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Abstract: This paper focuses on the calibration of multispectral sensors typically used for remote
sensing. These systems are often provided with “factory” radiometric calibration and vignette
correction parameters. These parameters, which are assumed to be accurate when the sensor is new,
may change as the camera is utilized in real-world conditions. As a result, regular calibration and
characterization of any sensor should be conducted. An end-user laboratory method for computing
both the vignette correction and radiometric calibration function is discussed in this paper. As an
exemplar, this method for radiance computation is compared to the method provided by MicaSense
for their RedEdge series of sensors. The proposed method and the method provided by MicaSense
for radiance computation are applied to a variety of images captured in the laboratory using a
traceable source. In addition, a complete error propagation is conducted to quantify the error
produced when images are converted from digital counts to radiance. The proposed methodology
was shown to produce lower errors in radiance imagery. The average percent error in radiance
was −10.98%, −0.43%, 3.59%, 32.81% and −17.08% using the MicaSense provided method and
their “factory” parameters, while the proposed method produced errors of 3.44%, 2.93%, 2.93%,
3.70% and 0.72% for the blue, green, red, near infrared and red edge bands, respectively. To further
quantify the error in terms commonly used in remote sensing applications, the error in radiance
was propagated to a reflectance error and additionally used to compute errors in two widely used
parameters for assessing vegetation health, NDVI and NDRE. For the NDVI example, the ground
reference was computed to be 0.899 ± 0.006, while the provided MicaSense method produced a value
of 0.876 ± 0.005 and the proposed method produced a value of 0.897 ± 0.007. For NDRE, the ground
reference was 0.455 ± 0.028, MicaSense method produced 0.239 ± 0.026 and the proposed method
produced 0.435 ± 0.038.

Keywords: calibration; MicaSense RedEdge; spectral sensor; sensor; radiance; reflectance;
error propagation

1. Introduction

No sensor is perfect. Based on the application that is required, certain sensors are capable of
producing acceptable data without any correction. On the other hand, critical applications require
the highest accuracy that is achievable [1]. For this reason, it is important to regularly calibrate any
sensor that is used for any kind of data collection. Even two sensors manufactured to perform the
same task may produce different results under identical circumstances. Sensors can also degrade over
time. Some of the changes in the sensor response can be attributed to the use and environmental
conditions that the sensor is put through. These conditions include but are not limited to: temperature,
storage and physical handling. In addition, the response of sensors can simply change over time as
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the hardware ages [2]. For these reasons, it is very important for sensors to be calibrated as often
as possible.

Accuracy of data is arguably the most important part of any scientific research. For fields
of study that involve imagery, the behavior of sensors is integral in the accuracy of the data [3].
While Charge-Coupled Devices (CCD) were proposed and verified in the 1970s as imaging sensors and
while they used to be the most widely used imaging technology, they still had issues. Errors in CCD
fabrication as well as any errors in the behavior of the electronic device contribute to the noise produced
in the pixels [4]. Since then, Complementary Metal-Oxide Semiconductor (CMOS) technology has
become more prominent [5]. CMOS imaging sensors also produce error in their recorded pixels values.
Various work has been done to analyze and correct noise in CMOS image sensors [6–8]. It is important
for every user to know the accuracy and expected variation of their data and how one might reduce
the error that does exists [9].

This paper aims to develop a technique for characterizing and calibrating any kind of spectral
sensor. Some of these sensors are loaded with previously measured metadata values which are used
for calibrating any image captured by the sensor and these values are never updated. This reduces
the accuracy of the final image produced by the sensor. For the purposes of this paper, the relative
spectral response curves are characterized, while the vignette correction, row-gradient correction and
radiometric calibration coefficients are calibrated. While the methods presented in this paper can be
utilized for any spectral sensor, this study focuses on a multispectral sensor that is primarily used for
agricultural remote sensing.

2. Background

Traditionally, remote sensing data collections were accomplished from manned aircraft and
satellite based platforms. Satellite sensors were calibrated using National Institute of Standards and
Technology (NIST)-traceable equipment pre-launch and were calibrated in-situ afterwards. On the
other hand, manned aircraft sensors can be calibrated as often as the user desires using NIST standards.
This is an advantage, because if any abnormality is detected in the results, the sensor can be investigated
further in a laboratory environment. This assures the highest quality characterization and calibration.
Recently, technological improvements in small unmanned aircraft systems (sUAS) have evolved to
the point where they are a cost-effective solution for a variety of commercial, as well as research
applications while maintaining a high level of accuracy. This has led to sUAS instrumentation being
utilized more often for remote sensing purposes. Some examples of sUAS applications include but
are not limited to: bridge inspections [10], cultural heritage [11], gas pipeline inspections [12] and
vegetation [13–15]. It is very important that the imagery captured for all of those applications and
many more, are calibrated properly.

In terms of calibration, sensors attached to sUAS platforms have the same advantage as manned
aircraft sensors, as they can be taken off and calibrated whenever desired. All calibration methods
require an accurate reference standard, which will yield reliable results when combined with a strong
protocol [16]. Below are a few examples of the various methods for calibrating sensors on both satellite
and unmanned aircraft platforms.

2.1. Satellite

Calibration of satellite sensors occurs before they are launched into orbit. However, these sensors
can degrade due to mechanical and electrical issues and even exposure to ultraviolet and other
radiations in the space environment [17]. On board calibration is accomplished for various Landsat
sensors with the use of lamps, blackbodies, various optical components and even a neutral density
filter [18]. In addition, unique techniques have been developed to use both clouds and oceans as
calibration targets for satellite sensors [19–21] and Pseudo Invariant Calibration Sites (PICS) have been
used in recent years for calibration purposes [22–24]. A nice overview of satellite instrumentation
calibration was written by Chander et al. [25], which included but was not limited to: Simultaneous
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Nadir Overpasses (SNO), vicarious ground based calibrations, PICS, clouds, Rayleigh scattering and
even the sun, moon and stars.

2.2. Unmanned Aircraft Systems (UAS)

As mentioned, the advantage of calibrating a UAS sensor is the ability to perform calibration
using NIST-traceable equipment in a laboratory. Below are a few examples from previous studies.
Berni et al. calibrated both a multispectral and a thermal sensor. Their multispectral sensor radiance
calibration utilized a uniform light source along with an integrating sphere, while their thermal camera
was calibrated with a blackbody source and the MODTRAN radiative transfer code [14]. Sheng et al.
also calibrated their thermal camera by imaging a surface over a range of known temperatures [26].
Vicarious calibration has been utilized by both Pozo et al. and Li et al. [27,28]. Pozo’s technique
measured artificial targets and established a relationship between the targets and the radiance of
the surfaces, while Li’s technique applied the same technique to calibrated tarps and calculated
the top-of-atmosphere (TOA) radiances to compute calibration coefficients. Hakala et al. performed
laboratory calibration of their hyperspectral camera by using both a monochromator and a source-based
reference panel configuration. The monochromator was utilized for spectral calibration while a
reference panel configuration was used for absolute radiance calibration [29]. Aasen et al. performs a
dark current calibration, a vignette correction and a radiometric response correction [30]. Kelcey et al.
calibrated imagery by noise reduction, dark offset, vignette correction by flat fielding and corrects lens
distortion using Agisoft Lens software [31]. Vignette correction is the process of correcting the fall off
of digital count intensity at the edges of the image frame.

2.3. MicaSense RedEdge

Designed to assist agricultural professionals with crop management, the MicaSense RedEdge
(MicaSense, Seattle, WA, USA) is a five band multispectral sensor. The sensor captures 8 cm ground
sample distance (GSD) at 122 m, up to 1 capture per second with a 47.2◦ field of view (FOV), for all
five bands. Furthermore, the sensor comes equipped with a downwelling light sensor (DLS) which
measures the incident light, providing a hemispherical measurement above the detector surface.
The bands of the RedEdge camera and their respective characteristics are listed in Table 1.

Table 1. MicaSense RedEdge spectral bands with respective center wavelengths and bandwidth values.

Band Name Wavelengths [nm] FWHM [nm]

Blue 475 20
Green 560 20
Red 668 10

Red Edge 717 10
Near IR 840 40

MicaSense’s calibration procedure utilizes various metadata parameters that accompany each
image produced by each individual RedEdge sensor [32]. This raises concerns for two main reasons.
First, these metadata parameters are fixed for the lifetime of the sensor unless a new “factory”
calibration is performed. Second, some of the early RedEdge-3 sensors produced were not radiometric
calibrated individually. Instead, they were loaded with default radiometric and vignette correction
terms. While these default values could produce good results, they will not produce the most accurate
results. Their process for converting raw digital count imagery into radiance, Li(x, y) [W/m2/sr/nm],
for band i, is described below in Equations (1)–(4) [32].

Li(x, y) = Vi(x, y)
a1,i

gi

ρi(x, y)− ρBL,i

te,i + a2,iy− a3,ite,iy
(1)
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where Vi(x, y) is the vignette correction function map, a1,i, a2,i and a3,i are radiometric calibration
coefficients, ρi(x, y) is the raw digital count image, ρBL,i is the dark level, gi is the gain, te,i is the
exposure time [s] and y is the pixel row number. The vignette map, Vi(x, y), is represented as

Vi(x, y) =
1
ki

(2)

where ki is a correction factor

ki = 1 + k0,iri + k1,ir2
i + k2,ir3

i + k3,ir4
i + k4,ir5

i + k5,ir6
i (3)

where k0,i through k5,i are polynomial correction coefficients and ri is the distance of the pixel to the
vignette centers

ri =
√
(x− cx,i)2 + (y− cy,i)2 (4)

where cx,i and cy,i represent the vignette center and i denotes the spectral band number. Now,
by combining all the above Equations (1)–(4), the radiance image, Li(x, y) can be computed.

3. Methods

3.1. Proposed Radiometric Calibration Methodology

While the RedEdge sensor provides a method to convert images from digital count into
radiance [32], a separately proposed method is presented here. This proposed methodology allows
users to calibrate their sensors whenever it is deemed necessary. This will ensure that the sensor is
converting newly captured digital count imagery into radiance imagery as accurately as possible.
In addition, use of this proposed methodology allows for the production of a fully parameterized
radiance error image. The proposed calibration process is a two step process: first, determine the
vignette and row gradient correction, and second, compute a spectral radiometric calibration coefficient.

3.1.1. Vignette and Row-Gradient Correction

As stated before, vignette correction refers to correcting the fall off of digital count intensity at
the edges of an image, while row gradient correction corrects for a fall off of digital count intensity
from top to the bottom of the image. To calculate both the vignette and row gradient correction factors
simultaneously, the sensor needs to be presented with a spatially static (flat) radiance field. In order to
do this, the sensor should be aimed directly into the exit port of a integrating sphere, where an image
is captured and then normalized, by dividing out the gain and exposure time. It should be noted that
the exit aperture of the integrating sphere should be larger than the field of view (FOV) of the sensor.
This ensures that the images captured by the sensor are fully illuminated with the spatially uniform
and stable radiance from the sphere. From these images, the combined vignette and row-gradient
factor correction surface, Vi(x, y, T, te,i, gi), is derived as

Vi(x, y, T, te,i, gi) =
ρsphere,i(x, y)− ρBL,i(T, te,i, gi)

ρsphere,i(cx,i, cy,i)− ρBL,i(T, te,i, gi)
(5)

where ρsphere,i(x, y) is the normalized integrating sphere image, ρBL,i(T, te,i, gi) is the dark level
bias (Section 3.3), ρsphere,i(cx,i, cy,i) is the normalized pixel value at the vignette center cx,i, cy,i and
i denotes the spectral band number. This allows for any image to be corrected of optical fall-off, sensor
imperfections and dark-level bias using the following equation

ρc,i(x, y) =
ρi(x, y)− ρBL,i(T, te,i, gi)

Vi(x, y, T, te,i, gi)
(6)
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where, ρc,i(x, y) is the vignette and row-gradient corrected image. Now that the images can be corrected
for fall-off, radiometric calibration can take place. Ultimately, the calibration equaiton is dependent on
the light-level, gain, integration time and even temperature.

3.1.2. Calibration Coefficient Computation

To convert a raw digital count image to a radiance image, the following equation is utilized for
each of the camera’s spectral bands, i

Li(x, y) = ai
ρc,i(x, y)

gite,i
(7)

where Li(x, y) is the radiance imagery, ai is the radiometric calibration coefficient, ρc,i(x, y) is the
vignette corrected image, gi is the gain and te,i is the exposure time [s].

To compute the band specific calibration coefficient, ai, the sensor needs to be shown a series of S
varying brightness level radiance spectra spanning the operational range that the camera will be used
under, namely [L1, L2, L3, ..., LS]. These radiance levels are provided using a traceable source. By using
the relative response functions, band-effective radiance, Ls,i, can be computed by

Ls,i =

∫
λ Ls(λ)RSRi(λ)dλ∫

λ(λ)RSRi(λ)dλ
(8)

where RSRi(λ) is the relative spectral response curve for band i (Section 3.2). ai can be derived through
a no-intercept least-squares regression as:

ai = (Xt
iXi)

−1Xt
iYi (9)

where

Xi =



1
gi,1te,i,1

ρc,1,i
1

gi,2te,i,2
ρc,2,i

1
gi,3te,i,3

ρc,3,i
...

1
gi,Ste,i,S

ρc,S,i


ρc,s,i = ∑

x
∑
y

ρc,s,i(x, y)
Nx My

(10)

where Nx and My are the number of pixels in the column and rows of the image, respectively and

Yi =


L1,i
L2,i
L3,i

...
LS,i


3.2. Relative Spectral Response

RSR curves were computed using a method similar to the one described by Mamaghani et al. [33].
The RSR determination methodology is shown in Equations (11)–(13).

DCnormi (λ) =
DCi(λ)

gitei

(11)
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RSRi(λ) =
0.9975(DCnormi (λ)− b)

Φ(λ)
(12)

R̂SRi(λ) =
RSRi(λ)

max(RSRi(λ))
(13)

where DCi(λ) is the average digital count over a region of interest (an example of which can be seen in
Figure 1), gi is the gain, tei is the exposure time [s], b is a shift factor that is equal to the lowest non-zero
value of DCnormi (λ), Φ(λ) [W] is the spectral radiant flux, RSRi(λ) is the relative spectral response,
R̂SRi(λ) is the peak normalized relative spectral response and i denotes the spectral band number.
The peak normalized relative spectral response functions for the two RedEdge sensors used in this
study can be seen in Figure 2.

Figure 1. Example region of interest (red rectangle) from relative spectral response data set. Pixels
from center of sphere (exit port of mini integrating sphere) were averaged for every image captured.
This was accomplished for all 250 images captured (400 nm–900 nm, 2 nm step size) for all bands.
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Figure 2. Peak normalized relative spectral response of RedEdge-3 (solid lines) and RedEdge-M
(dashed lines) sensors. Small variations can be seen in all channels of both sensors. RedEdge-3 contains
small divots in the blue and green channels, while the Red, RE and NIR channels have small but
noticeable shifts between the two sensors.

The variations that are seen between the RedEdge-3 and RedEdge-M relative spectral response
curves (Figure 2) is a good demonstration of the importance for calibration. These are two sensors
produced by the same company with the same specifications, yet they produce slightly different
responses. These variations may be attributed to slight variations in their manufacture or perhaps
aging and exposure of the filter materials to environmental factors.
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3.3. Dark Current

To characterize the dark current of the RedEdge sensors, light was blocked from the lenses by
physically covering the entrance aperture and placing the sensor in a light tight bag (a photographer’s
film changing bag). The sensor was then placed into three different environments: cold (2.78 ◦C),
ambient (25.56 ◦C) and hot (37.22 ◦C). A series of 30 images were captured at every gain and manual
integration time/exposure setting. With four gain settings (1×, 2×, 4× and 8×) along with 21 exposure
settings (ranging 0.0066 ms–24.5 ms). For a single combination (temperature, gain and exposure),
the pixels in all 30 images were averaged to estimate the spectral dark current. In addition to the
MicaSense RedEdge camera, a HOBO TidbiT MX Temp 400 temperature logger (Onset, Bourne,
MA, USA) was placed inside the light tight bag to record the temperature every 10 s throughout
the experiment. This was done to ensure the temperature did not radically change throughout the
experiment period.

3.4. Comparison Metrics

Images from the integrating sphere were captured and converted to radiance using both the
MicaSense RedEdge provided methodology and the proposed method described above. The output
from the sphere was measured using a calibrated spectroradiometer (a Spectra Vista Corporation
HR-1024i field portable spectroradiometer with a 4 degree foreoptic as well as an Analytic Spectral
Devices FieldSpec 3 Spectroradiometer with a 3 degree foreoptic) as reference against which to compare
the derived spectral radiance images. Various light levels, gains and exposure combinations were used
in this evaluation. Light levels were selected based on the simulating the highest radiance seen on
Earth and multiplying it by the average Earth reflectance (18%).

3.5. Error Propagation

Given a calibrated radiance from the above approach, it is of keen interest to characterize the
expected error on this derived value. An error propagation was conducted to assess the accuracy of
the radiance imagery produced. Error propagation is calculated with the general form

R = F(X, Y, ...) (14)

δR =

√(
∂F
∂X

δX
)2

+

(
∂F
∂Y

δY
)2

+ ... (15)

where R is a function of X and Y and δR is the standard error in R.
Using Equation (15) and applying it to Equations (7) and (1), the error propagation for every pixel

in the radiance imagery can be computed for the methods utilized in this study.

3.5.1. MicaSense Method Error

δLi(x, y) =
[
(

∂Li(x, y)
∂gi

δgi)
2 + (

∂Li(x, y)
∂pi(x, y)

δpi(x, y))2 + (
∂Li(x, y)

∂te,i
δte,i)

2+

(
∂Li(x, y)
∂Vi(x, y)

δVi(x, y))2 + (
∂Li(x, y)

∂a1,i
δa1,i)

2 + (
∂Li(x, y)

∂a2,i
δa2,i)

2 + (
∂Li(x, y)

∂a3,i
δa3,i)

2
]1/2 (16)

where
∂Li(x, y)

∂gi
= −Vi(x, y)

a1,i

g2
i

pi(x, y)− pBL,i

te,i + a2,iy− a3,ite,iy
(17)

∂Li(x, y)
∂pi(x, y)

= Vi(x, y)
a1,i

gi

1
te,i + a2,iy− a3,ite,iy

(18)
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∂Li(x, y)
∂te,i

= −Vi(x, y)
a1,i

gi

(pi(x, y)− pBL,i)(1− a3,iy)
(te,i + a2,iy− a3,ite,iy)2 (19)

∂Li(x, y)
∂Vi(x, y)

=
a1,i

gi

ρi(x, y)− ρBL,i

te,i + a2,iy− a3,ite,iy
(20)

∂Li(x, y)
∂a1,i

= Vi(x, y)
1
gi

ρi(x, y)− ρBL,i

te,i + a2,iy− a3,ite,iy
(21)

∂Li(x, y)
∂a2,i

= −Vi(x, y)
a1,i

gi

y(ρi(x, y)− ρBL,i)

(te,i + a2,iy− a3,ite,iy)2 (22)

∂Li(x, y)
∂a3,i

= Vi(x, y)
a1,i

gi

yte,i(ρi(x, y)− ρBL,i)

(te,i + a2,iy− a3,ite,iy)2 (23)

where δgi is the standard error in gain, δte,i is the standard error in exposure time, δρi(x, y) is the
standard error in the raw image, δVi(x, y) is the standard error of the vignette correction, & δa1,i,
δa2,i and δa3,i are the standard errors of the radiometric calibration coefficients. The general standard
error form is given in Equation (24), while the standard error for regression estimates is shown by
Equation (26).

δ =
σpop√
Nsamp

(24)

where δ is the standard error, σpop is the standard deviation of the population and Nsamp is the number
of samples. While the MicaSense Radiance Error (Equation (16)) contains seven different components,
not all of these variables could be computed. When the radiance error is computed for the MicaSense
methodology, only gain, exposure time and image error is considered. This is because the RedEdge
multispectral sensors are provided with “factory” values for the radiometric calibration and vignette
correction coefficients. Therefore, there is no way to compute the individual error contributions and
the standard error will be set to 0 for the following variables: Vi(x, y), a1,i, a2,i and a3,i.

3.5.2. Proposed Method Error

δLi(x, y) =
[ (

∂Li(x, y)
∂ai

δai

)2

+

(
∂Li(x, y)

∂pc,i
δpc,i

)2

+

(
∂Li(x, y)

∂gi
δgi

)2

+

(
∂Li(x, y)

∂te,i
δte,i

)2 ]1/2

=

[ (
pc,i

gite,i
δai

)2
+

(
ai

gite,i
δpc,i

)2
+

(
−ai pc,i

g2
i te,i

δgi

)2

+

(
−ai pc,i

git2
e,i

δte,i

)2 ]1/2

(25)

=

[ p2
c,i(δai)

2 + a2
i (δpc,i)

2

g2
i t2

e,i
+

a2
i p2

c,i[t
2
e,i(δgi)

2 + g2
i (δte,i)

2)]

g4
i t4

e,i

]1/2

where δpc,i is the standard error of the vignette corrected image and δa is the standard error of the
radiometric calibration coefficient. Because a was computed using a least squares regression the standard
error computation for this variable changes. Below is the standard error for a regression estimate.

δest =

√
∑

Nsamp
i=1 (Yi−Y′)

Nsamp−2√
∑

Nsamp
i=1 (Xi − X̄)

(26)

where δest is the standard error of the estimate, Y is the dependent variable value for observation and
Y′ is the predicted dependent variable value, Xi is the independent variable value for observation and
X̄ is the mean of the independent variables.
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3.5.3. Reflectance Error

This study also investigates the error in reflectance imagery. While the Empirical Line Method
(ELM) is the most well known method to convert digital count/radiance imagery into reflectance,
other techniques have been employed in recent years. A recent example is utilizing the At-Altitude
Radiance Ratio (AARR), which was implemented with promising results using the MicaSense RedEdge
sensor. AARR produces a reflectance image by dividing each spectral band radiance image by the
corresponding band-effective downwelling radiance. Equation (27) demonstrates this process [33].

ρi =
Ls,i

DLSi
(27)

DLSi =
E
′
solar,i

π
cos(σ′)τ

′
i + L↓solar,i (28)

where DLSi is the downwelling light sensor radiance recorded by the MicaSense RedEdge, ρi is the
reflectance factor, Ls,i is the band effective spectral radiance, E

′
solar,i is the spectral exoatmospheric solar

irradiance, σ′ is the solar zenith angle, τ
′
i is the spectral transmission from space to the sUAS, L↓solar,i

is the solar scattered downwelling sky radiance propagating on to the sUAS and i denotes the spectral
band number.

The error in reflectance is shown below in Equation (29)

δρi =

√(
∂ρi

∂Ls,i
δLs,i

)2
+

(
∂ρi

∂DLSi
δDLSi

)2

=

√
(

1
DLSi

δLs,i)2 + (
−Ls,i

DLS2
i

δDLSi)2 (29)

=

√√√√ 1
DLS2

i

(
δL2

s,i +
L2

s,i

DLS2
i

δDLS2
i

)

4. Data Collection

For the purposes of data collection, a NIST-traceable HELIOS Uniform integrating sphere
(Labsphere, Sutton, NH, USA, SN:0720165129) along with two Plasma External Lamp (PEL) sources,
an OL Series 750 Automated Spectroradiometric Measurement System (Optronic Laboratories, Orlando,
FL, USA, SN:05613133), a Newport Hand-Held Optical Meter Model 1918-R (Newport, Irvine, CA,
USA, SN: 17160), a SVC HR-1024i field portable spectroradiometer (Spectra Vista Corporation,
Poughkeepsie, NY, USA), an Analytic Spectral Devices FieldSpec 3 Spectroradiometer (Analytik Ltd,
Cambridge, UK), a MicaSense RedEdge-3 multispectral sensor (SN:1713165), a MicaSense RedEdge-M
(SN:RM01-1806106-SC) and a DJI Matrice 100 quadcopter (SZ DJI Technology Co., Nanshan District,
Shenzhen, China) were used for this study. The OL Series 750 and the Newport Optical Meter were
used to generate the relative spectral response curves of the MicaSense RedEdge, while the integrating
sphere was used for vignette correction, row-gradient correction and radiometric calibration. The SVC
and ASD spectroradiometers were used to measure the output of the integrating sphere as calibrated
standards. The DJI quadcopter was used to fly the RedEdge sensor around various scenes in Western,
NY. While the images captured from these scenes were utilized for other research studies, a simple case
study was accomplished using a single sUAS image captured with the RedEdge-3. This case study
demonstrates the effects of calibration on both radiance and reflectance sUAS imagery.

4.1. Dark Current

As previously stated, three various environments were used to test the dark current: a walk-in
cold room (set to 2.78 ◦C), an ambient laboratory (25.56 ◦C) and a bench oven (set to 37.22 ◦C). Figure 3
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shows the MicaSense RedEdge-3 and HOBO TidbiT MX Temp 400 in these various locations for testing.
The timing of these experiments varied between the RedEdge-3 and RedEdge-M. The RedEdge-3 was
tested first and the gains and exposure times were changed manually in-between image captures.
This added significant down time in data collection and caused each temperature setting test to last
between 1.5 and 2 h. Afterwards, it was learned the RedEdge sensor has an Application Program
Interface (API) and the sensor can be controlled pragmatically. Therefore, a small script was written
up that programatically changed the gains and exposure times after all 30 images were captured for
the previous combination. This reduced the testing time to around a single hour.

(a) (b) (c)
Figure 3. MicaSense RedEdge-3 and HOBO TidbiT MX Temp 400 during dark current testing in (a) cold
room, (b) room temperature and (c) bench oven.

4.2. Relative Spectral Response

To measure the Relative Spectral Response (RSR) curves, an OL Series 750 monochromator was
utilized with 0.5 mm slits at both the entrance and exit apertures to produce a 2 nm half-bandwidth
(HBW). A mini integrating sphere was attached at the exit port of the monochromator to produce
uniform light, while the RedEdge was placed 11 cm away from the sphere. This produced the image
seen in Figure 1. The RedEdge was situated close to the exit port of the mini integrating sphere because
of the small exit port and the lower power being put into the monochromator. With a larger sphere
and more input power, the sensor could be placed further back. Figure 4 depicts the monochromator
configuration used. Power levels and spectral imagery were recorded at 2 nm increments from 400 nm
to 900 nm.

Figure 4. Relative spectral response curve data capture setup. Monochromator exit port connected to
mini integrating sphere. RedEdge-3’s center lens is aligned with exit port of mini sphere. RedEdge-3 is
attached to a custom made rig which allowed for both lateral and vertical movement.
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4.3. Radiometric Calibration

To calculate the radiometric calibration coefficient, the sensor needs to be shown N number of
spectral radiance curves, which for the purposes of this study, N was selected to be seven. The setup
used with the integrating sphere and Micasense RedEdge is displayed in Figure 5. The highest light
level selected for the integrating sphere was computed by simulating the radiance seen on Earth and
multiplying it by the average Earth reflectance (18%). This radiance is close to the radiance level
produced from the integrating sphere when a single PEL source is on and is 30% closed. One of the PEL
sources used in this study has a variable aperture. This is beneficial because it allows for setting the
required N spectral radiance curves. It was chosen to use seven light levels: One lamp on, 30% (O30),
35% (O35), 40% (O40), 45% (O45), 50% (O50), 55% (O55) and 60% (O60) closed, which respectively
are: 0.2928, 0.2407, 0.1924, 0.1495, 0.1093, 0.0739, 0.0453 W/m2/sr at their peak wavelengths (500 nm).
The radiance spectra collected at these light levels can be seen in Figure 6. After the light levels
were selected, all MicaSense sUAS flights conducted by the sUAS Lab at the Chester F. Carlson
Center for Imaging Science at Rochester Institute of Technology were analyzed to see what gain and
exposure combinations were selected when the camera was collecting field data in auto exposure
mode. These 40 flights were conducted between August 2017 and March 2019, a majority of which
were flown around Western, NY, USA during late spring and late fall. These flights were flown
on sunny days, between 46 m and 122 m above ground level and between 10:00 and 14:00 EST to
ensure that the sun was above of the scene. While all four gain levels were utilized, only a small
subset of the available exposure times were utilized (0.5 ms–2.5 ms). With this knowledge in mind,
the radiometric calibration data set was constrained to seven light levels, four gains and six exposure
settings. Even with these constraints, which produced 168 combinations, not all combinations could be
utilized for the radiometric calibration coefficient computation. Many of these combinations produced
data that was either near the noise floor or near saturation. Because of this, an additional constraint
was added to only use combinations in which all 5 spectral bands produced an an image in which the
top 5% of pixels fell in between the noise floor and saturation.

Figure 5. Radiometric calibration data capture setup. RedEdge-3 sensor is placed in front of the exit
port of the integrating sphere. Sensor is placed far enough away to avoid stray light issues but close
enough for all channels to be completely filled. RedEdge is attached to a custom made rig which
allowed for both lateral and vertical movement.
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Figure 6. Example integrating sphere radiances. (Left) SVC radiances collected and used for calibrating
the RedEdge-M sensor. (Right) ASD radiances collected and used for calibrating the RedEdge-3 sensor.
As expected, the measured spectra decreased in magnitude as the PEL’s aperture was closed.

4.4. Independent Radiance Test Data

Independently collected radiance test data were captured using the same experimental setup
under which the original radiometric calibration imagery was acquired. Various light levels, gains and
exposure combinations were captured using the RedEdge-3 and RedEdge-M cameras. All these images
were converted to radiance using both the MicaSense provided approach as well as the proposed
methodology. Errors were computed by comparing the average of the radiance imagery to the band
integrated radiance that was captured by the SVC/ASD spectroradiometers that were observing the
integrating sphere during data collection.

4.5. Error

To compute the overall radiance error, three separate experiments were executed in order to
compute the standard deviation for each of the three primary components: gain, exposure time and
image count. The error in gain and image count was computed utilizing data collected from the
integrating sphere, while the error in exposure time was computed with an oscilloscope.

Various light level and exposure combinations were captured with the RedEdge sensor for the
gain and image count error calculation. These combinations were selected because the light levels
and exposures were able to be held constant while the gain was increased over three base 2 orders
of magnitude without producing a saturated signal. This ultimately produced five combinations
where gain error was computed and seven combinations for computing image error. Each of these
combinations were already known to produce usable vignettes in all bands of the sensor, which allowed
all the images to be corrected and averaged. As stated before, usable vignettes were determined to be
viable if the top 5% of the pixel values were within the noise floor and saturation in all 5 spectral bands.
Ultimately, the average pixel values (the average pixel value of an image is computed by Equation (10))
across 30 corrected images was computed for each combination and used to compute gain and digital
count errors.

Exposure time error was computed using an oscilloscope. The RedEdge sensor was setup to
capture images of the oscilloscope screen as the scope scanned across the screen. The dot that scanned
over the screen became recorded as a line. The length of this line was directly proportional to the
exposure time of the image. Three exposure times were tested (0.5, 1 and 2.5 ms). The setup and
example images can be seen below in Figure 7.
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(a) (b)
(c)

Figure 7. Exposure time error (a) setup, (b) example oscilloscope dot and (c) example RedEdge image.
Images were used for analysis if the full line was imaged in the center of the frame. This ensures the
proper exposure time could be measured.

The DLS error was measured using the integrating sphere by placing the DLS in line with the
exit port of the integrating sphere. 30 measurements were captured at eight different light levels and
standard errors were computed for all light levels and all 5 bands.

Standard error for all of these components (gain, digital count, exposure time and DLS) is
computed using Equation (24).

5. Results

5.1. Dark Current

Dark current results can be seen in Figures 8–11. Figures 8 and 10 show the temperatures of the
environments the MicaSense RedEdge-3 and RedEdge-M sensors were in during the data capture,
while Figures 9 and 11 display the average 12-bit noise computed at each gain, exposure time and
temperature. As the temperature, gain and exposure time all increased, the noise increased as well.
But it should be noted, that at the normal operating range of this sensor (25 ◦C–26.67 ◦C and exposure
times 0.5 ms–2.5 ms), the dark current was around 300 digital counts.
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Figure 8. Temporal temperature profile during MicaSense RedEdge-3 dark current testing. Temperature
inside the light tight bag did not change significantly during the course of the test. Data collection took
about 2 h for each temperature environment because the gain and exposure time had to be changed
manually in-between image captures.
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Figure 9. Average dark current (12-bit) produced by MicaSense RedEdge-3 sensor at various gains and
exposure times. Each dot represents an average of at least 30 images. Bars are one standard deviation.
Digital count values hold around 300 except for higher exposure times, gains and temperatures.
The highest digital counts values seen were around 340 (24.5 ms, 8× gain and 37.22 ◦C).
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Figure 10. Temporal temperature profile during MicaSense RedEdge-M dark current testing.
Temperature inside light tight bag did rise as test progressed but no significant changes in the
digital counts were noticed. Data collection took about an hour for each temperature setting because
the gain and exposure time were altered programatically using the RedEdge Application Program
Interface (API).
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Figure 11. Average dark current (12-bit) produced by MicaSense RedEdge-M sensor at various
gains and exposure times. Each dot represents an average of at least 30 images. Bars are one
standard deviation. Digital count values hold around 300 except for higher exposure times, gains and
temperatures. The highest digital counts values seen were around 320 (24.5 ms, 8× gain and 37.22 ◦C).
It should also be noted that the digital count values held steady regardless of the increasing temperature
throughout the test.

5.2. Radiometric Calibration

By using Equation (8), band integrated radiance values were computed for every sphere setting
used. These values are displayed in Table 2.

Table 2. Band integrated sphere radiances. Values were computed by applying RedEdge-3 RSR curves
to the measured sphere radiances. All spectral band columns have units of W/m2/sr/nm.

% Closed Peak Radiance [W/m2/sr/nm] Blue Green Red NIR RedEdge

30 0.2928 0.2268 0.2186 0.1226 0.0445 0.0827
35 0.2407 0.1865 0.1820 0.1024 0.0371 0.0689
40 0.1924 0.1491 0.1453 0.0817 0.0298 0.0551
45 0.1495 0.1161 0.1146 0.0648 0.0237 0.0437
50 0.1093 0.0851 0.0842 0.0477 0.0176 0.0322
55 0.0739 0.0578 0.0575 0.0327 0.0122 0.0222
60 0.0453 0.0355 0.0357 0.0204 0.0077 0.0139

Of all the calibration imagery collected, 25 combinations were accepted. As stated before,
these combinations were determined to be viable because the top 5% of the raw pixel values were
within the noise floor and saturation in all 5 spectral bands. Table 3 displays the computed radiometric
calibration coefficients for both the MicaSense RedEdge-3 and RedEdge-M that were utilized in this study.

Table 3. Radiometric calibration coefficients computed using proposed methodology for both
RedEdge-3 and RedEdge-M sensors. The Blue, Green and Red bands produced very similar coefficients,
while the NIR and RedEdge bands were different.

Blue Green Red NIR RedEdge

RedEdge-3 3.656 × 10−8 2.916 × 10−8 5.863 × 10−8 5.168 × 10−8 5.396 × 10−8

RedEdge-M 3.233 × 10−8 2.814 × 10−8 5.698 × 10−8 3.726 × 10−8 6.524 × 10−8
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Both sensors produced very similar coefficients for the visible bands (Blue, Green and Red) but
different coefficients were computed in the NIR and RedEdge. No significant changes were reported by
MicaSense in the NIR or RedEdge bands for the RedEdge-M, which means that either the calibration
run by MicaSense was performed incorrectly for those two channels or the RedEdge-3 and RedEdge-M
really have different calibration coefficients. After computing these radiometric calibration coefficients
with the proposed method, both digital count to radiance methods were compared. Over 160 test
images were captured and converted to radiance and the percent error between the average radiance
pixel (Equation (10)) and the band integrated radiance values in Table 2 were computed. An example
can be seen in Figures 12–18. All of these images are computed from the same image set that was
captured under the following combination: One lamp on, 50% closed, gain 1×, exposure time 0.698 ms.

Figure 12 displays the raw imagery captured by the RedEdge, Figure 13 displays the vignette
correction images produced using the MicaSense provided approach and metadata parameters,
Figure 14 displays the proposed method’s vignette corrections surfaces and Figure 15 displays the
inverse of the proposed method’s vignette corrections. The inverse of the proposed vignettes is
displayed to match the multiplicative approach to this correction used by MicaSense.

Ra
w
 Im

ag
e

Blue

0

10000

20000

30000

40000

50000

60000 Green

0

10000

20000

30000

40000

50000

60000 Red

0

10000

20000

30000

40000

50000

60000 NIR

0

10000

20000

30000

40000

50000

60000 RedEdge

0

10000

20000

30000

40000

50000

60000
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Figure 12. Example raw RedEdge imagery taken of the integrating sphere during calibration testing.
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Figure 13. MicaSense vignette imagery. These vignettes are programmed into the particular MicaSense
RedEdge-3 sensor used in this study and will never change throughout the lifetime of the sensor.
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Figure 14. Example proposed vignettes. These vignettes are computed with the methodology proposed
in this paper, for the particular light level, gain and exposure time combination (One Lamp 50% closed,
Gain 2× and 0.698 ms).
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Figure 15. Inverse of example proposed vignettes. Proposed methodology divides the image by the
vignette, while MicaSense method multiples. These images were produced to showcase the similarity
between MicaSense and proposed vignettes.
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The overall results are shown below. Figure 16 is the radiance imagery produced using the
MicaSense provided approach and “factory” parameters while Figure 17 is the radiance imagery
produced using the proposed method. Figure 18 is the band integrated sphere radiance measured with
the ASD displayed as 2D images for comparison purposes.
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Figure 16. Example integrating sphere imagery converted into radiance using MicaSense radiance
methodology. 3-D images are shown below for clarity.
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Figure 17. Example integrating sphere imagery converted into radiance using proposed technique.
3-D images are shown below for clarity.
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Figure 18. ASD reference values measured of the integrating sphere during calibration testing.
RedEdge-3 RSR curves applied to ASD spectra to compute band integrated radiances, which are
being displayed as images.

Since it is difficult to visualize the variation in the radiance imagery, 3 dimensional (3-D) plots
were created to showcase the results of both methods (MicaSense radiance imagery in Figure 19 and
proposed radiance imagery in Figure 20). The colored vignettes are the computed radiance imagery,
while the black 2-D images are the ASD references. There are a few issues with the radiance imagery
produced by MicaSense. The first is the magnitudes of the radiances. They do not align with the ASD
reference values, most notably in the Blue and RedEdge channels. This means that the radiometric
calibration coefficients are not very accurate in those bands. Furthermore, the produced radiance
imagery still had some vignette features. The edges of the radiance imagery fold up, meaning the
vignette correction that was utilized was also not entirely accurate. However, the radiance imagery
produced by the proposed method align on top of the band integrated ASD measurements and the
vignette and row-gradient correction flattened the images.
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Figure 19. Example MicaSense radiance imagery shown as 3-D images. ASD reference is shown as a
black 2-D image. Imperfections of MicaSense methodology is noticeable in the magnitude (radiance
calibration coefficients) and in the edges (vignette correction) of the radiance images.

Figure 20. Example proposed radiance imagery shown as 3-D images. ASD reference is shown as a
black 2-D image. Using the proposed methodology, the produced radiance imagery magnitudes line
up with the ASD reference and the applied vignette correction flattened the images.

Once all test images were converted to radiance, the results were compared. Tables 4 and 5
present the overall percent errors in radiance for both methods and both sensors. Two variations
of vignettes were utilized to calibrate the test data. As stated before, to compute the radiometric
calibration coefficient, ai, 25 light level, gain and exposure combinations were accepted (top 5% of raw
pixels between noise floor and saturation), which produced 25 vignettes. When calibrating test imagery,
the images were corrected with: (1) averaging all 25 vignettes and (2) the closest vignette in terms of
light level, gain and exposure time. After these results were calculated, scatter plots were produced to
display the difference between the computed image radiance levels and the band integrated sphere
radiance values. These are shown in Figures 21 and 22.
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Table 4. Average percent errors in radiance imagery for all bands using both conversion methods for
the RedEdge-3. Standard deviations are shown in parenthesis.

Sensor Method Blue Green Red RedEdge NIR

RedEdge-3

MicaSense −10.98 (0.93) −0.43 (1.59) 3.59 (2.67) 32.81 (5.94) −17.08 (2.45)

Proposed (Average) 3.44 (5.63) 2.93 (5.47) 2.93 (6.63) 3.70 (8.91) 0.72 (4.08)

Proposed (Closest) 3.66 (6.05) 3.19 (5.95) 3.25 (7.17) 4.23 (9.74) 0.75 (3.95)

Table 5. Average percent errors in radiance imagery for all bands using both conversion methods for
the RedEdge-M. Standard deviations are shown in parenthesis.

Sensor Method Blue Green Red RedEdge NIR

RedEdge-M

MicaSense −9.22 (0.61) 0.50 (1.70) 0.82 (1.79) −1.62 (2.72) 1.58 (3.66)

Proposed (Average) 2.50 (4.82) 2.91 (5.34) 1.28 (4.31) 0.99 (4.51) 0.78 (5.05)

Proposed (Closest) 2.82 (5.41) 3.14 (5.78) 1.70 (5.01) 1.10 (4.55) 0.78 (4.86)
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Figure 21. Scatter plot of average RedEdge-3 image radiance vs sphere radiance. Images converted to
radiance using (a) MicaSense methodology (b) Average Vignette Proposed methodology. Proposed
methodology produces less error as less spread is seen in the scatter plot.
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Figure 22. Scatter plot of average RedEdge-M image radiance vs sphere radiance. Images converted to
radiance using (a) MicaSense methodology (b) Average Vignette Proposed methodology. Proposed
methodology produces less error as less spread is seen in the scatter plot.

Some of these radiometric calibration results stand out. All bands, except green, produced lower
average percent errors when the proposed methodology was utilized as opposed to the MicaSense
provided method and “factory” parameters. It is also worth noting that the RedEdge and NIR channel
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produced very high percent errors in RedEdge-3 radiance imagery. This is noteworthy because the
RedEdge sensor was developed for agricultural applications which primarily investigate the spectral
behavior in wavelengths above 700 nm. Another noticeable result is the increased error produced
with the RedEdge-3 sensor across all bands, except green. This higher error could be a result of the
extensive use of the RedEdge-3 over the RedEdge-M in both the calibration lab as well as in the field.
The RedEdge-3 used in this study was purchased in June 2017 while the RedEdge-M was purchased
in March 2018. It is also possibly that this error is a result of the RedEdge-3 not being individually
calibrated. In other words, generic calibration coefficients for both the radiometric values and the
vignette were built into the RedEdge-3.

Finally, the percent errors in radiance imagery were not zero for the proposed technique because
of potential errors in the relative spectral response curves. As can be seen in Figure 2, there are
variations with the curves. The RedEdge-3 blue RSR curve trails off all the way to 400 nm which
definitely plays a result in the band integrated value. This trail off in the blue channel could also be
present because not enough noise was suppressed when processing the data. Another issue is any
potential shift in the RSR curves which is most noticeable in the RedEdge curve between both the 3
and M series sensors. Even a 2–3 nm shift in the rise and fall of the RSR can impact the band integrated
values. To demonstrate this difference, the RSR curves of the RedEdge-3 sensor were overlaid onto
a peak normalized spectral radiance curve from the integrating sphere. This overlap can be seen
below in Figure 23. As shown, the band integrated radiances are: 0.1491, 0.1453, 0.0817, 0.0551 and
0.0298 W/m2/sr/nm for Blue, Green, Red, RedEdge and Near Infrared respectively. If a 3 nm shift to
the right is applied to all bands, the resulting band integrated radiance values become: 0.1494 (+0.20%),
0.1429 (−1.65%), 0.0795 (−2.69%), 0.0543 (−1.45%), 0.0296 (−0.67%).
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Figure 23. Peak normalized MicaSense RedEdge-3 RSR curves overlaid onto normalized spectral
radiance curve.

5.3. Reflectance Error

The radiance errors also carry through to reflectance (an illumination invariant space). The errors
in reflectance of the RedEdge and NIR bands will be more noticeable because the radiance error
in those bands are highest. This is important because two of the most commonly used metrics for
vegetation health: NDVI (Normalized Difference Vegetation Index) and NDRE (Normalized Difference
RedEdge) utilize these two bands [34,35]. Computation of both of these metrics is shown below in
Equations (30) and (31).

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(30)
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NDRE =
ρNIR − ρRE
ρNIR + ρRE

(31)

Below, a basic example of the resulting errors in reflectance for a grass target is shown. Figure 24
shows a ground reference reflectance spectra measured from a grass target that was collected using the
SVC on a field collection in 2018. This target was measured roughly once per 45 min (at the start of
every sUAS flight). When collecting the target’s reflectance spectra, a measurement of a >99% diffuse
reflector, Spectralon (Labsphere, Sutton, NH, USA), was made before as a reference. Proper collection
of spectra in the field consists of keeping the SVC at chest height and shoulders parallel to the sun.
This ensures that the collector’s shadow is not over the target being measured. Assuming this spectra
is correct, then Table 6 showcases the resulting errors of the calibration methods for a grass target
as well as the computed NDVI and NDRE metrics. As can be seen, the RedEdge-3 sensor produces
significantly different results for the NDRE metric.
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Figure 24. Ground reference reflectance of grass target measured with SVC during a field collection in
2018. This measurement is a single measurement of the grass target.

Table 6. Grass target reflectance factor errors as a result of calibration errors.

Sensor Method Blue Green Red RedEdge NIR NDVI NDRE

SVC Reference 0.022 0.071 0.026 0.188 0.490 0.899 0.445

RedEdge-3 MicaSense Correction 0.020 0.070 0.027 0.249 0.406 0.876 (0.005) 0.239 (0.026)

Proposed Correction 0.023 0.073 0.027 0.193 0.487 0.897 (0.007) 0.435 (0.038)

RedEdge-M MicaSense Correction 0.020 0.071 0.026 0.185 0.491 0.899 (0.004) 0.458 (0.018)

Proposed Correction 0.022 0.073 0.026 0.189 0.491 0.898 (0.006) 0.444 (0.027)

As expected, the RedEdge-M sensor produced similar results for both NDVI and NDRE regardless
of the method utilized. However, the computed NDVI and NDRE values of the RedEdge-3 sensor
showed a different story. Compared to the NDVI reference of 0.899, the MicaSense method produced
an NDVI of 0.876 while the proposed method produced a closer value of 0.897. This larger NDVI error
produced from the MicaSense method is due to the larger radiance error of the NIR band. On the other
hand, when the NDRE is computed, the MicaSense error is significantly higher because it includes
both the NIR and RedEdge band which had a −17% and 32% error in the radiance domain respectively.
By calibrating the RedEdge-3, the NDRE error dropped from −46% to −2.2%. If a farmer or an
agricultural scientist use a sensor that has not been calibrated, their results may lead them to believe
that the crop field has issues (NDRE of 0.239). This would cause them to spend time and resources
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to ensure the crop fields are healthy. On the other hand, a calibrated sensor would have displayed a
healthy field (NDRE of 0.435) and saved both time and capital.

5.4. Radiance Errors

Below are the standard errors for images, gains, exposure times and downwelling light sensor.
The computation of these errors was explained in Section 3.5. For digital count, gain and the DLS, errors
were computed for various combinations of light level and other appropriate parameters. Below are
the following tables: digital count error (Table 7), gain error (Table 8), exposure time error (Table 9),
radiometric calibration coefficient error (Table 10) and DLS error (Table 11).

Table 7. RedEdge-3 12-bit digital count error for various light level, gain and exposure combinations.
Digital count error was computed using vignette and row-corrected imagery from an integrating
sphere. A positive correlation is seen between digital count error and both gain and exposure time,
while a negative correlation is seen for digital count error and light level.

% Closed Peak Radiance Exposures Gain Blue Green Red NIR RedEdge
[W/m2/sr/nm] [ms]

50 0.1093 0.585 1 49.664 51.681 25.783 18.749 22.480
50 0.1093 0.585 2 98.905 102.491 51.271 36.732 44.843
55 0.0739 0.765 1 41.940 44.367 22.605 36.732 44.843
55 0.0739 0.765 2 83.420 88.443 44.711 34.432 39.722
60 0.0453 0.585 1 29.103 30.208 16.466 14.697 15.587
60 0.0453 0.585 2 57.727 59.945 32.609 28.981 30.257
60 0.0453 0.585 4 114.67 119.22 64.870 56.984 60.723

Table 8. RedEdge-3 gain error for various light level, gain and exposure combinations. Digital count
imagery was captured using an integrating sphere using a variety of light levels, gains and exposure
times. Gain error was calculated by comparing the measured digital counts between images where the
gain was the only variable difference.

% Closed Peak Radiance Exposures Gain Difference Blue Green Red NIR RedEdge
[W/m2/sr/nm] [ms]

50 0.1093 0.585 1× to 2× 0.00022 0.00022 0.00027 0.00076 0.00043
55 0.0739 0.765 1× to 2× 0.00014 0.00015 0.00023 0.00068 0.00053
60 0.0453 0.585 1× to 2× 0.00025 0.00056 0.00078 0.00080 0.00121
60 0.0453 0.585 2× to 4× 0.00029 0.00040 0.00049 0.00058 0.00074
60 0.0453 0.585 1× to 4× 0.00055 0.00094 0.00140 0.00174 0.00262

Table 9. RedEdge-3 exposure time errors for various settings. Errors were computed using an
oscilloscope and measuring the line produced by a moving dot. A positive correlation can be seen
between exposure time and error.

Exposure Time [ms] Error

0.5 2.7072 × 10−6

1.0 4.5643 × 10−6

2.5 1.0740 × 10−5

Table 10. RedEdge-3 radiometric calibration standard errors. Computed using the standard error for
a regression estimate for all bands. Only 25 samples went into this computation, as the regression
estimate itself contained only 25 samples.

Blue Green Red NIR RedEdge

3.988 × 10−10 3.268 × 10−10 8.118 × 10−10 4.841 × 10−10 1.062 × 10−9
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Table 11. RedEdge-3 downwelling light sensor (DLS) standard errors. DLS measurements made using
an integrating sphere at various light levels. Standard errors computed from 30 images at each light
level. A positive correlation is seen between light level and the error.

% Closed Peak Radiance Blue Green Red IR RedEdge
[W/m2/sr/nm]

0 and 20 0.8023 3.6641 × 10−4 2.1970 × 10−4 1.1931 × 10−4 4.6659 × 10−5 8.8712 × 10−5

0 and 40 0.6331 1.2486 × 10−4 1.2858 × 10−4 1.0518 × 10−4 3.2586 × 10−5 7.9633 × 10−5

0 and 60 0.4989 2.9821 × 10−5 3.0761 × 10−5 3.8348 × 10−5 1.0106 × 10−5 2.3651 × 10−5

0 and 80 0.4581 3.8725 × 10−5 3.2880 × 10−5 2.9041 × 10−5 8.7316 × 10−6 2.7989 × 10−5

100 and 20 0.3585 7.2181 × 10−5 6.6139 × 10−5 5.0755 × 10−5 1.5182 × 10−5 3.7861 × 10−5

100 and 40 0.1906 4.1037 × 10−5 3.5980 × 10−5 2.7043 × 10−5 8.4237 × 10−6 2.2069 × 10−5

100 and 60 0.0449 1.0027 × 10−6 1.4695 × 10−5 6.4848 × 10−7 3.5597 × 10−6 1.0256 × 10−5

100 and 80 0.0017 5.8776 × 10−8 3.9563 × 10−8 4.0075 × 10−8 2.2207 × 10−8 2.7876 × 10−8

The DLS error was computed using both PEL sources, because the DLS is designed to measure
solar irradiance, which is higher in value than the radiance being recorded by the camera sensors.

Ultimately, the errors for an example radiance image are produced in Figures 19 and 20.
Table 12 showcases the error in radiance as a percentage of the actual radiance image. In other

words, the average pixel of the radiance error images (Figures 25 and 26) were divided by the average
pixel of the radiance images (Figures 19 and 20).

While the radiance error images produced by both methods were close to the same magnitude,
their computation was imbalanced. The proposed radiance error images included standard errors of
the radiometric calibration coefficient, which included the vignette corrections. While the MicaSense
methodology for radiance image computation includes radiometric calibration coefficients and a
vignette correction, their standard errors were not used in the error computation. As stated before,
this is because MicaSense provides constants in the metadata that are potentially unique (depends on
the RedEdge sensor version) to that sensor. Therefore, the MicaSense error radiance image, Figure 25
and the percentage errors reported in Table 12 are under estimations of the actual error for the
MicaSense methodology.

Figure 25. Example error of MicaSense radiance imagery. Only gain, exposure time and image error
components are present in these errors. Noticeable vignette shape is seen in all channels.
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Figure 26. Error of proposed radiance imagery. Gain, exposure time, image and radiometric calibration
coefficient error components are present. Error images are all flat for all channels, as the radiance
images were.

Table 12. Percentage error in radiance of the radiance image. IR and RedEdge produced higher
radiance errors under the MicaSense methodology.

Method Blue Green Red IR RedEdge

MicaSense 3.85 3.25 5.84 12.23 7.35
Proposed 3.75 3.21 5.45 9.29 6.54

Example Reflectance Error

An example image from an sUAS field collect was converted to radiance using both methodologies
(MicaSense and proposed) and then converted into reflectance using the AARR technique. The resulting
reflectance images and reflectance errors are displayed below in Figures 27 and 28.
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Figure 27. Example sUAS reflectance factor image and reflectance factor error image. Radiance image
computed using MicaSense methodology and AARR used to compute reflectance factor. Reflectance
factor error only contains gain, exposure time, image and DLS error. Error image is overwhelmed by
the vignette shape. Reflectance factor is a unit-less quantity.
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Figure 28. Example sUAS reflectance factor image and reflectance factor error image. Radiance image
computed using proposed methodology and AARR used to compute reflectance factor. Reflectance
factor error contains gain, exposure time, image, radiometric calibration coefficient and dls error. Error
image contains same features as the reflectance factor image (concrete path, grass, demarcated targets
and reflectance conversion panels). Reflectance factor is a unit-less quantity.

While the proposed methodology reflectance error images display the context of the scene,
the MicaSense reflectance error images do not. This is probably due to the exclusion of the standard
errors for the vignette and radiometric calibration coefficients (Vi(x, y), a1,i, a2,i and a3,i). For this
reason, the MicaSense reflectance errors for this example sUAS image were recomputed by including
standard errors for the original excluded variables. Because these errors could not be computed by
data collection, the radiometric calibration standard errors of the proposed method were analyzed
and seen to be around 1% (except for the RedEdge band) of the actual values. Therefore, the standard
errors of the vignette and radiometric calibration coefficient were set to 1% for this final example.
The image below displays the the “full” MicaSense reflectance error image (Figure 29).
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Figure 29. Example sUAS reflectance error image. Error image contains the measured gain, exposure
time, image and dls error. While the vignette and radiometric calibration coefficient standard errors
were set to 1% of their values. These error images produce the same features as the reflectance image
and the proposed methodology reflectance error images. Reflectance factor is a unit-less quantity.
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With the inclusion of all the potential sources of error, the MicaSense reflectance error image
now looks similar to the proposed methodology. The scene is well defined with the features of the
calibration panels and the grass. In addition, the MicaSense vignette’s impact can be seen in the corners
of the reflectance error image.

Finally, the NDVI and NDRE of the demarcated grass were computed from both sets of
reflectance imagery in which the ground reference NDVI and NDRE were 0.899 and 0.445 respectively.
The MicaSense reflectance image produced an NDVI of 0.891 and an NDRE of 0.371 while the proposed
method produced values of 0.905 and 0.471 respectively. As stated before, these imperfections in the
MicaSense calibration methodology could cause a farmer or an agricultural professional to believe
that the crops are unhealthy and need to be treated. This would cause them to waste their time and
capital. Moreover, if these spectral sensors are being utilized on sUAS for bridge and/or gas pipeline
inspections, it is very important to ensure that the imagery being captured is calibrated correctly.
Calibrated imagery could be the difference between detecting a structural flaw on the bridge and a
leak in the gas pipeline or not, which could potentially put lives at risk.

While the method proposed in this paper was tested on a MicaSense RedEdge sensor, the process
outlined in this study can be utilized for any other imaging sensor. As demonstrated above, the sensor
needs to have its dark current measured, relative spectral response functions computed and a number
of uniform radiance levels at various gain and exposure combinations imaged, for all bands. This will
allow any imaging sensor user to compute accurate radiometric calibration for their sensor, regardless
of the number of spectral bands.

6. Future Work

6.1. Improving Results

To further improve the results of the proposed radiometric calibration, more ASD and SVC
reference spectra could have been collected from the sphere. By collecting and averaging more spectra,
the error that is present in both the ASD and SVC can be reduced. Only 25 ASD measurements and
five SVC measurements were collected at each light level. These numbers were selected because of
the time constraint of data collection. The integrating sphere’s output was able to be held constant
(Stable Mode) for 20 min before returning to its normal state (Rest Mode). Data was collected in
Stable Mode to ensure that all images captured in that time frame were recording the same radiance
output. If the sphere’s stable mode could be lengthened to allow for more ASD or SVC measurements,
this would provide users with a more accurate representation of the radiance that is outputted by
the sphere.

In addition, the relative spectral response curves could be recollected using better equipment
and methods. As seen in Figure 2, the blue channel for the RedEdge-3 sensor trails off all the way to
400 nm. This is not physically possible as the blue filter in the sensor peaks at 475 nm and has a FWHM
of 20 nm. Also, a single image was captured at every wavelength sample for collection of the RSR
curves in order to save time. In order to produce the most accurate RSR curves, each channel should
have been aligned with the exit aperture of the monochromator and analyzed separately. In addition,
the sampling interval could have been improved by dropping from 2 nm to 1 nm and more than
one image could have been captured at each wavelength interval. This would have provided a more
sampled version of the RSR curves and multiple images at each wavelength would have allowed for
averaging to reduce any noise produced by the RedEdge sensor.

Finally, if more radiance levels are analyzed, this could produce a more accurate radiometric
calibration coefficient. Only seven light levels (O30, O35, O40, O45, O50, O55 and O60) were tested.
Again, this was done to save time during data collection. A finer sampling interval could have been
used (2.5% closure instead of 5% per level). This would have been 13 different light levels used for
analysis, which would have formed a rigorous radiometric calibration coefficient.
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6.2. Further Calibration Study

In order to determine how often sensors need to be calibrated, frequent calibration should be
performed over the course of a few months during a collection season. This would also allow users
to understand how utilization of their sensors in the field can potentially degrade the quality of
the data collected. The authors recommend that radiometric calibration be performed every month
over the course of a collection season. If the radiometric calibration coefficients, a and the combined
vignette and row-gradient factor correction surface, Vi(x, y, T, te,i, gi), significantly change between
months, then weekly calibration should be performed. However, if no noticeable difference is detected,
then calibration should be performed every few months.

7. Conclusions

Ultimately, this paper proposed a methodology for characterizing and calibrating any spectral
sensor. The proposed methodology includes characterizing the relative spectral response curves,
measuring the dark current level, computing a vignette and row-gradient correction and computing
radiometric calibration coefficients. These techniques were tested on a MicaSense RedEdge-3 and
RedEdge-M, two multispectral sensors that come preloaded with constant metadata values for
calibrating digital count imagery into radiance. Overall, the tests showed that the proposed technique
produced lower errors in radiance imagery than the MicaSense methodology for the RedEdge-3 sensor.
While both the relative spectral response curves and the dark current measurements performed in this
study matched well with the reported values by MicaSense, the vignette and radiometric calibration
coefficients did not. The measured spectral curves aligned at the reported center wavelengths and
produced very similar FWHM values and the average dark current level that was measured produced
comparable results to the metadata level. The difference in the overall radiance imagery results came
from the vignette and radiometric calibration coefficients. It was noticed that the vignette produced by
the sensor change based on light level, gain and exposure time, while the MicaSense methodology
utilized only a single set of vignettes. While the standard deviations in the radiance error are higher
in the proposed methodology, this is because of the low number (25) of combinations utilized in the
computation of the radiometric calibration coefficient, ai and the combined vignette and row-gradient
factor correction surface, Vi(x, y, T, te,i, gi). The key takeaways are the average percent error in radiance
imagery, which were: −10.98%, −0.43%, 3.59%, 32.81% and −17.08% using the MicaSense method and
3.44%, 2.93%, 2.93%, 3.70% and 0.72% using the proposed method for the Blue, Green, Red, RedEdge
and Near Infrared bands respectively. Overall, this study has demonstrated the importance in both
characterizing and calibrating sensors and has shown how any error can affect results in both the
radiance and reflectance domain.
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