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Abstract

Background: Our objective was to develop and validate a multi-feature nuclear score based on image analysis of direct DNA
staining, and to test its association with field effects and subsequent detection of prostate cancer (PCa) in benign biopsies.

Methods: Tissue sections from 39 prostatectomies were Feulgen-stained and digitally scanned (4006), providing maps of
DNA content per pixel. PCa and benign epithelial nuclei were randomly selected for measurement of 52 basic morphometric
features. Logistic regression models discriminating benign from PCa nuclei, and benign from malignant nuclear
populations, were built and cross-validated by AUC analysis. Nuclear populations were randomly collected ,1 mm or
.5 mm from cancer foci, and from cancer-free prostates, HGPIN, and PCa Gleason grade 3–5. Nuclei also were collected
from negative biopsy subjects who had a subsequent diagnosis of PCa and age-matched cancer-free controls (20 pairs).

Results: A multi-feature nuclear score discriminated cancer from benign cell populations with AUCs of 0.91 and 0.79,
respectively, in training and validation sets of patients. In prostatectomy samples, both nuclear- and population-level
models revealed cancer-like features in benign nuclei adjacent to PCa, compared to nuclei that were more distant or from
PCa-free glands. In negative biopsies, a validated model with 5 variance features yielded significantly higher scores in cases
than controls (P = 0.026).

Conclusions: A multifeature nuclear morphometric score, obtained by automated digital analysis, was validated for
discrimination of benign from cancer nuclei. This score demonstrated field effects in benign epithelial nuclei at varying
distance from PCa lesions, and was associated with subsequent PCa detection in negative biopsies.

Impact: This nuclear score shows promise as a risk predictor among men with negative biopsies and as an intermediate
biomarker in Phase II chemoprevention trials. The results also suggest that subvisual disturbances in nuclear structure
precede the development of pre-neoplastic lesions.
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Introduction

Subtle changes in nuclear shape, size and texture precede the

histological recognition of prostate cancer (PCa) and thus might

provide a useful biomarker indicating a field with high-risk benign

tissue. Indeed, nuclear enlargement, irregularity, hyperchromasia

and prominence of nucleoli are among the hallmarks used by

pathologists to distinguish high-grade prostatic intraepithelial

neoplasia (HGPIN), the most widely recognized premalignant

lesion for PCa. More than 25 years ago, investigators with

backgrounds in optical science and computing began using digital

imaging techniques in an effort to transcend the limitations of the

human eye and brain for recognizing and quantifying visual

patterns in nuclei under the microscope [1]. These efforts reached

a milestone when digital imaging was incorporated into the

standard of care for cytological evaluation in cervical cancer

screening. However, despite numerous reports of success using a

variety of approaches and striking improvements in both hardware

and software, computer-assisted nuclear morphometry still has

abundant undeveloped potential for the discovery of useful

biomarkers in PCa research [2,3]. Veltri, et al. recently published

an excellent review encompassing the history and evolution of this

field [4].

In the present work we focus on quantification of nuclear DNA

patterns as a biomarker for the early stage of pre-neoplastic change

in benign prostatic epithelium, a stage associated with field effects

or field cancerization [5,6]. Validation of such a biomarker could

lead to both clinical and research applications. Clinically, a

morphometric profile could be used to predict the presence of

cancer elsewhere in the gland in negative biopsies, and thus to
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inform decisions about monitoring and the need for repeat biopsy.

PCa is the only common cancer that is typically diagnosed by

random needle biopsy, due to the use of a serum test (PSA) as the

chief indicator for biopsy and the absence of any imaging method

for visualizing lesions. As a result, 70–75% of initial biopsies are

negative and clinicians have no established basis for tailoring

follow-up care, which could include monitoring of PSA and repeat

biopsy. In terms of research application, a validated nuclear

morphometric profile could serve as an intermediate endpoint

biomarker for Phase II prevention trials, helping to identify the

best candidate interventions for testing in lengthy and expensive

Phase III studies.

We assembled a multidisciplinary group that included pathol-

ogists, epidemiologists, bioengineers, computer specialists and

statisticians to develop an approach that would meet two basic

requirements: 1) use of widely-available platforms for image

acquisition and algorithm development, and 2) systematic

validation. In this report we describe development of a continuous,

multi-feature nuclear score based on pixel-by-pixel mapping of

Feulgen DNA staining that accurately discriminates cancer and

normal cell populations in prostate tissue and defines a field effect

in high-risk benign areas.

Methods

Ethics statement
The project was reviewed and approved by the Institutional

Review Board at the University of Illinois at Chicago. Tissue

specimens were obtained under an IRB-approved waiver of

consent applicable to de-identified samples of residual tissue not

needed for clinical purposes. These procedures were in compliance

with the privacy provisions of the Health Insurance Portability and

Accountability Act (HIPAA) of 1996. The authors are open to

collaboration involving sharing of the de-identified data, provided

all local IRB requirements have been met.

Tissue sample selection for model building and
validation

We assembled two collections, from separate hospitals, of tissue

blocks from radical prostatectomy patients with PCa. The first set,

which was the learning set for developing models to discriminate

cancer from benign nuclei, included 20 patients and the second

set, used for external validation, included 11 patients. Among the

31 prostatectomy patients, 11 had cancers with Gleason sum grade

6, 10 with Gleason 7, and 10 with Gleason grades 8–9. All tissue

blocks from 8 patients who underwent cystoprostatectomy for

bladder cancer were also accessed. These wholly embedded

prostates were devoid of PCa on serial sectioning at 3 mm

intervals and were used to provide ‘‘supernormal’’ benign prostate.

Feulgen staining
Tissue sections of 4m thickness were placed on silanized glass

slides and were stained using the Blue Feulgen Staining Kit

(ScyTek Laboratories, Logan, UT). This stain uses the Feulgen

reaction to directly bind dye to aldehyde groups in DNA that are

exposed by treatment with hydrochloric acid. The amount of color

developed is directly proportional to the amount of DNA in the

stained nucleus; the stain has been validated for ploidy analysis.

Serial sections were stained with hematoxylin and eosin so that key

histological compartments could be easily identified on the single-

color Feulgen slides. Adjacent sections from a single prostatectomy

sample were included in each batch and the mean nuclear staining

intensity was monitored to detect excessive inter-batch variation.

Some nuclear morphometry studies have used the more routine

hematoxylin and eosin (H&E) stain rather than Feulgen stain.

Although the Feulgen stain is less familiar and somewhat more

complex to perform, we believe that it has the important

advantage of being roughly stoichiometric for DNA whereas the

structures stained by H&E are non-specific. Moreover, we find

that the Feulgen stain is easier to reproduce across multiple

batches of samples.

Image acquisition and processing
Slides were scanned at 4006 on an Aperio ScanScopeH CS

whole-slide digital microscope (Aperio Inc., Vista, CA). Whole

slide images were acquired using JPEG 2000 compression with the

quality factor set at Q80 (20% loss from the raw image). A digital

draw tool was used on the prostatectomy slides to demarcate areas

of PCa by Gleason grade, HGPIN and benign areas within 1 mm

or .5 mm from a cancer focus. Large scanned areas were divided

into smaller subimage files (jpeg compression, quality factor 80)

using the SnapShot Generator function in the Aperio SpectrumH
image management software; these subimage files were exported

to MatlabH (MathWorks, Inc., Natick, MA) for batch processing.

The batch processed subimage files were 7526752 pixels in size

(pixel size = 0.25m2, approximately 400–600 pixels per nucleus),

which was a manageable size for processing. Non-compressed tiff

image files produced approximately 900–1000 pixels per nucleus;

however, memory space requirements and throughput were

substantially increased.

Customized routines in Matlab were used to identify pixels

containing DNA and to segment individual nuclei using color-

based K-means clustering and watershed algorithms. For the

studies reported here, segmented nuclei were manually selected for

morphometric feature collection using a graphical interface.

Segmentation and nuclear selection was performed in several

steps. First, each 7526752 pixel subimage was loaded into Matlab.

Next, each image was converted from RGB to CIELAB (L*a*b*)

colorspace (International Commission on Illumination, http://cie.

co.at), whose three axes represent lightness value (L*), position on

the red-green spectrum (a*), and position on the yellow-blue

spectrum (b*). This reduces the number of color dimensions from

three in RGB to two, the minimum required for the two-color

white and blue Feulgen images. Next, a K-means clustering

algorithm based on Euclidean distance was used to classify each

pixel as blue (DNA) positive or white. The initial inputs for K-

means clustering can affect the output; thus, initial L*a*b

coordinates were set based on nuclei of good image quality as

selected by a pathologist. Marker-controlled watershed segmenta-

tion based on gray-scale images was implemented in Matlab to

define individual nuclear boundaries (http://www.mathworks.com/

products/demos/image/watershed/ipexwatershed.html). This ap-

proach avoids over-segmentation by marking aggregates of intense

pixels within the nuclei and background pixels outside of nuclei.

A trained technician was presented with a series of subimages

with segmented nuclei on a PC monitor and mouse-clicked on

each well-segmented nucleus after verifying its epithelial location,

thus sending its morphometric data to an Excel spreadsheet. Most

segmentation errors were due to over- or under-segmentation of

touching or overlapping nuclei; among the selected nuclei we

found no association between nuclear features and proximity to

other nuclei, and thus we believe this procedure was relatively

unbiased. A digital counter informed the technician when a total

of 200 epithelial nuclei, from a wide range of subimages, had been

selected from each whole section region of interest or biopsy. A

total of 52 basic variables (see Table S1) were collected for each

nucleus reflecting size, shape and DNA texture characteristics;

more detailed descriptions of many of these features are available

Nuclear Morphometry Field Effect: Benign Prostate
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in the literature [7]. Special features that captured nuclear areas

with either condensed or sparse DNA (‘‘blobs’’ and ‘‘holes’’ in the

Feulgen image) were developed based on identifying contiguous

pixels with substantial deviations from the mean optical density

(see Table S2). Other types of features, including fractal features,

are readily calculated, but we did not use them in this analysis.

Many features are highly correlated with each other and we found

that, in general, expanding the library of features increased

processing time while not substantially improving our results. To

adjust for possible differences in staining across batches and to

obtain common measurement units across features, we z-

transformed each feature value by subtracting the mean and

dividing by the standard deviation of that feature among all nuclei

in the batch.

Statistical analysis
The analysis centered on developing two types of models: one

for discriminating individual cancer nuclei from benign nuclei, and

the other for discriminating populations of cancer nuclei from

benign populations. These models yielded multivariable scores we

labeled as MFSn (multifeature score, nuclear) and MFSp (multi-

feature score, population) – corresponding to nuclear- and

population-level scores, respectively. Using data on approximately

8,000 nuclei obtained from annotated PCa and benign areas in the

learning set of 20 RP samples, we constructed logistic regression

models to discriminate cancer nuclei (all Gleason grades) from

benign nuclei at least 5 mm from a cancer focus. We compared

several approaches for creating discriminatory multivariable

models, including linear discriminant analysis, logistic regression,

Support Vector Machines and neural networking and found, in

agreement with earlier published work, that logistic regression was

as good or better than other approaches [8]. Variables were

selected for inclusion in the logistic models based on backwards

elimination with an inclusion criterion of P,0.05. As expected,

some variables were highly correlated, but no models failed to

converge due to multicollinearity. The C statistic was calculated as

the area-under-curve (AUC) for discriminating cancer from

benign nuclei. A logistic model with 27 retained features provided

a high AUC (0.93) in an independent test sample of benign and

cancer nuclei obtained from the 11 cases in the external RP

validation set. We used the two-sample Kolmogorov-Smirnov

statistic to compare the distribution for MFSn scores between

nuclear populations sampled from various histological compart-

ments in the 20 RP set, plus benign areas from the 8 prostatectomy

cases with no significant PCa (i.e., ‘‘supernormal’’ nuclei).

We used two approaches to construct models for MFSp. In the

first approach, which we called a two-step MFSp, we computed the

MFSn for each nucleus and then computed up to the fourth order

moment (mean, standard deviation, skewness and kurtosis) of the

MFSn distribution for the population of nuclei obtained from each

tissue sample (benign or malignant). These four summary variables

were then used as predictors in logistic regression models for

discriminating the benign vs. malignant populations and the fitted

probability from the logistic model with a given set of covariates

was designated as the MFSp. We derived a one-step MFSp by

calculating the mean, standard deviation, skewness and kurtosis for

each nuclear feature from each tissue sample, yielding a total of

208 potential predictors (four times 52 basic features). We then

used either backwards elimination or best-subset logistic regression

in the training population of 28 patients to select a reduced set of

predictors for discriminating cancer from benign nuclear popula-

tions. In the best-subset approach, the top 50 combinations of

predictor sets with up to five variables were ranked based on the

likelihood ratio chi square criterion. For each of those combina-

tions we calculated the leave-one-out cross-validation AUC in the

training set of samples, and the model with the highest AUC was

chosen as the final model. The final regression weights for each

predictor were computed as the average coefficient from all 28

trials in the training set. The final models chosen in the

development process were then tested in the independent

validation set that included 11 radical prostatectomy samples.

Confidence limits for AUC (95% level) were computed using a

nonparametric approach that exploits the properties of the Mann-

Whitney statistic [9]. All statistical analyses were performed using

SAS-PC, Version 9.1 (SAS, Inc., Cary, NC).

External validation pilot study: case-control comparison
of benign biopsies

As an external validation test, we compared populations of

benign nuclei taken from negative prostate biopsies in which the

patient was found to have PCa at least two years later (cases,

n = 20) and benign nuclei from negative biopsies of patients who

remained cancer-free (controls, n = 20). Cases and controls were

matched on age and date of the index biopsy; all subjects were

patients at the Jesse Brown Veterans Administration Medical

Center in Chicago. Eligible controls had at least two negative

biopsies after the index biopsy, no PSA.10 ng/ml, and no history

of anti-hormonal therapy, including 5a-reductase inhibitors. We

Feulgen-stained the negative index biopsy tissue and obtained

nuclear morphometric features as described above. We then

computed fitted MFSp scores for each subject using both the

backwards elimination and best-subset models previously derived

from discrimination of benign and cancer cell populations in the

prostatectomy samples. For both models, we calculated the AUC

and 95% confidence limits for discriminating cases from controls,

and performed a paired t-test for matched data.

Results

Figure 1 illustrates the process for obtaining pixel-by-pixel maps

for each nucleus based on the optical density derived from DNA

content. Whole slide scanned images of Feulgen-stained nuclei are

broken into subimages (Figure 1a) each containing approximately

5.6K pixels. The associated binary image, created by K-means

clustering, is shown in Figure 1b. Figure 1c shows the same

subimage after watershed segmentation and indicates how well-

segmented epithelial nuclei can be selected for measurement either

manually or automatically. Figure 1d shows 3-dimensional plots of

pixel maps for nuclei from benign and cancer areas, respectively.

Figure 2 shows the relative frequency histograms for a nuclear-

level multifeature score (MFSn) obtained from nuclei in various

histological compartments from 20 RP and 8 cystoprostatectomy

samples; each compartment is represented by at least several

hundred nuclei. The logistic model used to generate MFSn scores

included 27 nuclear features and was based on discrimination

between random PCa nuclei and benign nuclei distant from

cancer (Normal Far) in the 20 RP cases. The MFSn, which is the

anti-logged logit from the logistic model, is equivalent to the

probability that a nucleus with a given set of feature values is a

cancer nucleus, and thus ranges from 0 to 1.0. The frequency

distribution of MFSn shifts to the left as one progresses from

Gleason 5 to Gleason 3 to HGPIN and continues to shift leftward

for nuclei that are located near or far from a cancer focus, or are

obtained from cancer-free prostates (supernormal). The frequency

distributions for Normal Far nuclei (.5 mm from a PCa focus) are

significantly different from both of the other benign types of nuclei

(Kolmogorov-Smirnov D statistic P,0.0001).

Nuclear Morphometry Field Effect: Benign Prostate
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Typical frequency distributions of MFSn for populations of

benign and PCa nuclei from the same patient are shown in

juxtaposition in Figure 3. The values for cancer nuclei are

generally shifted to the right, but it is also clear that the variance in

score is greater for cancer compared to benign nuclei. Population-

level logistic models allow us to exploit this variance characteristic

in discriminating cancerous from benign groups of nuclei. Figure 4

shows boxplots for MFSp from two-step models with only two

covariates: the mean and standard deviation of MFSn for any

given population of nuclei. Data in the boxplots come from the 20

RP subjects plus the 8 with cystoprostatectomy; the mean MFSp

scores for the 11 RP subjects in the validation set are represented

by asterisks. The results indicate that Normal Near nuclear

populations are intermediate between Normal Far and cancer,

that Supernormal populations have lower scores than Normal Far,

and that HGPIN nuclear populations are similar to cancer

populations. The mean MFSp scores for nuclei obtained from an

external validation set of prostatectomy subjects with PCa confirm

the same difference between Near vs. Far nuclei and the similarity

between HGPIN and PCa nuclei.

Table 1 shows the AUCs for training and validation set

discrimination of cancer cell from benign cell populations in

prostatectomy specimens using two different models for computing

MFSp. Model A, which used a conventional backwards elimina-

tion procedure to select the five best covariates, had a cross-

validation AUC = 0.87 in the training set and AUC = 0.83 in the

independent validation set. Model B, derived by comparing all

possible subsets with five or fewer covariates based on leave-one-

out cross-validation, had AUCs = 0.91 and 0.79 in the training

and validation sets, respectively. The selected features and their

standardized coefficients for the final backwards elimination and

best subset MFSp models (Models A and B, respectively) are shown

in supplemental Table S3.

We then compared populations of nuclei from matched pairs of

negative biopsies in which the case subject subsequently had a

diagnosis of PCa and the control remained cancer-free. Nuclear

populations from each subject were assigned fitted MFSp scores

based on Model A and Model B; thus these models were

developed using completely independent sample sets from

prostatectomies rather than biopsies. The AUCs and paired T

test results are shown in Table 2. Both models demonstrated

significant differences between cases and controls, with cases

having a more cancer-like nuclear morphometric signature.

Discussion

In this study, we developed and validated a nuclear morpho-

metric score, based on direct DNA staining, that accurately

discriminated benign from cancer nuclei in prostate tissue. This

score characterizes a field effect in histologically benign epithelial

nuclei at varying distances from a cancer focus, and is associated

with subsequent detection of PCa in an independent set of

negative biopsies. It is significant to note that individual nuclear

images were obtained with whole slide imaging at 4006. Thus, we

were able to efficiently capture a large number of epithelial nuclei

Figure 1. Process for obtaining nuclear morphometric data, showing a): a Feulgen-stain subimage, one of dozens obtained by
breaking up whole slide images scanned at 4006 on an Aperio ScanScope-CSH; b): a binary rendition of the previous image,
produced by K-means clustering to identify pixels containing DNA; c): the same image with nuclei segmented using watershed
algorithms available in MatlabH; d): three-dimensional maps showing optical density for DNA at each pixel in representative
benign and PCa nuclei, respectively.
doi:10.1371/journal.pone.0069457.g001
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Figure 2. Frequency histograms of multifeature scores (MFSn) for nuclei from various malignant and benign tissue compartments.
Fitted multifeature scores were generated for each nucleus from a logistic regression model comparing all cancer nuclei to normal-far nuclei (.5 mm
from a cancer focus) from 20 prostatectomy specimens, with 27 covariate features selected by backwards elimination. Scores were calculated for

Nuclear Morphometry Field Effect: Benign Prostate
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from each tissue sample at a magnification that allows for

considerable detail regarding nuclear size, shape and DNA

texture. Given pixel-level maps showing the spatial distribution

of DNA within each nucleus, it is possible to generate an almost

unlimited library of morphometric features. In the approach

presented here, this agnostic library is mined to determine reduced

sets of features for models that distinguish benign from malignant

cells. Based on the assumption that there is a continuum in the

evolution of nuclear shape and texture during carcinogenesis, the

resulting multivariable scores provide a continuous index of the

‘‘cancer-ness’’ of each nucleus, and thus the collective ‘‘cancer-

ness’’ for any population of nuclei. In general, the cancer-related

features observed by digital analysis are simply subvisual

extensions of nuclear changes that are well-recognized to the

human eye under the microscope: cancer nuclei are somewhat

larger and have a more clumped or irregular distribution of

chromatin. Moreover, all of the features included in the most

highly accurate model we found were related to the degree of

variance among nuclei, thus supporting long-held views among

pathologists regarding the importance of nuclear pleomorphism in

cancer diagnosis.

Our study builds upon numerous earlier efforts that have

applied digital nuclear morphometry to questions involving risk

and prognosis in cancer of the breast [10], cervix [2], oropharynx/

lung [11], colon [12], skin [13] and prostate. In the prostate,

nuclear morphometry has been shown to detect abnormalities in

benign tissue adjacent to cancer and HGPIN [14,15]. Our data

showed more evidence of a cancer phenotype in nuclei within

1 mm from a neoplastic lesion, compared to those at least 5 mm

distant; however, earlier data suggests that these abnormalities

might extend up to 10 mm from the border of a lesion [16].

Mairinger and co-workers physically extracted benign nuclei from

paraffin-embedded tissue and, using Feulgen-stained cytospin

preparations, reported that a combination of three chromatin

texture features could accurately discriminate cases with PCa from

those with only BPH [15]. Notably, two of these top three

discriminatory features reflected inter-nucleus variation rather

than mean values. Apart from the existence of a field effect in

benign tissue, several studies have used nuclear morphometry of

tumor and tumor-adjacent nuclei to discriminate subgroups of

PCa patients according to the likelihood of progression while on

active surveillance, PSA recurrence, metastasis or PCa-specific

death [17,18,19,20,21]. Once again, variance features reflecting

instability play a prominent role in these models, as they do in our

results.

The biological mechanisms responsible for changes in nuclear

structure that arise before the appearance of histologically

recognizable neoplasia are not well understood. However, several

processes could be implicated. First, the transition from loose

euchromatin to more compact heterochromatin is an important

mechanism for modulating gene expression that is controlled to a

degree by covalent modification of histone tails. Patterns of global

histone modification, by acetylation or methylation, are identifi-

able in PCa and have been associated with tumor aggressiveness

populations of nuclei obtained from specific histological compartments in 20 RP and 8 cystoprostatectomy specimens. The frequency distributions
for normal-far nuclei are significantly different from each other benign type (Kolmogorov-Smirnov D statistic ,0.0001).
doi:10.1371/journal.pone.0069457.g002

Figure 3. Frequency histograms for MFSn benign and cancer nuclei from two selected subjects. MFSn scores are shifted upward for
cancer nuclei as expected; however, variance for MFSn is also greater among cancer nuclei, reflecting pleomorphism.
doi:10.1371/journal.pone.0069457.g003
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[22,23]. Mahmoud, et al observed decreased global acetylation at

histone 3 lysine 9 (H3K9ac) in PIN and PCa compared to BPH

tissue, and further observed similarities in H3K9ac expression

between PIN and normal cells located near a PIN lesion [24].

There is also evidence that p300, a transcriptional co-activator of

androgen receptor, can alter nuclear structure in prostate cells

through its activity as a histone acetyltransferase or through its

effects on the expression of nuclear matrix proteins such as lamin

A and C [25]. Isharwal, et al. reported an association between

specific nuclear morphometric features and p300 expression [26].

Irregularities in the nuclear envelope, including infolding and

departures from a spherical shape, are a long-observed character-

istic of PCa cells, yet the reasons for this irregularity and its

functional significance are largely unknown [27]. Recent evidence

indicates that expression of the MYC oncogene plays an important

role in modulating nucleolar size, shape and number in the early

phases of prostate carcinogenesis [28]. The role of the tumor

microenvironment and paracrine signaling must also be consid-

ered, since a localized wound response can cause altered gene

expression in benign stroma adjacent to PCa lesions [29]. These

effects on the stromal field could induce subtle morphological

changes in benign epithelia, including changes associated with

epithelial-to-mesenchymal transformation [30].

This study adds to the field by systematically identifying prostate

cancer-associated nuclear changes in benign epithelium using a

widely available digital microscopy platform. Its strengths include

validation with independent sets of radical prostatectomy and

cystoprostatectomy samples, as well as a case-control analysis

comparing negative biopsies from patients who either did or did

not subsequently experience a PCa diagnosis. Given the large

number of potential predictors for the one-step MFSp and the

relatively small number of subjects (28) in our training set, it is

entirely possible that other combinations of features could have

performed as well or better than those in our final model.

Therefore, it is important to note that we used an efficient leave-

one-out cross-validation approach (similar to bootstrap resam-

pling) to select models and that our goal was not necessarily to find

the absolute best model but to validate our chosen models in

independent sets of images. The final models, which were derived

from prostatectomy samples, not only produced risk scores that

were associated with cancer in independent prostatectomy

samples, but also demonstrated an association with cancer risk

Figure 4. Boxplots for population-level multifeature scores (MFSp) from various tissue compartments in 20 radical prostatectomy
subjects and 8 subjects with bladder cancer and supernormal prostates. The mean MFSp scores for nuclear populations from the 11
validation RPs are shown by asterisks. The MFSp scores were obtained from a logistic regression model with only two covariates: mean MFSn and s.d.
MFSn. MFSn scores were generated from a 27-covariate logistic model with features selected by backwards elimination.
doi:10.1371/journal.pone.0069457.g004

Table 1. A multifeature nuclear morphometric score (MFSp) accurately discriminates cancer vs. benign cell populations: AUC
results for two one-step logistic regression models.

Model A* Model B**

AUC 95% CI AUC 95% CI

Training set: (n = 28 cancer-benign pairs) leave-one-out cross validation 0.87 0.73–1.00 0.91 0.81–1.00

Validation set: (n = 11 cancer-benign pairs) 0.83 0.67–1.00 0.79 0.62–0.96

*Model A: Five features selected by backwards elimination: (FeretY_ave, MaxDiameter_ave, Elongation_ave, Slope_ave, ODKurtosis_ave).
**Model B: Five features (SumOD_sd, MaxDiameter_sd, TSD_sd, TEntropy_sd, No.MedDensityObjects_sd), selected after competition among all models with #5
covariates based on leave-one-out AUC.
doi:10.1371/journal.pone.0069457.t001
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in biopsy specimens. Our technique deliberately excluded basal

epithelial nuclei, and allowed for unbiased selection of a large

number of luminal cell nuclei from each sample. Various

approaches were compared for multivariable model development

and were determined to be roughly equivalent.

Despite these strengths, the study has limitations as well. Our

feature library may have included variables with some degree of

collinearity, and although this would not affect predictive power, it

would affect the ability to estimate the magnitude of associations

for individual factors. Distinct feature classes for characterizing

chromatin texture with lower redundancy should be added to the

library, including fractal features, which have been associated with

cancer prognosis in previous studies [31]. Importantly, while the

results indicate that a multifeature score in negative biopsies is

associated with subsequent PCa risk, this is not the same as

demonstrating accurate prediction for individual subjects, as

indicated by the relatively modest AUCs in Table 2. Development

of a tool for clinical prediction will require further validation in

larger, independent datasets using biopsy specimens. However, we

note that even if the nuclear score fails to improve clinical

prediction, a robust association with risk conveys important

biological information about early steps in prostate carcinogenesis.

Furthermore, accurate prediction at the individual level might not

be necessary in order for this technique to serve as a useful

intermediate biomarker in Phase II chemoprevention trials, where

the objective is to identify potential agents with the greatest

likelihood of efficacy.

The most important practical limitation to the method

presented here involves the need for a human operator to select

nuclei, which increases the time required to assemble an adequate

collection for analysis from a tissue sample. The percentage of

eligible epithelial nuclei that are selected for analysis with this

operator-assisted approach is relatively low (we estimate this as 10–

15%), but false positive nuclei are readily excluded while numbers

are still quite adequate for analysis, and we took steps to minimize

any bias during nucleus selection. In recent work, we have

overcome this rate-limiting step by developing algorithms for

automated selection of nuclei and have shown that the metrics

from these nuclei are highly correlated with results obtained via

manual selection from the same tissue samples. Future efforts will

be devoted to studies exploring the biological basis for subvisual

nuclear alteration in benign high-risk tissue, and to the testing of

approaches that build discriminatory models on the direct

comparison of high-risk vs. low-risk fields rather than on a cancer

vs. benign comparison. We also plan to use nuclear morphometric

profiling to evaluate the effects of chemopreventive agents on

archived tissue from Phase II trials.
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