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Recent investigations on the regulatory action of extracellular vesicles (EVs) on immune

cells in vitro and in vivo have sparked interest on the subject. As commonly known, EVs

are subcellular components secreted by a paracellular mechanism and are essentially

a group of nanoparticles containing exosomes, microvesicles, and apoptotic bodies.

They are double-layer membrane-bound vesicles enriched with proteins, nucleic acids,

and other active compounds. EVs are recognized as a novel apparatus for intercellular

communication that acts through delivery of signal molecules. EVs are secreted by almost

all cell types, including stem/progenitor cells. The EVs derived from stem/progenitor

cells are analogous to the parental cells and inhibit or enhance immune response. This

review aims to provide its readers a comprehensive overview of the possible mechanisms

underlying the immunomodulatory effects exerted by stem/progenitor cell-derived EVs

upon natural killer (NK) cells, dendritic cells (DCs), monocytes/macrophages, microglia,

T cells, and B cells.
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INTRODUCTION

Extracellular vesicles (EVs), now identified as a novel apparatus of intercellular communication,
did not garner significant attention previously, although they are currently sought after as a topic
of research. EVs have a diameter ranging between 50 and 2,000 nm with a bilayer lipid membrane
(1) and comprise parental cell-derived active cargos such as lipids (2), proteins (2, 3), nucleic
acids [(DNAs) (4), mRNA (5, 6), microRNAs (miRNAs) (4), non-coding RNAs (7)] and organelles
(4, 8). Emerging evidence indicates that double-stranded DNA, DNA-binding histones, and certain
miRNAs are not associated with small EVs such as exosomes (9). These inclusions are attached
to EV membranes or included within the vesicles (10–12). The components of EVs vary with
environmental conditions, cell origin, and cell activation conditions. Moreover, EVs demonstrate
significant age-dependent differences in their pro-inflammatory miRNA profile (12). To date,
most cell types [including stem cells (SCs)/progenitor cells] have been shown to release specific
EVs (13–15), and a growing body of evidence indicates that EVs derived from stem/progenitor
cells contribute to immunomodulation responses (16). EVs are detected in all body fluids and
serve as a basis for liquid biopsy (17). This review focuses on the mechanisms underlying the
immunoregulatory effects exerted by stem/progenitor cell-derived EVs on natural killer (NK)
cells, dendritic cells (DCs), monocytes/macrophages, microglia, T cells, and B cells. Defining the
mechanism of action of SC-derived EVs (SC-EVs) will facilitate development of novel therapeutic
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approaches on the basis of the synergistic effects of EVs with
other beneficial molecules or drugs with complementary effects.

BIOLOGICAL PROPERTIES OF
EXTRACELLULAR VESICLES

An increasing number of studies report the process of secretion
of EVs by various cells (15, 18). A large number of protuberances
and pits on the membrane surface of viable SCs are observed to
be dynamic; the protuberances may shed as microvesicles (MVs),
and the pits may form when multivesicular bodies (MVBs) fuse
with the plasma membrane to release exosomes (18).

EVs are classified into three main categories on the basis
of their size and biogenesis: (1) Exosomes (50–120 nm) are
produced through the inward invagination of the endosomal
membrane. First, the inward budding of the plasma membrane
leads to formation of the early endosome, followed by formation
of intraluminal vesicles (ILVs) by inward budding of the limiting
membrane inside MVBs, followed by release of ILVs fromMVBs
to the extracellular space after fusing with the plasma membrane,
leading to formation of exosomes (1). Biogenesis within
endosomes (now known as MVBs) is distinctive to exosomes.
(2) MVs (200–2,000 nm) develop as membrane protrusions and
eventually form bulges that detach directly (17). (3) Apoptotic
bodies (Abs) (500–2,000 nm) characterized by the presence of
organelles within the membrane enclosed vesicles released by
cells undergoing apoptosis (19). Furthermore, a growing body
of evidence suggests that apoptotic cell-derived EVs (ApoEVs)
play a significant role in immunomodulation. For example,
ApoEVs promote phagocyte recruitment to clear apoptotic cells,
present antigen to T cells, facilitate immune response of DCs,
and induce infection (20, 21). Thus, SC-EVs may be widely
used in treatment of autoimmunity, cancer, and infection in
the future. Limited information is available about the functional
significance of ApoEVs, apart from its role in fragmentation of
cells undergoing apoptosis and the immunomodulatory activities
of other cell-derived ApoEVs (21). Therefore, we focus on the
immunomodulatory effects of SC exosomes and SC-MVs in
our review.

Owing to the overlap in size and density, the term
“EVs” usually refers to exosomes and MVs. Intercellular
communication is achieved through a variety of pathways,
such as cell–cell contact (22), tunnel nanotubes (23), and
paracrine mechanisms. Research has indicated that EVs transfer
signaling molecules from one cell to another cell or into
various body fluids through a paracrine mechanism, thus
regulating the gene expression and phenotypic transformation
of target cells through a continuous secretion-uptake process.
Therefore, EVs are significant as information vehicles. EVs
are taken up by target cells through direct membrane fusion,
receptor-mediated phagocytosis, and several other internalized
mechanisms (24), leading to subsequent activation of signal
transduction pathways (14, 25) and involvement in various
physiological and pathological processes in vivo, such as immune
response and cell phenotypic transformation.

BIDIRECTIONAL INTERACTION OF STEM
CELLS WITH IMMUNE CELLS THROUGH
THEIR RESPECTIVE EXTRACELLULAR
VESICLES

SCs are capable of self-renewal and indefinite proliferation,
participating in maintenance of cell cycle, tissue repair and
regeneration, and immune response regulation. SC-EVs are
internalized by target cells primarily through specific receptor–
ligand interaction modes to exert biological functions (26–28).
Intercellular communication between SCs and immune cells
is achieved through their respective EVs. For example, SC-
EVs internalized by immune cells inhibit the proliferation and
activation of the latter (29, 30) (Figure 1). SC-EVs preferentially
accumulate in injury sites to inhibit the pro-inflammatory
response of immune cells (31). EVs derived from immune
cells are also internalized by SCs to promote recruitment
and migration of SCs (32) (Figure 1). Additionally, immune
cells and tumoral SCs have been observed to restrict each
other through EVs. For example, activated CD8+ T cell-
derived EVs were observed to prevent tumor progression
by EV-mediated depletion of mesenchymal stromal/stem cells
(MSCs) associated with tumor expansion in tumor environment
(33). Glioblastoma SCs (GSCs)-derived EVs induced inclination
of human monocytes toward the immunosuppressive M2
phenotype expressing programmed death ligand-1 (PD-L1),
leading to the spread of tumor cells (34). Overall, the bidirectional
interaction of EVs secreted by SCs and by immune cells has
provided a theoretical basis for exploring tissue/organ repair and
antitumormechanisms. In this review, we focus on the regulatory
potential of SC-EVs on immune cells.

IMMUNOMODULATORY POTENTIAL OF
STEM CELL-DERIVED EXTRACELLULAR
VESICLES ON IMMUNE CELLS

Natural Killer Cells
SC-EVs primarily exert immunosuppressive effects on NK
cells, including recruitment, proliferation, activation, and release
of cytotoxic substances. For example, human umbilical cord
MSC-derived EVs (hUC-MSC-EVs) demonstrated a protective
role in rats with renal ischemia–reperfusion injury through
downregulation of the renal expression of C-X3-C motif
chemokine ligand-1 (CX3CL1) and toll-like receptor-2 (TLR-
2), and transfer of various miRNAs, thus inhibiting the CD3-
CD161+NK infiltration (35) (Table 1). In an experiment on
human graft-vs.-host disease (GVHD), MSC exosomes were
shown to reduce the release of interferon gamma (IFN-γ) and
tumor necrosis factor alpha (TNF-α) by activated NK cells,
alleviating the inflammatory response (100). In addition, the
anti-inflammatory molecules contained in MSC exosomes, such
as interleukin 10 (IL-10), transforming growth factor-β1 (TGF-
β1), and human leukocyte antigen-G (HLA-G), are also believed
to exert immunoprotective effects (100). Human fetal liver
MSC-EVs have been reported to inhibit the proliferation and
activation of CD56-dim/CD56-bright NK cells and to suppress
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FIGURE 1 | Bidirectional interaction between stem cells and immune cells through their respective EVs. By delivering proteins, nucleic acids, organelles, etc., EVs

released from stem cells may inhibit the proliferation, differentiation, and activation of the immune cells to induce immunotolerance. Conversely, EVs released from

immune cells may motivate the migration and recruitment of stem cells to promote tissue repair. EVs, extracellular vesicles; SCs, stem cells; ICs, immune cells.

the cytotoxic degranulation capacity of NK cells on target cells in
vitro (95). A possible mechanism by which MSC-EVs exert these
immunomodulatory effects on NK cells could be through the
TGF-β expression on their membranes mediating downstream
TGF/Smad2/3 signaling (95) (Table 1). These findings suggest
that SC-EVs play a therapeutic role in suppressing the lethality of
NK cells, which serves as a theoretical basis for disease treatment
or drug development.

Dendritic Cells
DCs are classic antigen-presenting cells (APCs) with a significant
role in adaptive immune response. DCs internalize and
process antigens, followed by upregulation of the expression
of class II major histocompatibility complex (MHC II) and
T cell costimulatory molecules (CD80 and CD86) on their
surfaces. The processed antigens are then docked onto MHC
II molecules, leading to their transformation into APCs
and conversion from immature DCs (iDCs) to mature DCs
(mDCs) (101).

SC-EVs have been observed to exert immunosuppressive
effects on DCs primarily through inhibition of DC maturation
and activation, which hardly affects the proliferation and
apoptosis of DCs (60–62, 77, 96, 97). For example, SC-
EVs were observed to indirectly inhibit the immune response

of T cells by inducing production of immature IL-10-
secreting DCs through downregulation of MHC class II and/or
costimulatory molecule expression on the surface of DCs
(77, 97). One possible mechanism of action mediated by
SC-EVs is to upregulate micro-146a expression, downregulate
FAS gene expression in DCs, and induce production of an
immature phenotype of DCs, followed by inhibition of IL-
12 production (60) (Table 1). Another possible mechanism
might be related to the immunosuppressive effect exerted by
SC-EVs enabled by upregulation of anti-inflammatory HLA-G
molecule expression on SC-EVs (96) (Table 1). In addition, the
biological effect of EVs reportedly depends on the engineered
SCs. For instance, exosomes secreted by indoleamine-2,3-
dioxygenase-1 (IDO1)-overexpressing rat bone marrow MSCs
(BM-MSCs) increased the expression of both miR-540-3p and
immunoregulatory protein FHL-1 and induced production
of a low-activity phenotype of DCs, thus inhibiting the
proliferation of T cells (61) (Table 1). In other words, SC-EVs
suppressed the ability of APCs to create an immunotolerant
environment that is advantageous for graft survival (60) and
tumor cell escape (96). Investigation of the beneficial or
harmful effects of SC-EVs facilitates the understanding of
biological mechanisms of diseases and possible methods for
controlling them.
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TABLE 1 | Immunoregulatory potential and mechanism of SC-EVs on immune cells.

SC type

releasing EVs

Models Transferring

materials

Target cells Molecular

mechanisms

Biological effects References

hUC-MSCs Renal IRI rat model miRNAs Injured kidney Downregulate TLR-2 and

CX3CL1

Promote NK cell suppression

and ameliorate renal

ischemia–reperfusion injury

(35)

hUC-MSCs Severe burn rat

model

miR-181c Macrophages Inhibit NF-κB/p-P65 signal

pathway

Reduce macrophage

activation and alleviate

burn-induced inflammation

(36)

hUC-MSCs ALF mice model — Macrophages Inhibit TXNIP/NLRP3

inflammasome

Reduce macrophage

activation and improve liver

function

(37)

hUC-MSCs AAA mice model miR-147 Macrophages — Induce M1 suppression in

aortic smooth muscle cells

and mitigate AAA formation

(38)

hUC-MSCs

(LPS-pretreated)

Cutaneous wound

of diabetic rat

model

Let-7b Macrophages Suppress

TLR4/NF-κB/STAT3/AKT

pathway

Promote M2 induction and

diabetic cutaneous wound

healing

(39)

hUC-MSCs

(IL-1β pretreatment)

Sepsis mice model miR-146a Macrophages Target the IRAK1, TRAF6,

and IRF5 signaling

cascades

Promote M2 induction and

prolong the survival of mice

with sepsis

(40)

hUC-MSCs Retinal laser injury

mice model,

EAU rat model

— The retina cells Downregulate MCP-1 Inhibit macrophage infiltration

and protect the retina from

inflammatory injury

(41, 42)

hUC-MSCs In vitro CD73

expressing

T cells — Suppress T cell

proliferation and induce

immunosuppressive response

(11)

hUC-MSCs

(HLA light chain B2M

deletion)

Myocardial

infarction rat model

miR-24 Cardiomyocytes B2M-UCMSC-

exosomes/miR-24/Bcl-2-

like protein 11(Bim)

pathway

Inhibit CD8+ immune

rejection and cardiomyocytes

apoptosis

(43)

hUC-MSCs GVHD mice model — CD8+ T, Th cells — Suppress CD8+ T cells,

switch the immune response

from Th1 cells to Th2, prevent

life-threatening GVHD after

allo-HSCT

(44)

hUC-MSCs Contact

hypersensitivity

mouse model

— Tc1 cells, Th1 cells,

Tregs

Target STAT1 Suppress Tc1 and Th1 cells,

induce Tregs, and exert

therapeutic effect

(45)

hUC-MSCs EAU rat model — The retina cells Downregulate expression of

CCL21

Reduce T cell infiltration and

protect the retina from

inflammatory injury

(42)

hUC-MSCs Perinatal brain

injury rat model

— Microglia Suppress TLR4/CD14

signaling pathway

(NF-κB/MAPK family

members ERK1/2, p38, and

JNK)

Prevent and treat perinatal

brain injury

(46)

hAD-MSCs

(hypoxic pretreated)

Skeletal muscle

injury mice model

— Injured muscle cells Upregulate CCL2 Increase M2 macrophage

infiltration and promote M2

induction and injury site

recovery

(47)

hAD-MSCs

(IFN-γ stimulated)

In vitro — CD14+CD16+

Monocytes

— Induce apoptosis of the

targets cells

(48)

hAD-MSCs Experimental

allergic

asthma mice model

— T cells — Switch the immune response

from Th2 cells to Th1 and

reduce inflammation and

tissue remodeling

(49)

mAD-MSCs ALF mice model miR-17 Macrophages Inhibit TXNIP/NLRP3

inflammasome

Reduce macrophage

activation and improve liver

function

(50)

(Continued)
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TABLE 1 | Continued

SC type

releasing EVs

Models Transferring

materials

Target cells Molecular

mechanisms

Biological effects References

mAD-MSCs T1D mice model — T cells — Regulate the immune

response axis of Th17/Tregs

and prevent T1D progressing

(51)

mAD-MSC In vitro — Macrophages, DCs,

Th2 cells

— Promote M2 polarization and

DC maturation to ameliorate

Th2-mediated inflammation

response

(52)

mAD-SCs Diet-induced

obesity mice model

Phosphorylated

STAT3

Macrophages — M2 induction in WAT and

improve systemic metabolic

homeostasis

(53)

mAD-SCs EAE mice model — T cells Inhibit integrin-dependent

chemokine pathway

Suppress activated T cell

adhesion and ameliorate

chronic inflammation

(54)

rAD-MSC Myocardial

infarction rat model

— Macrophages Activate S1P/SK1/S1PR1

signaling pathway

M2 induction and meliorate

cardiac damage

(55)

rAD-MSCs HCC rat model β-Catenin NK T cells — Promote NK-T cell survival

and migration, increase NK-T

cell antitumor

(56)

rAD-SCs In vitro — Microglia Inhibit NF-κB/MAPK family

member signaling pathway

Decrease cytotoxicity of

activated microglia

(57)

rAD-SCs

miRNA-126-modified

Stroke rat model miRNA-126 Microglia — Treatment for stroke (58)

rAD-SCs

(overexpressed

miR-30d-5p)

Acute ischemic

stroke rats model

miR-30d-5p Microglia Suppress the expression of

3
′

UTR of both Beclin-1 and

Atg5

Inhibit microglial polarization

to M1 and decrease the

cerebral injury area of

infarction

(59)

mBM-MSCs Allogeneic kidney

graft mice model

Micro-146a DCs — Inhibit DC maturation,

promote allogeneic kidney

graft survival

(60)

rBM-MSCs

(IDO1 overexpressing)

Cardiac allografts

rat model

FHL-1 protein,

miR-540-3p

DCs, T cells — Induce DC immaturity,

indirectly regulate T cell

immune response, promote

immunotolerance of cardiac

allografts

(61)

hBM-MSCs In vitro miR-21-5p DCs, T cells — Attenuate DC maturation and

function as well as

inflammatory response of T

cells

(62)

mBM-MSCs ApoE−/−

atherosclerosis

mice model

miR-let7 Macrophages Suppress IGF2BP1/PTEN

pathway in the plaque

Reduce macrophage

infiltration to meliorate

atherosclerosis

(63)

mBM-MSCs Cardiomyocyte

injury in

polymicrobial

sepsis mice model

miR-223 Macrophages,

cardiomyocyte

Downregulate expression of

Stat3 and Sema3A proteins

Attenuate inflammatory

response and exert

cardioprotection

(64)

rBM-MSCs In vitro — Macrophages Target AKT1/AKT2

signaling pathway and

suppress the NF-κB

signaling pathway

M2 induction and alleviate

inflammation

(65)

hBM-MSCs ARDS mice model Functional

mitochondria

Macrophages Enhance macrophage

oxidative phosphorylation

M2 induction and ameliorate

lung injury

(8)

mBM-MSCs In vitro — Macrophages Downregulate expression of

CCR7

Promote M2 induction

and guide immunotolerance

(27)

mBM-MSCs ApoE−/−

atherosclerosis

mice model

miR-let7 Macrophages Inhibit HMGA2/NF-κB signal

pathway

M2 induction and ameliorate

atherosclerosis

(63)

(Continued)
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TABLE 1 | Continued

SC type

releasing EVs

Models Transferring

materials

Target cells Molecular

mechanisms

Biological effects References

hBM-MSCs

(Hypoxia

prechallenged)

Non-small cell lung

cancer cell

xenograft mice

model

miR-21-5p Macrophages Downregulate expression of

PTEN gene and promote

p-Akt/p-STAT3 signal

pathway

M2 induction and promote

non-small-cell lung cancer

cells growth and mobility

(66)

mBM-MSCs Dilated

cardiomyopathy

mice model

— Macrophages Activate JAK2-STAT6 signal

pathway

Promote M2 induction

and ameliorate myocardial

inflammation

(67)

mBM-MSCs Myocardial IRI

mouse model

miR-182 Macrophages Target

TLR4/NF-κB/PI3K/Akt

pathway

Promote M2 induction and

attenuate myocardial IRI

(68)

mBM-MSC Ulcerative colitis

mice model

— Macrophages Target JAK1/STAT1/

STAT6 signaling pathway

M2 induction and exert

therapeutic effects

(69)

hBM-MSCs Skin wound-healing

mice model

miR-223 Macrophages Target pknox1 M2 induction and accelerate

wound healing

(70)

mBM-MSCs IRI renal injury mice

model

CCR2 proteins Free CCL2 Inhibit NF-κB/p-P65

signaling pathway

M1 suppression and promote

the recovery of kidney injury

(26)

hBM-MSCs aGVHD murine

model

miR-125a-3p T cells — Preserve the circulative

naive T cells and prolong the

survival

(71)

hBM-MSC Cerebral apoplexy

rat model and

stroke mice model

— T cells, B cells,

NK cells

— Attenuate T cell, B cell, and

NK cell lymphopenia and

prevent postischemic

immunosuppression

(72, 73)

mBM-MSCs Inflammatory

arthritis mice model

— T cells — Switch the immune response

from Th1 cells to Th2 to

therapy the arthritis

(29)

hBM-MSCs In vitro — T cells — Induce conversion of Th1 into

Th2 cells

(74)

hBM-MSCs Severe refractory

asthma mice model

— T cells — Switch the immune response

from Th2/Th17 cells to Th1

and ameliorate airway

inflammation

(75)

hBM-MSCs In vitro — T cells — Regulate the immune

response axis of Th17/Tregs

(74)

hBM-MSCs T1D patient PGE2, TGF-β T cells — Regulate the immune

response axis of Th17/Tregs

and prevent T1D progressing

(76)

hBM-MSCs T1D patient — DCs, T cells — Induce DC immaturity, inhibit

differentiation of Th1 and

Th17 cells, increase Tregs to

induce immunotolerance

(77)

mBM-MSCs Tight-skin mice

model

miR-151-5p The recipient

BM-MSCs, Th2 cells

Suppress IL4Rα/mTOR

pathway

Inhibit Th2 cell immune

response to therapy systemic

sclerosis

(78)

hBM-MSCs Human-into mouse

xenogeneic GVHD

model

Adenosine

signaling

Th1 cells — Induce the apoptosis of Th1

cells and promote immune

suppression

(79)

hBM-MSCs In vitro — B cells Affect mRNA expression of

B cells

Inhibit the proliferation and

function of B-lymphocytes

(80)

hBM-MSC

(IFN-γ and TNF-α

pretreated)

In vitro miR-155-5p B cells Downregulation of

PI3K-AKT signaling pathway

and modulation of the

reorganization of actin

cytoskeleton

Inhibit the proliferation and

activation of B cells

(81)

hBM-MSCs In vitro — CLL B cells Induce gene expression

profile modifications

Promote the CLL progress (82)

(Continued)
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TABLE 1 | Continued

SC type

releasing EVs

Models Transferring

materials

Target cells Molecular

mechanisms

Biological effects References

mBM-MSCs

(Irradiated)

Inflammatory

arthritis mice

model,

osteoarthritis mice

model

— B cells,

plasma cells

— Repress the activation of B

cells, inhibit plasma cell

differentiation, and induce

IL-10-expressing Breg cells

and exert therapeutic effects

(29, 83)

hpBM-MSCs Ex vivo

In vitro

Proteins Plasma cells — Promote the differentiation

and maturation programs

from early circulating

antibody-secreting cells to

long-lived plasma cells

(3, 84)

mBM-MSCs In vitro — Microglia Suppress phosphorylation

of ERK1/2, JNK, and p38

molecules

Inhibit the activation of

microglia

(85)

B-MSCs Traumatic spinal

cord injury rat

model

— Microglia, astrocytes Suppress A1 neurotoxic

reactive astrocytes induced

by activated microglia

Repair traumatic spinal cord

injury

(86)

hAF-SCs Osteoarthritis rat

model

TGF-β Macrophages — M2 induction and promote

cartilage repair

(87)

hAF-SCs

(IFN-γ treated)

Allograft mice

model

IDO1 proteins T cells — Decrease T cell proliferation,

increase Tregs, and promote

allograft survival

(88)

mESCs Cardiomyopathy

mice model

— Macrophages Suppress phosphorylation

of MyD88, P38, and JNK

molecules

M2 induction and reduce

doxorubicin-induced

pyroptosis and cardiac

remodeling

(89)

mESCs Implanted lung

adenocarcinoma

mice model

GM-CSF-

expressing

CD8+ T cells, Tregs — Increase CD8+ T cells,

inhibit Tregs in tumor, activate

CD8+ effector cells within the

tumors, prophylactic vaccine

for cancer prevention

(90)

hESC-MSCs Allogeneic skin

graft mice model

TLL4 Monocytes, T cells — M2 induction and mediate

differentiation of CD4+ T cells

to Treg and enhance the

survival of allogeneic skin

(91)

hWJ-MSCs Ischemic AKI rat

model

miRNAs Endothelial cells of

glomerulus and

vessels

Downregulate expression of

CX3CL1

Reduce macrophages

infiltration and renal injury

(28)

cWJ-MSCs In vitro TGF-β,

adenosine

signaling

T cells — Inhibit CD4 +T cells

proliferation

(92)

hPDL-SCs

(LPS-pretreated)

In vitro DNA Macrophages — M1 induction (93)

hPDL-SCs

(LPS-stimulated)

Chronic

periodontitis

miR-155-5p T cells Target sirtuin-1 Regulate the immune

response axis of Th17/Tregs

and reduce the further

deterioration of periodontitis

(94)

hFL-MSCs In vitro TGF-β NK cells Inhibit the nuclear

translocation of

phosphorylated Smad2/3 in

TGF/Smad pathway

Impair NK cells function (95)

rCD105(+) renal CSCs In vitro HLA-G DCs, T cells — Inhibit DC maturity, indirectly

regulate T cell immune

response, promote cancer

progression

(96)

h-end-MSCs In vitro TGF-β T cells — Suppress CD4+ T cell

activation

(10)

(Continued)
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TABLE 1 | Continued

SC type

releasing EVs

Models Transferring

materials

Target cells Molecular

mechanisms

Biological effects References

hNSCs Thromboembolic

stroke murine

model

— Macrophages, T cells — Regulate the immune

response axis of Th17/Tregs

and exert

therapeutic effects and

improve prognosis

(31)

hMSCs

(protein-free medium

activated)

T1D and

uveoretinitis murine

model

— DCs, T cells — Induce DC immaturity and

inhibit Th1 and Th17 cells to

balance immune responses

(97)

hGSCs In vitro — CD14+ monocytes,

T cells

— Involved in the conversion of

monocyte phenotypes and in

inhibition of T cell immune

response

(98)

iPSC-MSCs

(protein-free medium

activated)

Sjögren’s syndrome

mouse model

— APCs, T cells — Inhibit Tfh and Th17 cells and

prevent SS progression

(99)

SCs, stem cells; EVs, extracellular vesicles; SC-EVs, stem cell-derived extracellular vesicles; hUC-MSCs, human umbilical cord mesenchymal stem cells; hAD-MSCs, human adipose

mesenchymal stem cells; mAD-SCs, murine adipose stem cells; mAD-SCs, murine adipose stem cells; hpBM-MSCs, human primary bone marrow mesenchymal stem cells; mBM-

MSCs, murine bone marrow mesenchymal stem cells; hAF-SC, human amniotic fluid stem cells; hESC-MSCs, embryonic stem cell-mesenchymal stem cells; cWJ-MSCs, canine

Wharton’s jelly mesenchymal stem cells; hPDL-SCs, human periodontal ligament stem cells; hFL-MSCs, human fetal liver mesenchymal stem cells; rCD105(+) renal CSCs, rat CD105+

renal cancer stem cells; h-endMSCs, human endometrial mesenchymal stem cells; hNSCs, human neural stem cells; hGSCs, glioma stem cells; iPSC-MSCs, induced pluripotent stem

cell-mesenchymal stem cells; IDO1, indoleamine-2,3-dioxygenase-1; LPS, lipopolysaccharide; IRI, ischemia–reperfusion injury; ALF, acute liver failure; AAA, abdominal aortic aneurysm;

ARDS, acute respiratory syndrome; AKI, acute kidney injury; EAU, experimental autoimmune uveitis; aGVHD, acute graft-vs.-host disease; HCC, hepatocellular carcinoma; T1D, type

1 diabetes; EAE, experimental autoimmune encephalomyelitis; HLA-G, human leukocyte antigen-G; CCR2, C-C motif chemokine receptor-2; TLL-4, toll-like ligand 4; NKs, natural killer

cells; DCs, dendritic cells; APCs, antigen presenting cells; CLL B, chronic lymphocytic leukemia B cells; CX3CL-1, C-X3-C motif chemokine ligand-1; CCL-2, C-C motif chemokine

ligand-2; MCP-1, monocyte chemotactic protein-1; CCR-7, C-C motif chemokine receptor-7; WAT, white adipose tissue; TLR-2, toll-like receptor-2; CX3CL-1, C-X3-C motif chemokine

ligand-1; CCL-21, C-C motif chemokine ligand-21; allo-HSCT, allogeneic hematopoietic stem cell transplantation; MAPK, mitogen-activated protein kinase; PGE2, prostaglandin E2;

GM-CSF, granulocyte-macrophage colony-stimulating factor.

Macrophages/Monocytes
Effects of Stem Cell-Derived Extracellular Vesicles on

Macrophage Polarization and Homeostasis
SC-EVs have been shown to polarize macrophages to the
alternate phenotype. On the one hand, SC-EVs directly or
indirectly inhibit the inflammatory reaction of macrophages.
For example, (1) SC-EVs directly act on pro-inflammatory
macrophages by inhibiting their infiltration (63) (Table 1) and
activation (36–38, 50, 64) (Table 1) and by regulating their
phenotype polarization from pro-inflammatory M1 toward
anti-inflammatory M2, facilitating low expression of pro-
inflammatory molecules IFN-γ and TNF-α; contrarily, they
enhance the expression of anti-inflammatory molecule IL-10
to induce immunotolerance (6, 8, 27, 39, 40, 53, 55, 63, 65–
70, 87, 89) (Table 1). (2) SC-EVs express chemokine receptors
(26) (Table 1) and indirectly promote the infiltration of anti-
inflammatory M2 macrophages (47) or prevent the migration
of pro-inflammatory M1 macrophages through interaction with
chemokine ligands expressed on other tissues and cells (28,
41, 42, 47) (Table 1). In addition, as reported by a study,
SC-EVs downregulate the production of IL-23 and IL-22
and upregulate anti-inflammatory prostaglandin E2 (PGE2) by
indirectly repressing the function of T helper type 17 (Th17)
cell or by inducing conversion of Th17 cells into regulatory
T cells (Tregs) (102). As a result, SC-EVs induced conversion

of activated regulatory macrophages (Mregs) from a pro-
inflammatory phenotype to an alternative anti-inflammatory
phenotype and eventually promoted the reduction of severe
inflammation (102). On the other hand, SC-EVs also promote
inflammatory reactions of macrophages. For example, the DNA
in the outer membrane of EVs derived from lipopolysaccharide
(LPS)-preconditioned periodontal ligament SCs (PDL-SCs)
synergized with peripheral environmental IFN-γ to promote M1
polarization of macrophages and expression of high levels of
pro-inflammatory molecules IL-6 and TNF-α, resulting in teeth
damage (93) (Table 1). This finding suggests that the EV-bound
DNA might be a potential therapeutic target for periodontitis. A
study on a mice model with silicosis that focused on the double-
edged effect of SC-EVs on macrophages using different cargos
within EVs revealed notable details. The study showed that MSC
transferred mitochondria and miRNAs to human macrophages
using MSC-MVs and MSC exosomes, respectively (4). MSCs
donated their mitochondria to macrophages to enhance the
bioenergetics of macrophages though MV-mediated transfer
under oxidative stress. However, MSC-exosome-transferred
miRNAs were responsible for targeting MYD88-dependent
inflammatory centers to suppress TLR/NF-κB signaling pathway
and macrophage activation (4). The dual effect refers to the
simultaneous secretion of two types of EVs with different cargos
by the SCs to mediate homeostasis.
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Stem Cell-Derived Membrane Particles as Drug

Delivery Carrier Targeting of Monocytes
Membrane particles (MPs) derived from human adipose MSCs
(AD-MSCs) were rarely taken up by lymphocytes, although they
could selectively bind to and fuse with plasma membrane of
monocytes to specifically induce apoptosis of pro-inflammatory
CD14+CD16+ monocytes. However, no such effect was
exerted on classical CD14+CD16– monocytes (48) (Table 1).
Thus, SC-MPs may act as natural drug delivery vehicles
targeting monocytes.

Microglia
As the resident macrophages of the central nervous system
(CNS), microglia play a vital role in regulating inflammation,
balancing immunity, and promoting development and tissue
repair. It is believed that an M1/M2 phenotype imbalance occurs
in the CNS diseases and that the polarization of microglia from
theM1 toM2 phenotypes canmaintain immune homeostasis and
neurological function in patients with CNS diseases (103).

Involvement of Neural Stem Cells, Neural Stem

Cell-Derived Extracellular Vesicles, and Microglia in

Central Nervous System Development
Microglia are the innate immune cells that play an important
physiological role in the nervous system (NS). Neural stem
cells (NSCs) and neural stem cell-derived extracellular vesicles
(NSC-EVs) are closely associated with microglia during neonatal
brain development. For example, the EVs released by neonatal
sub-ventricular zone (SVZ)-derived NSCs were observed to
contain a variety of miRNAs and preferentially induced a
transition of CD11b+ microglia to a non-stellate morphology,
accompanied by an alteration in the microglial transcriptional
state. Conversely, EV-treated neonatal microglia inhibited NSC
proliferation by upregulating Let-7-mediated cytokine release
(104). Therefore, neonatal NSC-EVs affect the morphology and
function of microglia with formation of a negative feedback loop
of NSCs that might be conducive to normal development of
the NS.

Stem Cell-Derived Extracellular Vesicle Regulatory

Potential in Immunoreactive Microglia
SC-EVs have been observed to regulate the activation of
microglia in a variety of NS disease models (46, 57, 58, 85,
86, 105). For example, MSC-EVs suppressed the activated
microglia by inhibiting the phosphorylation of mitogen-activated
protein kinase (MAPK) family members extracellular signal
kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and
the p38 molecules in microglia (46, 57, 85) (Table 1). Notable
studies have reported that BM-MSC exosomes could repair spinal
cord injury by suppressing the activation of A1 neurotoxic
reactive astrocytes induced by activated microglia (86) or
by inhibiting the complement system (105) and the NF-κB
signaling pathway (46, 57, 105). Meanwhile, SC-EVs have
been observed to polarize microglia from classic M1 to anti-
inflammatory M2 phenotypes (59, 85, 106, 107), which might

be attributed to the targeted suppression of the 3
′

-UTR mRNA

expression in Beclin-1 and Atg5 and inhibition of autophagy-
mediated microglial polarization toward pro-inflammatory state
by miR-30d-5p-expressing EVs (59) (Table 1). Thus, SC-EVs
create a microenvironment conducive to nerve cell repair by
inducing expression of microglial immunotolerance phenotypes
in NS diseases.

T Cells
The Diversity of Stem Cell-Derived Extracellular

Vesicle Immunoregulatory Potential in T Cells
The immunoregulatory effects exerted by SC-EVs on activated
T cells remain a widely debated topic. For instance, one
study observed that the co-culture of SC-EVs with peripheral
blood mononuclear cells (PBMCs) specifically suppressed the
proliferation of T cells, whereas it did not affect that of B cells
and NK cells (71). However, other studies have reported that SC-
EVs inhibited the proliferation of NK cells and B cells, although
its effect on the proliferation of T cells remains unclear (30, 108).
There are evidences that indicate that SC-EVs do not suppress
T cell proliferation; however, they induce upregulation of Tregs
and downregulation of pro-inflammatory cytokines (51, 74, 109).
Results from most studies clearly indicate that SC-EVs indirectly
affect T cells by interaction with macrophages or DCs (110,
111); yet limited number of studies have directly examined the
suppressive effects of SC-EVs on T cells (112).

Regulatory Potential of Stem Cell-Derived

Extracellular Vesicles on T Cells Affected by Different

Inflammatory Conditions
Various inflammatory conditions influence the effects of SC-
EVs on T cells. For example, exosomes secreted by TGF-β-
and IFN-γ-conditioned MSCs significantly inhibited PBMCs
and effectively promoted differentiation of T cells into Tregs
to alleviate undesirable inflammation, which might be further
attributed to upregulation of IL-10, IFN-γ, and IDO in
EVs after exposure to TGF-β and IFN-γ (113). In addition,
MVs secreted by IFN-γ-conditioned or non-IFN-γ-conditioned
human umbilical cord blood MSCs (UCB-MSCs) exerted similar
immunosuppressive effects on T cells in vitro. However, in
mice model with renal ischemic reperfusion, only non-IFN-γ-
conditioned MVs attenuated the inflammatory injury in vivo.
Mass spectrometry revealed that the protein content in IFN-γ-
conditioned MVs underwent a significant alteration that might
have led to triggering the innate or acquired immune response
after inflammatory conditioning. A possible explanation for the
above findings could be that the EVs secreted by the same
cells under different external conditions originate from different
internal vesicle routes (114); for instance, therapeutic MSC-
EVs originate from the lipid raft microdomain in the plasma
membrane (115).

Stem Cell-Derived Extracellular Vesicle Potential in T

Cell Proliferation and Activation

Inhibition of T cells
It has been demonstrated that SC-EVs carry a variety of active
molecules, such as TGF-β (10, 92), active CD73 protein (11, 79),
IDO protein (88), or miR-125a-3p (71). These molecules endow
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SC-EVs with the ability to inhibit T cell proliferation (11, 71,
88, 92, 98, 112, 116, 117) and activation (71, 76, 77, 97, 98, 112,
116), and preserve the circulating naive T cells (71) (Table 1).
Studies have revealed that adenosinergic immunosuppression
by SC-EVs required co-operation with T cells (11), resulting

from the presence of adenosine 5
′

-triphosphate (ATP) in the
extracellular environment during in vivo tissue injury. CD73
expressed in EVs has ATPase activity that catalyzes active

production of adenosine from adenosine 5
′

-monophosphate
(AMP) (11). Meanwhile, activated T cells expressing CD39
efficiently catalyzed conversion of ATP to AMP (11) (Table 1).
Adenosine is highly immunosuppressive. In brief, MSC-EVs
suppressed in vitro T cell proliferation through adenosinergic
signaling (11). Recent studies provide evidence that active
molecule TGF-β1 expressed on SC-EV membrane could
synergize with adenosine signaling to suppress the proliferation
of CD4+ T cells (92) (Table 1). Advances in SCs technology
have provided an interesting perspective on the field of
transplantation. For instance, in the rat model of myocardial
infarction, beta-2 microglobulin (B2M) negative UC-MSC lost
the ability to induce CD8+ T cell immune rejection response
by the B2M-UCMSC exosomes/miR-24/Bcl-2-like protein 11
(Bim) pathway after B2M-UCMSC injection to the heart
(43). The engineered SCs may reveal a novel strategy for
tissue repair and regeneration without the requirement for
HLA matching. Based on the immunoregulatory effects of
SC-EVs on T cells in vitro and in vivo, these studies have
provided guidance for use of SC-EVs therapy in T cell-mediated
immune diseases.

Promotion of T cells
SC-EVs have been shown to promote the proliferation and
activation of T cells. For example, in mice with type 1 diabetes,
islet MSC-derived exosomes were observed to activate APCs
and autologous T and B cells in islets, increase their respective
specific memory cells, and induce IFN-γ production, thus
accelerating islet destruction (118). This evidence provides a
perspective that certain SC-EVs serve as autoantigen carriers
and trigger autoimmune responses. Additionally, The β-catenin-
loading (56) or GM-CSF (granulocyte-macrophage colony-
stimulating factor)-expressing (90) EVs derived from SCs
could promote T cell antitumor response. For example, the
exosomes derived from rat AD-MSCs were observed to accelerate
intratumoral CD8α+ type I NK-T cell migration and increase
circulating NK-T cells to exert antitumor immunity in rats
with hepatocellular carcinoma (HCC) (56) (Table 1). In mice
with transplanted lung adenocarcinoma, exosomes derived from
GM-CSF-expressing embryonic SCs (ESCs) were observed to
suppress the migration of immunosuppressive Tregs, whereas
they reinforced migration of tumor-reactive CD8+ T effector
cells toward intratumor spaces and elevated intratumoral
cytokine responses of TNF-α and IFN-γ, contributing to the
clearance of foreign components (90) (Table 1). Therefore,
EVs derived from engineered SCs may be utilized as a
preventive vaccine against the risk of cancer development in
human beings.

Stem Cell-Derived Extracellular Vesicle Potentials in

T Cell Differentiation

Stem cell-derived extracellular vesicles regulate Th1/Th2

balance
On the one hand, SC-EVs have been reported to induce the
immune response of T helper type 1 (Th1) conversion to T
helper type 2 (Th2). For example, SC-EVs drove the shift from
Th1 toward Th2 cells and reestablished Th1/Th2 homeostasis
by downregulating pro-inflammatory TNF-α and INF-γ and
upregulating anti-inflammatory IL-10 or IL-4 (29, 44, 51, 74, 76)
(Table 1). Moreover, SC-EVs could also regulate Th2 immune
response toward Th1. For example, in the early stage of allergic
asthma, the immune response mediated by Th2 cells was
primarily through eosinophilic infiltration (49). Human AD-
MSC-EVs were observed to downregulate eosinophil infiltration
and IL-4, IL-5, and TGF-β levels, whereas they did not affect
IFN-γ and IL-10 in the bronchoalveolar lavage fluid (BALF) (49).
The advanced acute severe refractory asthma is a mixed immune
response by Th2/Th17, and an allergic airway inflammation
mediated by neutrophils and eosinophils. Human BM-MSC-
EVs were observed to inhibit the infiltration of neutrophils and
eosinophils and downregulate IL-4, IL-5, and IL-17 expression
while upregulating IFN-γ and IL-10 expression in BALF (75).
The possible mechanism is that SC-EVs shift the inflammatory
responses from Th2 or Th2/Th17 toward upregulation of
counter-regulatory Th1 response and/or secretion of anti-
inflammatory mediators, such as IL-10 (49, 75) (Table 1). Based
on the immune balance effect exerted by SC-EVs on Th1/Th2
cells, these studies provide the basis for preclinical trials of
Th1/Th2 immune response disorders.

Stem cell-derived extracellular vesicles regulate Th17/Treg

balance
SC-EVs regulate Th17/Treg balance such as inhibition
the differentiation of activated CD4+ T cells into Th17
cells, downregulation pro-inflammatory IL-17, promotion
differentiation of Tregs (31, 51, 74, 76, 94) (Table 1) and CTLA-
4+ Tregs (74), upregulation anti-inflammatory TGF-β, and
inhibition aberrant inflammatory responses in stroke (31), type
1 diabetes (51, 76), and chronic periodontitis (94). A possible
underlying mechanism could be the immune equilibrium
controlled by PGE2 and TGF-β (76) signaling pathways or
miRNA-155-5p (94) in EVs. A second underlying mechanism
could be the induction of phenotypic transition of macrophages
into M2 to regulate T cells indirectly by EVs derived from
human NSCs (31) (Table 1). Considered in conjunction, SC-
EVs alleviate the inflammatory microenvironment through
Th17/Treg regulatory network. PGE2 protein, TGF-β protein,
and miR-155-5p may act as promising therapeutic targets against
immune imbalance.

Stem cell-derived extracellular vesicles inhibit naive T cell

differentiation into Th1, Th2, Th17, Tfh, and Tc1 cells and

upregulate Tregs
In type 1 diabetes, SC-EVs were reported to downregulate IFN-
γ and IL-17 (77, 97), upregulate IL-10 and TGF-β (77), inhibit
activated T cell differentiation into Th1 and Th17 cells (77, 97)
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(Table 1), and increase Treg expression (77), thereby inducing
immunotolerance. Additionally, in the Sjögren syndrome disease
model, SC-EVs were observed to prevent disease progression
by repressing differentiation of naive CD4+ T cell into T
follicular helper (Tfh) and Th17 cells (99) (Table 1). In a
contact hypersensitivity (CHS) mouse model, hUC-MSC-EVs
were observed to inhibit CD8+IFN-γ+ cytotoxic T (Tc1) cells
and Th1 cell immune responses and to induce Treg expression
(45). One underlying mechanism could be that SC-EVs inhibit
T cell differentiation into Th1 cells (98) or Th2 cells (52)
(Table 1) while promoting Treg differentiation (91) (Table 1)
by inducing phenotypic transformation of APCs (52, 77, 91,
97–99). Another underlying mechanism could be that SC-
EVs regulate the expression of the related genes involved in
inflammation and immune cell development; for example, they
could upregulate miR-let-7b and miR-let-7d and downregulate
miR-155 in Treg cells (119). Additionally, the study on MSC
transplantation (MSCT) in tight-skin mice model demonstrated
that BM-MSCs in recipients could take up and reuse miR-151-
5p loaded in the MSC-EVs of donors to inhibit IL4Rα/mTOR
pathway, downregulate IL-4, inhibit Th2 cell differentiation
and infiltration, and contribute to the rebuilding of BM-MSC
function and BM homeostasis (78) (Table 1). These findings
delineate EV-mediated immune responses for cross talk between
SC-T cell subsets that provide potential therapeutic targets for
autoimmune diseases.

Stem Cell-Derived Extracellular Vesicle Potential in T

Cell Apoptosis
While SC-EVs were observed to exert no effect on T cell
proliferation, they induce T cell apoptosis (74, 79, 109), possibly
through an SC-EV-mediated mechanism via adenosine A2A
receptor (79) (Table 1). For example, in a study on human-into-
mouse xenogeneic chronic and severe GVHDmodel, a significant
increase was observed in pathogenic CD39+ Th1 cell population.
Human BM-MSC-derived CD73+ exosomes were observed
to function synergistically with CD39-expressing Th1 cells to
accelerate massive accumulation of adenosine signals, resulting
in specific apoptosis of adenosine A2A receptor-expressing Th1
cells, thereby downregulating IFN-γ and TNF-α. This resulted in
the attenuation of inflammatory response in vivo (79) (Table 1).
Collectively, the findings propose a significant EV-mediated cross
talk between SCs and T cells by purinergenic signaling, which
sheds light on the potential of EV-based therapeutic approach
against immunological diseases.

Stem Cell-Derived Extracellular Vesicle Potential in T

Cell Migration and Infiltration
Despite the limited effect exerted on the proliferation and
activation of autologous T cells, SC-EVs have been shown
to inhibit the infiltration of T cells in lesions (42, 54), thus
attenuating inflammatory injury. This could be attributed to the
downregulation of C-C motif chemokine ligand-21 (CCL-21,
capable of attracting T cells) expression mediated by human UC-
MSC exosomes (42) (Table 1). This could also be attributed to
the inhibitory effect exerted by AD-SC-EVs on the adhesion and
trafficking of pathogenic T cells in spinal cord pial venules in

early stages of the disease through interference with the integrin-
dependent chemokine-induced signal transduction pathways
without affecting adhesive molecule expression (54) (Table 1).

B Cells
The Diverse Immunoregulatory Effects of Stem

Cell-Derived Extracellular Vesicles on B Cells
In a co-culture of activated PBMCs and MSC-EVs, preferential
uptake of EVs by B cells exerted a stronger inhibitory effect on
the proliferation of B cells than on other immune cells (30). In a
similar experiment, MSC-EVs were internalized only by activated
CD19+/CD86+ B cells to inhibit proliferation, differentiation,
and antibody production of B cells and to hinder memory B cell
maturation (120). However, under normal or hypoxic conditions,
human amniotic fluid SC-derived EVs (AFSC-EVs) exerted
limited inhibitory effect on proliferation of activated PBMCs,
whereas they exerted significant immunoregulatory effects by
inhibiting maturation of CD27+CD19+memory B cells (121).

Stem Cell-Derived Extracellular Vesicle Potential in B

Cell/Plasma Cell Proliferation and Activation
SC-EVs were observed to suppress B cell proliferation (30, 80,
81, 108, 120), activation (81, 83) and migration (81) in order
to induce anti-inflammatory immune responses. In vitro, SC-
EVs have been observed to exert immunosuppressive effects by
mediating differential mRNA expression of relevant genes in
activated B cells (80) (Table 1) or by downregulating PI3K-AKT
signaling pathway and inhibiting actin activation in B cells via
the delivery of miR-155-5p (81) (Table 1). Additionally, SC-EVs
could also interact with tumor B cells [in chronic lymphocytic
leukemia (CLL)]. For instance, BM-MSC-EVs were reported to
induce CLL B cell gene expression profile modification, promote
CLL B cell survival and their migration, and rescue them from
apoptosis (82) (Table 1). The promotive effect of SC-EVs on CCL
B cells serves as a basis for the exploration of a therapeutic target
for hematological diseases. The study (82) that mechanistically
links CLL B cells and SC-EVs with disease progression has
provided a pathophysiologically relevant context or the acquired
immunomodulatory activity of SCs.

Stem Cell-Derived Extracellular Vesicle Potentials in

B Cell/Plasma Cell Differentiation
SC-EVs were observed to inhibit B cell/plasma cell (PC)
differentiation and antibody production (29, 80, 83, 108) and
to induce production of IL-10-expressing regulatory B cells
(Bregs) (29, 83), thus inducing anti-inflammatory immune
response. These findings are suggestive of the ability of SCs
to suppress B cell inflammation. In addition, human primary
BM-MSCs mediate in vitro differentiation and maturation of
circulating antibody-secreting cells (ASCs) to BM long-lived PCs
(LLPCs), possibly through MSC-EVs (84), thereby promoting
the survival of ASC or PCs in peripheral blood collected
from healthy subjects and facilitating IgG secretion (3, 84)
(Table 1). This might be attributed to the utilization of EV-
mediated delivery of signaling proteins (fibronectin-1, YWHAZ),
a proliferation-inducing ligand (APRIL), and hypoxic conditions
in the peripheral environment by post-irradiated MSC to
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facilitate LLPC survival by downregulation of mTORC1 signaling
and upregulation of hypoxia signatures (84). Understanding the
mechanisms of human PC differentiation and maintenance will
facilitate in vitro culture of antibodies in the near future.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

As discussed in this review, the immunoregulatory potential
of SC-EVs against immune cells is dependent on cell type,
cellular status, the maturity of origin cells, and the type of
EVs, among other factors. However, in multiple studies, SC-
EVs were reported to inhibit immune cell production and
promote an immunotolerant microenvironment. The immune
responses regulated by SC-EVs are comparable with those
mediated by stem/progenitor cells. Treatment using EVs has
multiple advantages over cell therapy, like their small size,
which prevents entrapment in filter organs like the lungs, liver,
and spleen. Moreover, the membrane-binding property of EVs
imparts exceptional biocompatibility and biostability to the

encapsulated cargos. As a promising candidate for novel cell-
free therapy, EVs may be widely used as an alternative to SCs
in management of a variety of immunity-related diseases for
maintenance of the microenvironment for tissue homeostasis
and tissue regeneration upon injury. However, there are multiple
questions that remain unanswered. For example, how do SC-EVs

home damaged tissues? Or how do SC-EV-transferred specific
miRNAs target the genes in recipient cells? So far, different
animal models have been used in multiple studies to investigate
the immunoregulatory roles of stem/progenitor cell-derived EVs;
yet limited clinical studies have been conducted on application of
SC-EVs to human subjects (122). Therefore, an extensive body of
research is necessary before we adopt large-scale application of
SC-EVs in clinical practice.
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