rhythmicity vs. APA rhythmicity utilizing three circadian proteome
datasets from mouse liver (Reddy et al. 2006; Mauvoisin et al. 2014;
Robles et al. 2014). We found that the percentage of rhythmic proteins
was similar among circadian APA genes and control APA genes (data
not shown). It is unclear whether this suggests that rhythmic APA
regulation does not contribute to rhythmic protein production or the
correlations are missed simply because the existing mammalian liver
proteome data only cover a small percentage of the entire proteome. It
is also possible that the impact of APA on translation is regulated by
gene-specific, rather than global,mechanisms.Nevertheless, it would be
of great interest in the future to examine the impact of circadian APA
regulation on the proteome and/or transcriptome.

Obviously, experimental validation is key to underscoring the im-
portance of our findings. Our attempts to measure circadian changes
in APA by quantitative PCR were unsuccessful; however, quantitative
PCR may not be an ideal method, since it is technically impossible to
specifically detect shorter isoforms. Several genome-wide approaches
are now available to detect 39-end of transcripts quantitatively
(Pelechano et al. 2012; Cornett and Lutz 2014; Hoque et al. 2014;
Yao and Shi 2014; Xing and Li 2015; Zheng et al. 2016; Zheng and
Tian 2017). These tools can be used in the future to quantify circadian
APA, including de novo poly(A) sites.

Overall, our study provides evidence that the choice of poly(A) site
and therefore mRNA 39-end structure are under circadian regulation.
Interesting research directions in the future would be to 1) experimen-
tally validate the circadian poly(A) site switches, 2) identify cis-elements
enriched in the circadian APA transcripts, and 3) delineate how these
cis-elements confer rhythmicity in poly(A) site choices. By identifying
unique characteristics of rhythmic APA genes and illustrating the land-
scape of poly(A) tails in mouse liver, our study serves as a platform to
help us understand the mechanisms of circadian APA regulation.
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