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Abstract

Normalisation to standard reference gene(s) is essential for quantitative real-time polymer-

ase chain reaction (RT-qPCR) to obtain reproducible and comparable results of a gene of

interest (GOI) between subjects and under varying experimental conditions. There is limited

evidence to support selection of the commonly used reference genes in rat ischaemic and

toxicological kidney models. Employing these models, we determined the most stable refer-

ence genes by comparing 4 standard methods (NormFinder, qBase+, BestKeeper and com-

parative ΔCq) and developed a new 3-way linear mixed-effects model for evaluation of

reference gene stability. This new technique utilises the intra-class correlation coefficient as

the stability measure for multiple continuous and categorical covariates when determining

the optimum normalisation factor. The model also determines confidence intervals for each

candidate normalisation gene to facilitate selection and allow sample size calculation for

designing experiments to identify reference genes. Of the 10 candidate reference genes

tested, the geometric mean of polyadenylate-binding nuclear protein 1 (PABPN1) and beta-

actin (ACTB) was the most stable reference combination. In contrast, commonly used ribo-

somal 18S and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were the most unsta-

ble. We compared the use of PABPN1×ACTB and 2 commonly used genes 18S and

GAPDH on the expression of 4 genes of interest know to vary after renal injury and

expressed by different kidney cell types (KIM-1, HIF1α, TGFβ1 and PECAM1). The less sta-

ble reference genes gave varying patterns of GOI expression in contrast to the use of the

least unstable reference PABPN1×ACTB combination; this improved detection of differences

in gene expression between experimental groups. Reduced within-group variation of the now

more accurately normalised GOI may allow for reduced experimental group size particularly

for comparison between various models. This objective selection of stable reference genes

increased the reliability of comparisons within and between experimental groups.
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Introduction

Quantitative real-time polymerase chain reaction (RT-qPCR) is a widely used, sensitive and

specific method for detection and quantification of messenger RNA (mRNA) expression over

a large dynamic range for validation of selected genes identified by other techniques (e.g.

RNA-seq) [1] [2]. For rare mRNA species, RT-qPCR may be the only practical way to quanti-

tate gene expression. A critical aspect of RT-qPCR assessment of gene expression is controlling

for the amount of starting material, i.e., normalisation of gene expression to an endogenous

gene not affected by the experimental conditions. Normalisation is critical for comparison of

samples from different sources that may contain varying quantities of mRNA [3]. Differences

in the quantity of mRNA may result from differences in extraction and isolation efficiency of

mRNA species. Variation in input quantity to RT reactions and inefficiency in complimentary

deoxyribose nucleic acid (cDNA) synthesis may also introduce experimental variation [4]. For

this study, these sources of variation were termed ‘experimental error’. Varying normalisation

strategies have been used to minimise the intrinsic variability resulting from such sources.

Techniques include normalisation to the initial total RNA, addition of known quantities of

cDNA, and the use of internal reference genes [4, 5]. Endogenous reference genes are regarded

as optimal, since detection and amplification of reference genes and target genes occur under

the same conditions [6]. Nevertheless, critical prerequisites for an ideal reference gene are a

broad dynamic range and constant level of expression compared to the gene of interest (GOI)

under the same experimental conditions and, ideally, under different experimental conditions

[7, 8]. Selection of appropriate reference genes is critical to reducing experimental error. How-

ever, there is no consensus regarding the best reference genes based on rat strain, tissue type

and injury model with a variety of genes suggested for various organs or regions of various

organs [9–16].

Housekeeping genes (HKGs) are ideal candidate reference genes as these are constitutive

genes required for basic cellular function and expressed in most cells under normal physiologi-

cal conditions [9]. However, HKGs may be affected by experimental conditions as many repre-

sent metabolic pathways or structural genes that may be altered by experimental interventions

[10]. Commonly employed HKGs for RT-qPCR include beta actin (ACTB), glyceraldehyde

3-phosphate dehydrogenase (GAPDH) and 18S ribosomal RNA (18S). The choice of these

mRNA species stems from use in traditional non- or semi-quantitative methods such as

Northern blotting and have often not been validated for RT-qPCR across diverse experimental

conditions [8]. A growing body of evidence suggests that, both in vivo and in vitro, there may

be considerable fluctuation under varying experimental conditions making them unsuitable as

reference genes for RT-qPCR [2, 10, 12, 17–21]. For example, GAPDH varies under hypoxic

stress [13] and 18S varies under both toxic and hypoxic stress [2]. In addition, reference genes

may be tissue specific, so that ideal HKGs may differ between tissues and experimental condi-

tions [22, 23]. Currently, normalisation against the geometric mean of the most stable refer-

ence genes is regarded as the best strategy for error reduction in raw qPCR data [24].

A number of statistical algorithms such as Normfinder [11], geNorm (14, improved to

qBase+), BestKeeper [25, 26] and comparative delta quantification cycle (ΔCq) approach [27]

were devised to evaluate stable reference gene/s for given experimental conditions. While

these represent an improvement over arbitrary selection, there are limitations to these algo-

rithms. They do not allow for randomly missing data and do not account for multiple systemic

effects (experimental conditions), systemic effects related to continuous variables, or for refer-

ence gene-systemic effect interactions. In addition, stability values are not accompanied by

confidence intervals (CIs). This precludes determination of minimal sample size, which could

reduce error in reference gene selection. It also prevents ranking of reference genes with close
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stability values. In order to address these limitations a 3-way linear mixed-effects model

(LMM) was employed based on the intra class correlation coefficient (ICC) [28].

The rat is one of the most commonly used models in the study of renal disease [29]. Ischae-

mia-reperfusion injury, IRI, and toxic injury represent the majority of causes of acute kidney

injury [30]. However, pre-clinical animal studies have been plagued by inconsistent, poorly

reproducible results. Gene expression studies often guide pre-clinical studies and direct further

investigation. A consistent method of normalising GOI expression between experimental

groups in time and across treatment strategies is critical. Thus, validated stable endogenous

reference genes are needed to normalise RT-qPCR data for rat kidney and other studies.

There has been an increase in the number of studies evaluating the stability of gene expres-

sion in various tissues, however, few have studied the reference genes in rodent kidney. Valida-

tion studies of reference genes in rodents have been performed mainly in liver and heart injury

models, usually for ischaemic and toxic injury [2, 12, 13, 31]. We selected 10 candidate genes

for analysis based on an exhaustive literature review of rat studies performed over the last 20

years to evaluate the suitability of reference genes. Table 1 summarises the most pertinent of

these rat studies and compares these with human studies.

Experimental conditions which overlapped with the present study were weighted to a

greater extent. Hence studies concerned with rat and kidney models were weighted to a greater

extent than those of IRI which in turn were weighted to a greater extent than the rest of the

studies. An arbitrary scale out of 5 was used to weigh each study when selecting 10 candidate

reference genes for the present study based on this criteria and is detailed in Table 1. Ppia and

Polr2a were excluded from analysis as although they have been identified as stable in myocar-

dial and carotid body IRI models [13, 38], the aforementioned Ppia and Polr2a genes were

shown to be the most unstable in kidney tissue in a study analysing reference genes in obese

zucker rats [9].

The primary aim was to determine the most stable reference genes for normalisation of

gene expression studies in ischaemic and toxic rat renal kidney injury models. A second aim

was to compare the results of the current standard techniques with that of a 3-way LMM and

to estimate the sample size for determination of accurate qPCR results for given combinations

of reference genes with known ICCs. Kidney injury molecule (KIM)-1, Hypoxia Inducible Fac-

tor 1 Subunit Alpha (HIF1α), Platelet and Endothelial Cell Adhesion Molecule 1 (PECAM1),

Transforming Growth Factor Beta 1 (TGFβ1), were assayed as representative GOIs to allow

statistical comparisons.

Results

Descriptive statistics and gene expression

Descriptive statistics of the gene expression of the candidate reference genes is in Table 2 and

plate specific efficiencies and correction factors are listed below in Table 3. As expected 18S
showed the highest expression with an arithmetic and a geometric mean Cq of 15 while the

lowest expression was YWHAG. The maximum standard deviation of Cq values was found for

18S. ACTB and PABPN1 had the lowest dispersion of Cq values from the mean. Reference

gene Cq distributions were normal in each case and D’Agostino-Pearson test p> 0.05. A

box plot of reference gene RQ values for a representative experimental run is presented in

Fig 1. Amplification efficiency values were> 1.85 for all reference genes with the highest effi-

ciency being 2. Mean efficiencies for the same reference gene were similar ±0.05 for all 3 exper-

imental runs.
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Table 1. Reference gene evaluation studies.

Number of

reference genes

studied

Pathology/Intervention/

treatment

Tissue Species Reference Gene Suitability Weight when

selecting

Reference genes

Reference

3 Various acute and chronic

kidney pathologies

Kidney Human 18S and GAPDH unstable and

unsuitable to be used singly as

reference genes

4 [32]

10 Hypoxia Kidney HEK cell line Human The most suitable reference genes for

RT-qPCR studies in kidney HEK cell

line were Ppia, HPRT, B2M

4 [33]

16 Cystic kidney disease Kidney Mouse The most suitable reference genes

were Ppia, GAPDH, Pgk1
4 [31]

6 Influence of testosterone on

kidney (orchidectomy +/-

testosterone)

Kidney Rat

(Sprague-

Dawley)

Most suitable and stable

normalisation factor for RT-qPCR

studies in kidney was HMBS
+ GAPDH

5 [10]

10 Fasting and acute

hyperglycaemia

Kidney Rat

(Zucker)

The most suitable reference genes

RT-qPCR studies in kidney was TBP,

ACTB, GAPDH

5 [9]

10 Post infarction heart failure Myocardium Human The most suitable reference genes in

humans were Rpl32 and Pgk1
3 [13]

10 Post infarction heart failure Myocardium Mouse The most stable reference genes in

mice Rpl32, GAPDH and Polr2a
3 [13]

10 Post infarction heart failure Myocardium Rat (Wistar) The most suitable reference genes in

Polr2a, Rpl32 and TBP
4 [13]

9 Ischaemia reperfusion Heart Rat (Wistar) For RV were HMBS + HPRT 4 [12]

For LV were YWHAZ+ PABPN1
+HMBS

4

10 Fasting and acute

hyperglycaemia

Heart Rat

(Zucker)

Most stable was SDHA, TBP 4 [9]

2 Asthma Endobronchial tissue and

bronchoalveolar lavage cells

Human GAPDH, ACTB unsuitable as

reference genes

2 [34]

10 Fasting and acute

hyperglycaemia

Lung Rat

(Zucker)

Most stable were ACTB, YWHAG 3 [9]

12 Control (no insult) Juvenile and adult rat tissue

(ovary, liver, adrenal,

prostate, fat pad, testis)

Rat (Wistar) Most stable for both adult and

juvenile rat tissues (i.e across

developmental stages) were HPRT
and SDHA

3 [2]

12 Various toxicological insults Liver, ovary, adrenal,

prostate, fat pad, testis

Rat (Wistar) Most stable reference gene in all

tissues examined were HPRT and

SDHA

3 [2]

8 Hepatotoxicity Liver Rat (Wistar) The most suitable reference genes

SDHA and r18S
3 [6]

17 Fat gavage or dietary

restriction

Liver Rat (Wistar) The most suitable reference genes for

RT-qPCR studies in liver was r18S
3 [35]

17 Fat gavage or dietary

restriction

Duodenum, jejunum, ileum Rat (Wistar) The most suitable reference genes for

RT-qPCR studies in duodenum was

TBP

3 [35]

In jejunum was Ubc 3

In ileum was HPRT 3

6 Influence of testosterone on

hypothalamus (orchidectomy

+/- testosterone)

Hypothalamus Rat

(Sprague-

Dawley)

The most table reference genes were

HMBS and Ppia
3 [10]

10 Hypoxia Breast MCF 7 cell line Human Most stable reference genes in MCF 7

cell line were TBP and ATP5G3
1 [33]

(Continued)
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Reference gene stability

Reference gene ranking. Normfinder, qBase+, BestKeeper and comparative ΔCq

approaches were used to assess the initial stability of candidate reference genes. The candidate

reference genes are ranked in Table 4 with corresponding stability values in descending order

with the most stable reference gene at the top. Normfinder ranked HMBS as the most stable

(0.23) and PABPN1 and YWHAG as second (0.36). For Normfinder, lower values have greater

stability. For a 2 gene stability factor, Normfinder found HMBS and YWHAG as the best two

genes to construct a normalisation factor of 0.187. The qBase+ algorithm ranked ACTB,

Table 1. (Continued)

Number of

reference genes

studied

Pathology/Intervention/

treatment

Tissue Species Reference Gene Suitability Weight when

selecting

Reference genes

Reference

10 Hypoxia Prostate LNCaP and PNT2 Human For LNCaP cell lines GAPDH and

TBP and PNT2 cell line were

ATP5G3 and HPRT

1 [33]

10 Cell Culture Cultured T helper cells Human GAPDH unstable and MLN51, EF-1-
α, UbcH5 more stable and suitable

1 [36]

13 Cell Culture, TB Culture of whole blood and

PBMC

Human HuPO most stable and suitable in

whole blood

1 [18]

HuPO and HPRT most stable suitable

in cultured PBMC

1

9 Differentiation of intestinal

and colonic adenocarcinoma

Cultured intestinal epithelial

cells

Human The most suitable reference genes for

RT-qPCR studies in differentiating

intestinal epithelial was RPLPO

1 [37]

In adenocarcinoma of colon was

B2M
1

6 Normoxia, chronic hypoxia

or hyperoxia

Early post-natal period

carotid body

Rat

(Sprague-

Dawley)

Ppia + TBP most stable and suitable

normalisation factor overall

3 [38]

ACTB = beta-actin; ATP5G3 = ATP synthase, H+ transporting, mitochondrial F0 complex, subunit C3 (subunit 9); B2M = beta-2-microglobulin; EF-1-a = elongation

factor 1-alpha; GAPDH = glyceraldehyde-3-phosphate dehydrogenase; HMBS = hydroxymethylbilane synthase; HPRT = hypoxanthine phosphoribosyltransferase;

HuPO = human acidic ribosomal protein; PABPN1 poly(A) binding protein nuclear 1; PBMC = peripheral blood mononuclear cells; Pgk1 = phosphoglycerate kinase 1;

Polr2a = RNA polymerase II subunit A; Ppia = peptidylprolyl isomerase A; r18S = ribosomal 18S subunit; Rpl32 = ribosomal protein L32; RPLPO = ribosomal

phosphoprotein; SDHA = succinate dehydrogenase complex flavoprotein subunit A; TB = tuberculosis; TBP = TATA-box binding protein; UbcH5B = ubiquitin-

conjugating enzyme E2 D2; YWHAG = tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma; YWHAZ = tyrosine 3-monooxygenase/

tryptophan 5-monooxygenase activation protein zeta

https://doi.org/10.1371/journal.pone.0233109.t001

Table 2. Descriptive statistics of reference gene expression.

18S GAPDH ACTB HMBS HPRT PABPN1 SDHA TBP YWHAG YWHAZ

Number of values 54 54 54 54 54 54 54 54 54 54

Minimum Cq 11.27 20.18 16.87 18.60 17.84 16.57 13.94 22.02 24.51 16.78

Maximum Cq 24.44 31.45 23.39 24.61 26.88 23.06 21.61 30.49 33.19 24.33

Mean Cq 15.49 26.45 19.67 20.97 22.82 19.96 17.72 26.43 27.87 20.25

Std. deviation 2.461 2.407 1.198 1.367 1.986 1.314 1.745 1.733 1.772 1.705

Geometric mean 15.32 26.34 19.64 20.92 22.73 19.92 17.63 26.37 27.81 20.18

D’Agostino Pearson test K2 p-value 0.08 0.16 0.13 0.54 0.43 0.71 0.82 0.73 0.17 0.74

Data shown for a representative experiment. Cq = quantification threshold; D’Agostino-Pearson test (Omnibus K2) p-value for distribution of KIM-1 gene expression

normalised to various normalisation factors. Null hypothesis for Omnibus K2 test = all values sampled from a Gaussian distribution.

https://doi.org/10.1371/journal.pone.0233109.t002
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HMBS and PABPN1 as the top 3 most stable reference genes with respective ‘M’ values of 0.62,

0.69 and 0.71. A higher ‘M’ value denotes higher variation and less stability (see further evalua-

tion of reference genes using qBase+ in S1 File). BestKeeper ranked HMBS, YWHAG and

PABPN1 as the most correlated genes in the constructed BestKeeper index and hence the most

suitable stable reference genes. The standard deviations (± mean Cq) of the HMBS, YWHAG
and PABPN1 were 1.09, 1.36 and 1.09 respectively, all higher than the recommended standard

deviation of 1 [26]. Only ACTB had a standard deviation (± mean Cq) less than 1 (0.92). The

Table 3. Correction factors, plate specific efficiencies and quantification threshold.

Gene Correction factor (Fn) Plate 1 Efficiency (En) Plate 1 Nq Plate 1 Correction factor (Fn) Plate 2 Efficiency (En) Plate 2 Nq Plate 2

18S 0.94 1.88 41.00 1.06 1.86 20.68

GAPDH 1.41 2.00 44.30 0.71 2.00 52.59

ACTB 0.74 1.94 52.83 1.34 2.00 33.98

HMBS 0.7 1.97 69.18 1.43 1.92 52.32

PABPN1 0.97 1.84 60.42 1.03 1.85 107.28

HPRT 0.73 1.97 49.90 1.37 1.97 57.07

SDHA 0.66 1.98 48.45 1.51 1.87 32.84

TBP 0.88 2.00 66.59 1.14 2.00 63.73

YWHAG 0.33 2.00 17.64 2.00 2.00 33.12

YWHAZ 1.46 1.85 46.16 0.68 1.93 56.20

Data shown for a representative experiment.

https://doi.org/10.1371/journal.pone.0233109.t003

Fig 1. Relative quantitation of reference genes. ΔCq values for reference genes in a representative experimental run.

Whiskers are 2.5% - 97.5% and ‘+’ denotes the arithmetic mean of Cq values for that reference gene.

https://doi.org/10.1371/journal.pone.0233109.g001
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comparative ΔCq approach ranked HMBS, PABPN1 and ACTB as the most stable. All tech-

niques ranked GAPDH and 18S as the least stable.

As the different algorithms produced slightly differing rankings, we determined a consen-

sus ranking using weighted rank aggregation. As there were 10 reference genes, we initially

used the brute force approach with Spearman footrule distance applied to generate all possible

rankings with minimum value of objective function. A second weighted consensus ranking

was obtained with the cross-entropy Monte Carlo algorithm (in RStudio) (S2 File). Both brute

force and cross-entropy Monte-Carlo approaches gave identical results (Table 5). PABPN1
and HMBS were most stable using these methods, while GAPDH and 18S were the least stable.

3-way linear mixed-effects model

Ideal normalisation factors for animal studies employ combinations of at least 2 reference

genes [39]. ICC values ranged from 0 to 1, with higher values indicating greater stability. ICC

estimates with a lower 95% CI limit less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9,

and greater than 0.90 are indicative of poor, moderate, good, and excellent reliability [40]. A

Table 4. Reference gene ranks.

Rank Normfinder qBase+ 1 BestKeeper 2 Comparative ΔCq 3

1 HMBS (0.26) ACTB (0.62) HMBS (0.94) HMBS (1.23)

2 PABPN1 (0.36) HMBS (0.69) YWHAG (0.92) PABPN1 (1.28)

3 YWHAG (0.36) PABPN1 (0.71) PABPN1 (0.88) ACTB (1.33)

4 ACTB (0.42) YWHAZ (0.83) YWHAZ (0.88) YWHAG (1.39)

5 YWHAZ (0.47) YWHAG (0.9) ACTB (0.86) YWHAZ (1.46)

6 TBP (0.5) TBP (1.0) HPRT (0.82) TBP (1.48)

7 HPRT (0.53) HPRT (1.07) TBP (0.81) HPRT (1.57)

8 SDHA (0.71) SDHA (1.22) GAPDH (0.69) SDHA (1.91)

9 18S (0.79) GAPDH (1.36) SDHA (0.63) GAPDH (2.03)

10 GAPDH (0.85) 18S (1.56) 18S (0.57) 18S (2.52)

Ranking of reference genes from highest to lowest stability for each algorithm.
1geNorm (‘M’ value),
2Correlation coefficient ‘r’ to BestKeeper index,
3Average standard deviation.

https://doi.org/10.1371/journal.pone.0233109.t004

Table 5. Consensus ranking of reference genes.

Rank Reference gene

1 PABPN1
2 HMBS
3 ACTB
4 YWHAZ
5 YWHAG
6 TBP
7 HPRT
8 SDHA
9 GAPDH

10 18S

Rank in descending order from most to least stable reference gene.

https://doi.org/10.1371/journal.pone.0233109.t005
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normalisation factor constructed from ACTB and PABPN1 was the most stable with an ICC of

0.86 (95% CI, 0.65–1), indicating moderate to good reliability. The best 3-reference gene nor-

malisation factor was ACTB, PABPN1 and YWHAG with an ICC of 0.77 (95% CI, 0.55–0.99),

but with a lower limit less than ACTB×PABPN1 (Table 6). Given the experimental conditions,

a minimum sample size of 106 would have been required to improve the precision of the ICC

estimate and to narrow the width of the 95% CI to a width of 0.1 (S3 File, section 3). S4 File in

Table 1 in Excel™ S4 File represents a tabulation of minimal sample sizes necessary to arrive at

two to five ‘true reference genes’ with ICC ranging between 0.7 and 0.9 and two-sided confi-

dence interval width = 0.1 and 0.2. ‘True reference genes’ are the reference genes determined

to be the most stable for the specific experiment instead of the candidate reference genes. For

an example, in the present experiment, there are 10 candidate reference genes but only two

‘true reference genes’ as determined by the 3-way LMM method. The accompanying Excel™
calculator tool can also provide the researcher with the minimum sample sizes necessary for a

desired ICC and confidence interval width.

Relevance of selecting a particular normalisation factor. Four commonly queried GOIs

in the IRI and toxicological renal injury literature (KIM-1, PECAM1, HIF1α and TGFβ1) were

analysed to test the impact of choice of normalisation factors/reference genes. Depending on

reference gene/normalisation factor used, significant discrepancies in GOI fold differences

between experimental groups were found in both ischaemic and toxicological injury models.

KIM-1 is a transmembrane glycoprotein expressed in proximal tubules and upregulated fol-

lowing AKI. Its ectodomain appears in urine after cisplatin toxicity, IRI and after feeding

0.25% adenine [41, 42]. KIM-1 was selected to demonstrate the effect of selection of reference

genes on normalisation of GOI since its expression varies with different acute challenges.

PECAM1 is an endothelial cell junction molecule also expressed to different degrees on leuko-

cyte sub-types and platelets [43]. Paralleling peritubular capillary rarefaction, PECAM1 is

reduced in kidney cortex and outer strip of outer medulla in rodent IRI models [44]. HIF1α is

a master regulator of cell responses to hypoxia, expressed in both proximal and distal tubular

cells and leads to expression of several genes involved in adaptation to decreased oxygen avail-

ability [45]. TGFβ1 is a modulator of fibrosis in many models of tissue injury and is upregu-

lated in proximal tubular epithelial cells after renal IRI [46].

GOI expression was assayed under the same conditions as the candidate reference genes

and the normalised relative quotients (NRQs) were obtained by normalising the GOIs against

reference genes/reference gene combinations (Figs 2–9). Tables 7, 9, 11 and 13 summarises the

statistical methods used to analyse the respectively KIM-1, PECAM1, HIF1α and TGFβ1 gene

expression and Tables 8, 10, 12 and 14 summarises the significance of experimental treatment

Table 6. Top 3 most stable reference genes combinations using 3-way LMM.

Rank Gene combination ICC LRT p-value Width of confidence interval ‘w’

1 ACTB × PABPN1� 0.858 0.154 0.21

2 ACTB × PABPN1 × YWHAG 0.778 0.073 0.22

3 ACTB × YWHAG 0.744 0.086 0.25

� Optimal reference gene combination with highest stability/reliability and no systemic variation by group. Reference gene combinations ranked in descending order of

stability according to the 3-way linear mixed model. ICC = intraclass correlation coefficient; LRT p-value = Likelihood ratio test to determine if gene expression

variation is due to systemic effects or their interaction with reference genes is significant. Group = treatment group. w: Confidence interval width ranks the ICC; a

shorter width indicates greater accuracy. Since reference genes should be stable across groups without systemic effects, p-value for group/systematic effects (LRT p-

value) for reference genes should be > 0.05.

https://doi.org/10.1371/journal.pone.0233109.t006
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group comparisons of the respective GOIs, when normalised against 4 reference genes or ref-

erence gene combinations.

For cisplatin induced injury, normalisation of GOIs, KIM-1, PECAM1, HIF1α and TGFβ1
against the 4 reference genes or reference gene combinations produced varying results (Figs 2,

4, 6 and 8 respectively). All GOIs normalised against 18S or GAPDH produced discrepant

results compared with normalisation against the more stable normalisation factors of

Fig 2. Expression of KIM-1 normalised to a) 18S, b) GAPDH, or c) PABPN1×HMBS or d) ACTB×PABPN1 following AKI induced by

Cisplatin or IRI. Data are means (one-way ANOVA) or medians (Kruskal Wallis) and 95% CI (n� 6). � p< 0.05, �� p< 0.01, ���

p< 0.001.

https://doi.org/10.1371/journal.pone.0233109.g002
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HMBS×PABPN1 and ACTB×PABPN1. However, as expected from stable normalisation fac-

tors, the pattern of fold differences between various experimental treatment groups were simi-

lar when KIM-1, PECAM1 and HIF1α were normalised against HMBS×PABPN1 (Figs 2c, 4c

and 6c) or ACTB×PABPN1 (Figs 2d, 4d and 6d). KIM-1 and PECAM1 gene expression pat-

terns were more consistent with histological injury when normalised against the stable nor-

malisation factors HMBS×PABPN1 or ACTB×PABPN1 compared to either 18S or GAPDH.

For IRI, the fold expression of KIM-1, PECAM1, HIF1α and TGFβ1 observed among treat-

ment groups depended on the normalisation factor employed (Figs 3, 5, 7 and 9 respectively).

Fig 3. Expression of KIM-1 normalised to a) 18S, b) GAPDH, c) PABPN1×HMBS, d) ACTB×PABPN1 in the IRI treated groups. Data

are means (one-way ANOVA) or medians (Kruskal Wallis) and 95% CI (n� 6). � p< 0.05, �� p< 0.01, ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0233109.g003
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As expected, KIM1 and TGFβ1 showed a pattern of upregulation with increasing injury when

normalised against the stable ACTB×PABPN1 (Figs 3d and 9d). PECAM1 gene expression

tended to decrease with severity of renal injury and normalisation against GAPDH (Fig 5b)

along with more stable HMBS×PABPN1 (Fig 5c) and ACTB×PABPN1 (Fig 5d) produced this

pattern. HIF1α which is induced by reperfusion and oxygen availability is downregulated 24

hours after insult [47]. Tissues from all treatment groups in the present study were obtained

Fig 4. Expression of PECAM1 normalised to a) 18S, b) GAPDH, c) PABPN1×HMBS, d) ACTB×PABPN1 in the cisplatin treated groups. Data are

means (one-way ANOVA) or medians (Kruskal Wallis) and 95% CI (n� 6). � p< 0.05, �� p< 0.01, ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0233109.g004
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either on day 7 or 14 after cisplatin or IRI; this might explain the discrepant HIF1α results irre-

spective of reference gene or reference gene combination (Figs 6a–6d, 7a–7d).

2-way ANOVA analysis of KIM-1, PECAM1, HIF-1α and TGFβ1 gene expression results

(NRQs) confirmed superiority of using the geometric mean of 2 reference genes rather than

one (p < 0.05) (S5 File, S5 Figs 1–4 in S5 file and S4 File in Table 1). For example, normalisa-

tion against PABPN1 did not demonstrate a difference in gene expression between control and

IRI on sCKD (acute) or IRI on sCKD (chronic) groups, in contrast to normalisation against

the geometric mean of ACTB×PABPN1.

Fig 5. Expression of PECAM1 normalised to a) 18S, b) GAPDH, c) PABPN1×HMBS, d) ACTB×PABPN1 in the IRI treated groups.

Data are means (one-way ANOVA) or medians (Kruskal Wallis) and 95% CI (n� 6). � p< 0.05, �� p< 0.01, ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0233109.g005
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Discussion

This is the first study to our knowledge that compares the most reliable reference genes for

normalisation for RT-qPCR for transcript GOI levels in rat kidneys under ischaemic and toxi-

cological conditions using multiple statistical approaches [48]. HMBS and PABPN1 were

among the top 3 most stable genes according to Normfinder, qBase+, BestKeeper and compar-

ative ΔCq methods. In contrast, the most commonly used reference genes in rat studies, 18S

Fig 6. Expression or rank difference between groups of HIF1α normalised to a) 18S, b) GAPDH, c) PABPN1×HMBS, d)

ACTB×PABPN1 in the cisplatin treated groups. Data are means (one-way ANOVA) or medians (Kruskal Wallis) and 95% CI (n� 6). �

p< 0.05, �� p< 0.01, ��� p< 0.001.

https://doi.org/10.1371/journal.pone.0233109.g006
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and GAPDH, were the least stable of the 10 genes assessed by all algorithms. The robustness of

these results was highlighted by analysis using brute force and Monte Carlo cross entropy

weighted aggregation that produced identical rankings. After weighted aggregation, PABPN1,

HMBS and ACTB were ranked the most reliable reference genes. In contrast, in mouse models

of renal cystic disease, GAPDH, peptidylprolyl isomerase A and phosphoglycerate kinase have

been ranked highest, highlighting the need for model, species and strain specific housekeeping

genes [31].

Fig 7. Expression or rank difference between groups of HIF1α after IRI and normalised to a) 18S, b) GAPDH, c) PABPN1×HMBS, d)

ACTB×PABPN1. Data are means (one-way ANOVA) or medians (Kruskal Wallis) and 95% CI (n� 6). � p< 0.05, �� p< 0.01, ���

p< 0.001.

https://doi.org/10.1371/journal.pone.0233109.g007
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Reference gene selection was further refined and allowance made for experimental group

variation not accounted for by the current models by development of a 3-way LMM. This

model defined confidence intervals for stability values and group sizes and was superior in

selecting optimal reference genes. In addition, it accommodated multiple continuous and cate-

gorical variables with sample random effects, gene fixed effects, systematic effects, and gene by

systematic effect interaction. These are major advantages of using the 3-way LMM. Reference

gene combinations can help reduce the measurement errors in single reference gene and

improve reliability in the gene normalisation process, and the 3-way LMM provides statistical

Fig 8. Rank difference between groups of TGFβ1 expression after cisplatin and normalised to a) 18S, b) GAPDH, c) PABPN1×HMBS,

d) ACTB×PABPN1. Data are means (one-way ANOVA) or medians (Kruskal Wallis) and 95% CI (n� 6). � p< 0.05, �� p< 0.01, ���

p< 0.001.

https://doi.org/10.1371/journal.pone.0233109.g008
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inference, including p-value and confidence intervals for stability. Statistical inference allows

the selected reference gene combination to be generalizable to other experiments.

geNorm and its’ newer version qbase+, selects reference genes by using the standard devia-

tion of respective gene expressions as a stability measure. It calculates the variation in the log-

transformed gene expression ratio ‘M’, between a candidate reference gene with respect to all

other reference genes in pairwise comparisons across all samples [14, 27]. A higher ‘M’ value

represents greater variation in gene expression and less stability. qbase+ follows a step-down

approach to remove genes with the highest M-value step by step and recalculates M-values for

Fig 9. Rank difference between groups of TGFβ1 expression after IRI and normalised to a) 18S, b) GAPDH, c) PABPN1×HMBS, d)

ACTB×PABPN1. Data are means (one-way ANOVA) or medians (Kruskal Wallis) and 95% CI (n� 6). � p< 0.05, �� p< 0.01, ���

p< 0.001.

https://doi.org/10.1371/journal.pone.0233109.g009

PLOS ONE Reference genes in kidney disease

PLOS ONE | https://doi.org/10.1371/journal.pone.0233109 May 21, 2020 16 / 27

https://doi.org/10.1371/journal.pone.0233109.g009
https://doi.org/10.1371/journal.pone.0233109


the remaining genes. There is no objective cut-off point to determine when to stop the process.

This approach means that the algorithm tends to select the most correlated genes rather than

the candidate reference genes with the least variable expression. qbase+ cannot take into

account covariates such as systemic effects or interactions between genes and systematic effects

in analysis.

To determine the optimal number of reference genes required to construct the most stable

normalisation factor, qbase+ calculates the average variation between log-transformed expres-

sion ratios of sequential normalisation factors (NFn/NFn+1). The authors showed that a

Table 7. Statistical methods used to analyse KIM-1 gene expression.

Normalisation factor

GOI Treatment 18S GAPDH HMBS×PABPN1 ACTB×PABPN1
KIM-
1

Cisplatin Kruskal-Wallis/ Dunn’s (Fig 2a) One-way ANOVA/ Turkey’s (Fig

2b)

One-way ANOVA/ Turkey’s (Fig

2c)

One-way ANOVA/ Turkey’s (Fig

2d)

IRI One-way ANOVA/ Turkey’s (Fig

3a)

One-way ANOVA/ Turkey’s (Fig

3b)

One-way ANOVA/ Turkey’s (Fig

3c)

One-way ANOVA/ Turkey’s (Fig

3d)

Analysis of variance and post hoc multiple comparisons. Ordinary one-way analysis of variance (ANOVA) and Tukey’s multiple comparison tests were used for data

with a Gaussian distribution. The Kruskal-Wallis and Dunn’s multiple comparisons were tests utilised to analyse data with a non-parametric distribution.

Corresponding figure is in brackets. GOI = gene of interest

https://doi.org/10.1371/journal.pone.0233109.t007

Table 8. Statistical differences of KIM-1 normalised to different reference genes and reference gene combinations.

Normalisation factor

GOI Treatment Group Comparison 18S GAPDH HMBS×PABPN1 ACTB×PABPN1
KIM-1 Cisplatin Control vs cis AKI only p < 0.01 p < 0.01 NS NS

Control vs cis AKI on sCKD p < 0.01 NS p < 0.001 p < 0.001

sCKD only vs cis AKI on SCKD NS NS p < 0.01 p < 0.001

Cis AKI only vs cis AKI on sCKD NS NS p < 0.05 p < 0.001

IRI Control vs IRI only NS p < 0.001 NS NS

Control vs IRI on sCKD (acute) NS p < 0.01 NS NS

sCKD only vs IRI only NS p < 0.001 NS NS

IRI only vs IRI on sCKD (chronic) NS p < 0.01 NS p < 0.01

sCKD only vs IRI on sCKD (chronic) NS NS NS p < 0.05

NS = No significant difference

https://doi.org/10.1371/journal.pone.0233109.t008

Table 9. Statistical methods used to analyse PECAM1 gene expression.

Normalisation factor

GOI Treatment 18S GAPDH HMBS×PABPN1 ACTB×PABPN1
PECAM1 Cisplatin Kruskal-Wallis/ Dunn’s (Fig

4a)

One-way ANOVA/ Turkey’s (Fig

4b)

One-way ANOVA/ Turkey’s (Fig

4c)

One-way ANOVA/ Turkey’s (Fig

4d)

IRI Kruskal-Wallis/ Dunn’s (Fig

5a)

One-way ANOVA/ Turkey’s (Fig

5b)

One-way ANOVA/ Turkey’s (Fig

5c)

Kruskal-Wallis/ Dunn’s (Fig 5d)

Analysis of variance/ post hoc multiple comparisons; Ordinary one-way analysis of variance (ANOVA) and Turkey’s multiple comparisons test for data which has a

Gaussian distribution. Kruskal-Wallis/ Dunn’s multiple comparisons utilised to analyse data with non-parametric distribution. Corresponding figure is in brackets.

GOI = gene of interest

https://doi.org/10.1371/journal.pone.0233109.t009
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Table 11. Statistical methods used to analyse HIF1α gene expression.

Normalisation factor

GOI Treatment 18S GAPDH HMBS×PABPN1 ACTB×PABPN1
HIF1α Cisplatin Kruskal-Wallis/ Dunn’s (Fig 6a) One-way ANOVA/ Turkey’s (Fig 6b) One-way ANOVA/ Turkey’s (Fig 6c) Kruskal-Wallis/ Dunn’s (Fig 6d)

IRI Kruskal-Wallis/ Dunn’s (Fig 7a) Kruskal-Wallis/ Dunn’s (Fig 7b) One-way ANOVA/ Turkey’s (Fig 7c) Kruskal-Wallis/ Dunn’s (Fig 7d)

Analysis of variance/ post hoc multiple comparisons; Ordinary one-way analysis of variance (ANOVA) and Turkey’s multiple comparisons test for data which has a

Gaussian distribution. Kruskal-Wallis/ Dunn’s multiple comparisons utilised to analyse data with non-parametric distribution. Corresponding figure is in brackets.

GOI = gene of interest

https://doi.org/10.1371/journal.pone.0233109.t011

Table 13. Statistical methods used to analyse TGFβ1 gene expression.

Normalisation factor

GOI Treatment 18S GAPDH HMBS×PABPN1 ACTB×PABPN1
TGFβ1 Cisplatin Kruskal-Wallis/ Dunn’s (Fig 8a) Kruskal-Wallis/ Dunn’s (Fig 8b) One-way ANOVA/ Turkey’s (Fig 8c) Kruskal-Wallis/ Dunn’s (Fig 8d)

IRI Kruskal-Wallis/ Dunn’s (Fig 9a) Kruskal-Wallis/ Dunn’s (Fig 9b) One-way ANOVA/ Turkey’s (Fig 9c) Kruskal-Wallis/ Dunn’s (Fig 9d)

Analysis of variance/ post hoc multiple comparisons; Ordinary one-way analysis of variance (ANOVA) and Turkey’s multiple comparisons test for data which has a

Gaussian distribution. Kruskal-Wallis/ Dunn’s multiple comparisons utilised to analyse data with non-parametric distribution. Corresponding figure is in brackets.

GOI = gene of interest

https://doi.org/10.1371/journal.pone.0233109.t013

Table 10. Statistical differences of PECAM1 normalised to different reference genes and reference gene combinations.

Normalisation factor

GOI Treatment Group Comparison 18S GAPDH HMBS×PABPN1 ACTB×PABPN1
PECAM1 Cisplatin Control vs sCKD only NS NS p < 0.05 p < 0.05

Control vs cis AKI NS p < 0.05 p < 0.01 p < 0.01

Control vs cis AKI on sCKD NS p < 0.05 p < 0.05 p < 0.05

sCKD only vs cis AKI only p < 0.01 NS NS NS

IRI Control vs IRI on sCKD (acute) NS NS p < 0.05 p < 0.01

Control vs IRI on sCKD (chronic) NS p < 0.05 NS NS

NS = No significant difference

https://doi.org/10.1371/journal.pone.0233109.t010

Table 12. Statistical differences of HIF1α normalised to different reference genes and reference gene combinations.

Normalisation factor

GOI Treatment Group comparison 18S GAPDH HMBS×PABPN1 ACTB×PABPN1
HIF1α Cisplatin Control vs sCKD only NS NS p < 0.05 p < 0.05

Control vs cis AKI NS p < 0.05 p < 0.05 p < 0.05

Control vs cis AKI on sCKD NS p < 0.05 p < 0.01 p < 0.01

sCKD only vs cis AKI only p < 0.01 NS NS NS

IRI Control vs IRI on sCKD (acute) NS NS NS p < 0.05

Control vs IRI on sCKD (chronic) NS p < 0.05 NS p < 0.05

sCKD only vs IRI only p < 0.05 NS NS NS

IRI only vs IRI on sCKD (acute) p < 0.05 NS p < 0.05 NS

IRI only vs IRI on sCKD (chronic) NS p < 0.05 p < 0.01 NS

NS = No significant difference

https://doi.org/10.1371/journal.pone.0233109.t012
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pairwise variation (NFn/NFn+1)< 0.15 is unlikely to be improved with the inclusion of addi-

tional reference genes [14]. The linear mixed model (LMM) searches for the optimum number

and gene combinations to construct the most stable normalisation factor. The linear mixed

model (LMM) algorithm stops if the lower bound of 95% confidence interval of ICC does not

increase for higher-order gene combinations. Using the lower bound of 95% confidence inter-

val for ICC takes the variation of the stability measure into account and avoids selection of

genes with ICC estimated so imprecisely that the researcher cannot be confident of a high

value.

Sample size calculation is based on the accuracy of the stability measure to aid optimal

experimental design. The minimum effective sample size calculations take into account the

number of reference genes studied, study design, stability level and desired confidence interval.

The aim of the present study was to determine the most stable normalisation factor, i.e., the

best combination of reference genes for a specific set of experimental conditions. GOIs will

vary with experimental conditions and the correct sample size for the GOI must be determined

independently. However, sample sizes in a gene expression study are dependent on both the

effect size of the intervention (numerator) and stability of the reference genes utilised (denom-

inator). The 3-way LMM, takes into account both continuous and categorical covariates and

allows the minimal sample sizes required to determine this denominator with the least the

error i.e. the most stable reference gene combination (normalisation factor) for a given experi-

ment. As all statistical inferences were incorporated in the unified mixed-effects model, statis-

tical inference for stability measures and systematic effects can be analyzed simultaneously.

Furthermore, combining multiple statistical inferences in one model prevents inflation of

Type I error. Calculation of the overall optimal sample size for a specific power (1-β) in a GOI

experiment depends on the fold difference, i.e., the effect size of the specific GOI under the

experimental conditions used (e.g., KIM-1) [49]. However, since GOI expression is shown as a

ratio of the raw GOI data to the normalisation factor. Reduced error or variation in references

genes reduces variation after GOI normalisation. Choosing a normalisation factor with an ICC

of close to 0.9 (ACTB×PABPN1) increases the reliability of the group differences in GOI

expression for a given experimental group size. Less reliable normalisation factors with lower

ICC will have higher co-variates. If variance between groups is increased, larger experimental

group sizes will be necessitated to maintain power and reliability of any experimental group

differences.

Table 14. Statistical differences of TGFβ1 normalised to different reference genes and reference gene combinations.

Normalisation factor

GOI Treatment Group Comparison 18S GAPDH HMBS×PABPN1 ACTB×PABPN1
TGFβ1 Cisplatin Control vs cis AKI only p < 0.001 NS NS p < 0.01

sCKD only vs cis AKI only p < 0.01 NS NS NS

sCKD only vs cis AKI on sCKD NS p < 0.05 NS NS

IRI Control vs IRI only p < 0.001 p < 0.05 NS p < 0.05

Control vs IRI on sCKD (acute) NS NS NS p < 0.05

Control vs IRI on sCKD (chronic) p < 0.05 NS NS p < 0.05

sCKD only vs IRI only p < 0.001 NS NS NS

sCKD only vs IRI on sCKD (chronic) NS NS p < 0.05 NS

IRI only vs IRI on sCKD (chronic) NS NS p < 0.05 NS

NS = No significant difference

https://doi.org/10.1371/journal.pone.0233109.t014
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This can be further demonstrated by the following; essentially, the researcher is looking at

the variance of the quotient of GOI/reference gene combination. The formula to calculate the

variance of a product is complex and shown below [50].

Here, X = GOI, Y = 1/reference gene combination, μx = mean of x and μy = is mean of Y.

If X and Y are not independent, the product of the variance is calculated as below:

VarðX:YÞ ¼ CovðX2;Y2Þ þ ððVarðXÞ þ m2

xÞ:ðVarðYÞ þ m
2

yÞÞ � ðCovðX;YÞ � mxmyÞ
2
;

However, if covariance were zero and GOI and HKG are independent i.e. not varying with

each other in some way then:

VarðX:YÞ ¼ ðVarðXÞ:VarðYÞÞ þ ðVarðXÞ:m2

yÞ þ ðVarðYÞ:m
2

xÞ

This value for Var(X.Y) is clearly going to be a greater value if there is any significant

covariance. The lesser the ICC the greater the covariates hence a greater variance and standard

deviation GOI/reference gene. The standard deviation of GOI/reference gene is used to calcu-

late power and a reduced standard deviation results in potentially smaller group sizes required

to detect difference between experimental groups.

Thus, it is clear that any covariance between the variables increases the variance of GOI/ref-

erence gene and hence a larger sample size will be required for the same level of significance in

a power calculation for determination of significant differences in expression of GOIs between

groups. However, calculation of a change in sample size based on the variance of the product

of GOI and 1/reference gene is technically challenging unless the covariance values are known

in advance for the experimental conditions under study.

Two further considerations are the relative abundance of reference gene expression and

functional class. The most stable reference genes (HMBS, PABPN1 and ACTB) had similar lev-

els of expression but the Cq values were almost an average 5 cycles lower than less stable genes

such as GAPDH and TBP. While lower abundance may theoretically increase error due to

lower fluorescence intensity, this did not occur. GAPDH and 18S were of higher abundance

and ranked the lowest by all 4 algorithms. Identifying genes from different functional classes

(HMBS, PABPN1 and ACTB) reduces the risk of selecting co-regulated genes.

Normalisation by the geometric mean of at least 2 reference genes has been strongly advo-

cated due to potential for confounding [4, 51, 52]. The data confirm that the geometric mean

of 2 genes was superior to a single reference gene. Most modern PCR machines can run 2 fluo-

rescence detection channels simultaneously using a probe-primer system. While additional

probes are more expensive, a single reaction with reduced risk of technical and experimental

variation may ultimately be more time and cost efficient.

There are limitations to this study. The pattern of injury is not homogenous throughout the

cortex and medulla under light microscopy; kidney samples that included both unaffected cor-

tex and medulla do not take account of heterogeneity of injury or cell type [53, 54]. Neverthe-

less, most gene expression studies in rat kidneys are performed on pooled tissue and use

methodology consistent with ours. Consequently, the most stable reference genes in this study

are likely to have external validity for toxic and ischaemic injury in rodent kidney. Note that

protein expression does not necessarily correlate with gene expression for many reasons

including variable effective translation and protein turnover [55–57].

Determination of gene expression stability requires evaluation within the context of treat-

ment and tissue [10, 52]. Major practical considerations in performing assessments of the best

reference genes include cost, animal usage and tissue of interest. Combining the data set for

analysis in our studies likely resulted in higher expression variability of the reference genes.

This was reflected in the high sample size required to minimise the 95% confidence interval of
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even the most stable normalisation factor and highlights problems with variation due to the

effect of covariates even with the most stable reference genes when treatment groups are

pooled for evaluation.

Species and intervention type may also be important considerations. No studies have

assessed the biological variability of reference genes in kidneys of different rat strains. In liver,

18S was the most stable reference gene for both Wistar and Zucker rats [38]. The SD rat strain

was used in the present kidney studies. It is likely that both intervention and tissue type con-

tribute to variability of gene expression. Cost and logistical difficulties likely limit academic

laboratories from using multiple sets of reference genes to normalise RT-qPCR study data

with identical animal species and developmental stages.

Conclusion

The results emphasise the need to determine stable reference genes and a geometric mean of 2

stable reference genes is superior to 1 for normalising a GOI. ACTB and PABPN1, validated as

stable under multiple experimental conditions, provided optimal stability as reference genes.

The 3-way LMM provided an effective method for identifying stable pairs of reference genes

in any context. These techniques should reduce variance and increase reproducibility and reli-

ability of pre-clinical studies.

Materials and methods

Animals

Animal work was conducted in strict accordance with the Australian code for the care of ani-

mals for scientific purposes (National Health and Medical Research Council, 2013) and

approved by the Animal Ethics Committee at the University of New South Wales (ACEC

Approval 14\133A). All surgery was performed under isofluorane anaesthesia, and all efforts

were made to minimise suffering. Rats were randomly allocated to the experimental treatment

groups and subjected to nephrotoxic challenges (adenine or cisplatin) and/or ischaemia-reper-

fusion induced kidney injury as shown in Table 15 and S6 File (S6 Figs 1–3 in S6 File). Adverse

events or deaths prior to endpoint were not observed. Animals were humanely euthanised

under anaesthesia. The animal models, creatinine assays and histopathology are described in

S6 and S7 Files [58].

Table 15. Experimental groups and interventions.

Group Group

no.

Abbreviation No.

rats

Intervention Day of

cull

Control 1 Control 8 Normal diet 63

Subclinical chronic kidney disease 2 sCKD 8 0.25% adenine diet for 4 weeks and 4 weeks of normal chow 56

Toxic acute kidney injury 3 Cis-AKI 8 Normal chow for 8 weeks, 4mg/kg cisplatin induced AKI on day 56 63

Toxic acute kidney injury on adenine

induced chronic kidney disease

4 Cis-AKI on sCKD 6 0.25% adenine diet for 4 weeks, 4 weeks of normal chow, cisplatin

4mg/kg on day 56

63

Ischaemic acute kidney injury on subclinical

chronic kidney disease, acute group

5 IRI on sCKD,

(acute)

8 0.25% adenine diet for 4 weeks, 4 weeks of normal chow, 30min of

bilateral renal ischaemia on day 56 then reperfusion < 24 hours

57

Ischaemic acute kidney injury on subclinical

chronic kidney disease, chronic group

6 IRI on sCKD,

(chronic)

8 0.25% adenine diet for 4 weeks, 4 weeks of normal chow, 30min of

bilateral renal ischaemia on day 56 then recovery for 2 weeks

70

Ischaemic acute kidney injury only 7 IRI only 8 Normal chow for 8 weeks, 45 min of unilateral ischaemia on day 56,

then nephrectomy of contralateral non-ischaemic kidney

56

AKI = acute kidney injury; Cis-AKI = Cisplatin induced acute kidney injury; IRI = ischaemia reperfusion injury; sCKD = subclinical chronic kidney disease

https://doi.org/10.1371/journal.pone.0233109.t015
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Reference gene selection

Reference genes were selected from a literature search of rat studies (Table 16). Primers were

designed using Beacon Designer (Palo Alto, California, USA). All primer pairs were intron-

spanning, non-homologous to other rat genes and avoided structural folding areas.

RT-qPCR

Specific RNA extraction and RT-qPCR methods are detailed in S8 File. Reference genes and

KIM-1 were amplified in triplicate in all samples per experimental run. Triplicates were re-

assayed if there were missing values or if Cq differences were> 1 cycle within the triplicate.

The maximum Cq value for reference genes was 34 cycles. Intra-experiment variation between

technical replicates was < 1.2% and inter-experiment variation was < 1.5%. Samples were dis-

tributed over two 96-well plates in each experimental run and hence a factor correction for

inter-plate variation was performed for each run [59]. Additional details of inter-plate varia-

tion correction are in S8 File. Plate specific amplification efficiencies were generally similar (±
0.05) for a given reference gene.

Statistical analyses

For expression stability analysis, plate corrected triplicate averages (i.e., raw Cq values) or rela-

tive quantities (RQs) were used (S9 File). Expression stability was analysed using NormFinder,

qBase+, BestKeeper and comparative ΔCq statistical algorithms to determine the most stable

reference gene or gene pairs for normalisation. The 4 algorithms produced slightly varying

results. Hence a universal rank was constructed by using brute force and Monte Carlo cross

Table 16. Reference genes and GOI primers.

Gene name (symbol) Accession

number

Forward primer (5’-3’) Reverse primer (5’-3’) Tm

(˚C)

Amplicon

length

Ref

Ribosomal 18S (18S) X01117 GATGCTCTTAGCTGAGTG GTTCCGAAAACCAACAAA 60 [37]

Glyceraldehyde 3-phosphate dehydrogenase

(GAPDH)

NM_017008 CTACCCACGGCAAGTTCAAC CCAGTAGACTCCACGACATA 59.4 138 [12]

Beta-actin (ACTB) V01217 AAGTCCCTCACCCTCCCAAAAG AAGCAATGCTGTCACCTTCCC 61.3 75 [12]

Hydroxymethylbilane synthase (HMBS) NM_013168 TCTAGATGGCTCAGATAGCATGCA TGGACCATCTTCTTGCTGAACA 59.4 76 [12]

Polyadenylate-binding nuclear protein 1

(PABPN1)

NM_001135008 AGAGCGACATCATGGTAT CATCAAGGTCATCTTCTGTT 59.4 127 [12]

Hypoxanthine-guanine

phosphoribosyltransferase (HPRT)

NM_012583 TCATATCAGTAACAGCATCTAAG GAACGGTTGACAACGATT 59.4 79 [9]

TATA binding protein (TBP) NM_001004198 TGCTGGTGATTGTTGGTT GGAAGGCGGAATGTATCTG 61.3 199 [2]

Succinyl dehydrogenase (SDHA) NM_130428 AAGCACACCCTCTCATAT CAGTCAGCCTCATTCAAG 59.4 92 [2]

14-3-3 protein gamma (YWHAG) NM_019376 CAGTTCTCTATTTTGTTTTC TCACTTGATTAGACCTTAA 56.9 196 [9]

Tyrosine 3-monooxygenase/ tryptophan

5-monooxygenase activation protein zeta

(YWHAZ)

NM_013011.2 GATGAAGCCATTGCTGAACTTG GTCTCCTTGGGTATCCGATGTC 56.9 117 [12]

Kidney injury molecule (KIM-1) AF035963 GAAGATGTAGTCTCTGTCA CATACTGGTTGGTTCCTA 59.4 N/A

Platelet And Endothelial Cell Adhesion

Molecule 1 (PECAM1)
NM_031591 GCTAACTTCACCATCCAGAA CCTCTCCTCGGCAATCTT 61.4 75 [44]

Hypoxia Inducible Factor 1 Subunit Alpha

(HIF1α)

CCTGCACTGAATCAAGAGGTGC CCATCAGAAGGACTTGCTGGCT 59.4 175 [45]

Transforming Growth Factor Beta 1 (TGFβ1) AY550025 AACCAAGGAGACGGAATA GTGGAGTACATTATCTTTGCT 61.4 75 [46]

N/A = not applicable

https://doi.org/10.1371/journal.pone.0233109.t016
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entropy methods (S2 File) utilising RankAggreg package in RStudio [60]. The workflow

describing input data and expression stability analysis for these statistical algorithms is detailed

in S8 File.

Linear mixed-effects model. To refine the reference gene selection process further, a

3-way LMM was developed that used the ICC of gene expression levels as the stability measure

to rank reference genes with low residual variation within the intervention group and minimal

between group variation. The 3-way LMM accommodated nested experimental designs, esti-

mated variance components for determination of confidence intervals of stability values and

provided minimum effective sample sizes for selection of reference genes for future studies

[27].

The 3-way LMM was constructed with samples nested in experimental treatment groups.

Systemic effects included gene expression variation due to experimental intervention and

effects due to interactions with the reference genes. The reference gene combination with an

ICC (ρ) with a 95% CI that has the highest lower limit is selected as the most stable normalisa-

tion factor. This provides an algorithm to determine the total sample size necessary to select

reference genes with least uncertainty [28]. The minimum effective sample size necessary can

be calculated to accurately estimate ICC of a given set of reference genes with desired precision

(i.e. width of the [100(1-α)]% CI) [28, 61]. A detailed workflow of the 3-way LMM and the for-

mulas for effective sample size calculation are described in S3 File. 3-way LMM calculations

were performed using SAS software (version 9.4, 2017, SAS Institute Inc, Cary, North Caro-

lina, USA).

Normalised relative quotients. NRQs for GOIs was calculated as described by Helle-

mans, et al [26] and this is detailed in S10 File, formulas 11–13. Normality of the NRQ data set

for each GOI and reference gene/ reference gene combination was confirmed by D’Agostino-

Pearson test. The mean amplification efficiency and RQs for all GOIs are listed in S11 File (S11

File, Table 1 in S11 File).

Further statistical analysis. Gene expression results are presented as NRQ and expressed

as means ± standard deviations. Comparisons were made using 1-way or 2-way ordinary

ANOVA and Tukey’s or Bonferroni’s multiple comparison tests (post hoc) when the distribu-

tion of the variables was normal. The Kruskal Wallis test statistic was calculated and Dunnett’s

multiple comparison test was performed (post hoc) for non-normally distributed data. The

D’Agostino-Pearson test was used to assess normality.
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