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Background: Non-heading Chinese cabbage (Brassica rapa ssp. chinensis) is an
important leaf vegetable grown worldwide. However, there has currently been not
enough transcriptome and small RNA combined sequencing analysis of cold tolerance,
which hinders further functional genomics research.

Results: In this study, 63.43 Gb of clean data was obtained from the transcriptome
analysis. The clean data of each sample reached 6.99 Gb, and the basic percentage
of Q30 was 93.68% and above. The clean reads of each sample were sequence
aligned with the designated reference genome (Brassica rapa, IVFCAASv1), and the
efficiency of the alignment varied from 81.54 to 87.24%. According to the comparison
results, 1,860 new genes were discovered in Pak-choi, of which 1,613 were functionally
annotated. Among them, 13 common differentially expressed genes were detected in
all materials, including seven upregulated and six downregulated. At the same time, we
used quantitative real-time PCR to confirm the changes of these gene expression levels.
In addition, we sequenced miRNA of the same material. Our findings revealed a total of
34,182,333 small RNA reads, 88,604,604 kinds of small RNAs, among which the most
common size was 24 nt. In all materials, the number of common differential miRNAs
is eight. According to the corresponding relationship between miRNA and its target
genes, we carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes
enrichment analysis on the set of target genes on each group of differentially expressed
miRNAs. Through the analysis, it is found that the distributions of candidate target
genes in different materials are different. We not only used transcriptome sequencing
and small RNA sequencing but also used experiments to prove the expression levels of
differentially expressed genes that were obtained by sequencing. Sequencing combined
with experiments proved the mechanism of some differential gene expression levels after
low-temperature treatment.

Conclusion: In all, this study provides a resource for genetic and genomic research
under abiotic stress in Pak-choi.

Keywords: non-heading Chinese cabbage, transcriptome sequencing, small RNA sequencing, cold tolerance,
expression pattern
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BACKGROUND

Non-heading Chinese cabbage (Brassica rapa ssp. chinensis),
also known as Pak-choi, is one of the most common cultivated
vegetables in China. Its growth and productivity are often
adversely affected by cold and even freezing stresses from the
environment (Abe et al., 2003; Yu et al., 2010; Li et al., 2016).
The response mechanism of Arabidopsis’ cold acclimation and
freezing resistance is not exactly the same (Rahman et al.,
2020). The cold domestication of plants, which usually involves
many biochemical and physiological changes, is complicated
and difficult to understand (Salinas, 2002; Kaplan et al.,
2004; Chinnusamy et al., 2007; Krasensky and Jonak, 2012).
In Arabidopsis, the latest study found that the cold stress
response was mediated by the GNOM ARF-GEF pathway
(Ashraf and Rahman, 2019). After low-temperature treatment,
the metabolism and transcriptome of plants are greatly affected,
and the expression levels of certain genes are also regulated.
Some related metabolic enzymes are inhibited, and the degree of
plant metabolism are affected to some extent (Chinnusamy et al.,
2007). Nowadays, genetic, biochemical, and various sequencing
methods have been applied to detect how some genes cope with
environmental stresses (Chinnusamy et al., 2007; Krasensky and
Jonak, 2012), and many plants have been studied today, such
as rice (Hussain et al., 2016; Wang et al., 2016), cotton (Zhao
et al., 2012), tomato (Starck et al., 2000), potato (Shinozaki and
Yamaguchi-Shinozaki, 1996), muskmelons (Wang et al., 2004),
and sugarcane (Thakur et al., 2010; Anjum et al., 2011; Zhu
et al., 2013). However, the response mechanism of non-heading
Chinese cabbage to cold stress remains unclear, and further joint
research is needed.

Nowadays, transcriptome analysis has gradually become a
useful and general tool for discovering genes in multiple
stress pathways, including determining the expression patterns
of related genes (Martin and Wang, 2011; Hamilton and
Robin Buell, 2012; Ward et al., 2012; Li et al., 2020). The
related genes reported in plant secondary metabolism were
discovered based on experimental methods of functional genome
sequencing (Dixon, 2001; Goossens et al., 2003). In addition,
RNA sequencing technology is often used to obtain complete
transcriptome information from different plants, such as tea
tree, chlorophytum borivilianum, and atractylodes lancea, and
provide better insights into transcription or posttranscriptional
force, including regulation of essential genes, during secondary
metabolite biosynthetic pathways (Kalra et al., 2013; Li et al.,
2015; Devi et al., 2016). Nowadays, transcriptome sequencing
has been successfully used to detect expression levels of related
genes in many organisms, such as rice (Zhang et al., 2010),
yeast (Nagalakshmi et al., 2008; Wilhelm et al., 2008), sweet
potato (Wang et al., 2010), and taxus (Ge et al., 2011). With
Illumina sequencing technology, millions of sequences were

Abbreviations: COG, Cluster of Orthologus Groups; CYP1, Cyclophilin 1; DEGs,
Differentially expressed genes; FC, Fold change; FDR, False discovery rate;
GO, Gene ontology; hc-siRNA, heterochromatic short interfering RNA; KEGG,
Kyoto Encyclopedia of Genes and Genomes; miRNA, microRNA; nt, nucleotides;
qRT-PCR, quantitative real-time polymerase chain reaction; RNA-Seq, RNA
sequencing; ta-siRNA, trans short interfering RNA.

read at a time, and individual assembled genes were mapped
into a reference transcriptome map for molecular annotation
(Cheng et al., 2015).

Studies have found that microRNA (miRNA), trans short
interfering RNA (ta-siRNA), and heterochromatic short
interfering RNA (hc-siRNA), all play important roles in different
organisms (Axtell, 2013). Among them, miRNA, a type of
endogenous small RNA, is composed of about 22 nucleotides (nt)
and usually plays a negative role in regulating gene expression
(Voinnet, 2009). Many studies have shown that miRNAs are
often involved in plant development, hormone signaling, and
abiotic stress responses (Jones-Rhoades et al., 2006; Chambers
and Shuai, 2009). Generally speaking, small interfering RNAs are
processed from perfect double-stranded RNA, while miRNAs
are derived from single-stranded RNA transcripts, forming an
imperfect double-stranded stem-loop precursor structure (Llave
et al., 2002; Khraiwesh et al., 2010; Hao et al., 2012; Szittya
and Burgyán, 2013). On the whole, miRNA plays a vital role
in various biological and metabolic processes of plant growth
and development, such as biotic (or abiotic) stresses, which
can also negatively regulate the expression of target genes, by
inhibiting (cutting) target mRNA or other ways (Bartel, 2004;
Jones-Rhoades and Bartel, 2004; Jones-Rhoades et al., 2006;
Mallory and Vaucheret, 2006; Sunkar et al., 2006; Voinnet,
2009; Wu et al., 2010). Therefore, it is important to identify
miRNAs and their target genes (or miRNAs), which is essential
for a better understanding of miRNA-mediated regulation of
cold stress genes.

In this study, we compared the tolerance of two common
and typical non-heading Chinese cabbage varieties, Suzhouqing
(BcL.1) and Sijiucaixin (BcL.2), to cold stress. We found that
BcL.1 is more tolerant to cold stress compared with BcL.2. We
used RNA-Seq for comprehensive characterization and explored
the effects of low temperature. We identified the most important
genes in the low-temperature response and discussed their
regulatory networks under cold stress. Furthermore, we identified
conserved and novel miRNAs and their potential target genes
in non-heading Chinese cabbage, and discussed the possible
connections between them. Quantitative real-time polymerase
chain reaction (qRT-PCR) was also used to assess the expression
levels of common differentially expressed genes (DEGs) and
identify those candidate genes involved in cold tolerance. This
work might serve as a reference of the functional analysis of cold
tolerance in non-heading Chinese cabbage.

RESULTS

Quantity Statistics and Venn Diagram of
Differentially Expressed Genes
To study the effects of temperature on plant growth, plants
(BcL.1 and BcL.2) were grown for 6 h in environments of 25
and 4◦C. Except for the temperature, the other conditions remain
unvaried. Then, we observed that low temperatures have an
important effect on plant phenotype. Whether it is BcL.1 or BcL.2,
under 4◦C treatment, plant leaves are more likely to shrink or
even wither than under the 25◦C treatment (Figure 1). This
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FIGURE 1 | Phenotype of BcL.1 and BcL.2 under cold stress. Approximately
30-day-old seedlings were subjected to cold stress (4◦C for 6 h); plants grown
under normal condition (22◦C) for 6 h were used as control. (A) BcL.1-4.
(B) BcL.1-25. (C) BcL.2-4. (D) BcL.2-25.

result corresponds to previous reports that cold stress usually
downgrades the seedling vigor (Kang and Saltveit, 2002; Wang
et al., 2016) and causes leaf atrophy, slows crop growth, and
ultimately reduces the yield (Cruz and Milach, 2004; Oliver et al.,
2007; Ruelland et al., 2009).

Afterward, to study the upregulation and downregulation
of common genes shared by each group of treatments, we
established a Venn diagram of differentially expressed genes.
Between the G0 (BcL.2-25 vs. BcL.2-4) and G2 (BcL.1-25 vs.
BcL.1-4) groups, a total of 313 common genes were upregulated,
and 308 common genes were downregulated (Figures 2A,B).
Meanwhile, between the G1 (BcL.1-25 vs. BcL.2-25) and G3
(BcL.1-4 vs. BcL.2-4) groups, a total of 344 common genes
were found to be upregulated, and 117 common genes were
downregulated (Figures 2C,D). In all materials, a total of

seven common genes were upregulated, and six common
genes were downregulated (Figures 2E,F and Supplementary
Table 1). We speculated that these DEGs might help increase
the potential application value of non-heading Chinese cabbage
under cold stress.

Functional Annotation and Classification
Between the BcL.1-25 and BcL.1-4 groups, 6,208 DEGs
(p < 0.05) were detected, including 3,639 upregulated and
2,569 downregulated genes (Figure 3C). The annotated
unigenes were then assigned to Gene Ontology (GO) terms
for functional classification. Three main categories (biological
process, molecular function, and cellular component) of
GO classification were analyzed separately to investigate
their functional distribution. To simplify the functional
distribution of plants, we assigned the annotated sequences
to GO-slim terms to obtain a “thin” version of classification
(Gao et al., 2015). Cellular process (GO:0009987, 3,589 genes)
and metabolic process (GO:0008152, 3,424 genes) in the
biological process, cell part (GO:0004464, 5,170 genes) and
cells (GO:0005623, 5,169 genes) in the cellular component
and binding activity (GO:0005488, 2,808 genes), and catalytic
activity (GO:0003824, 2,279 genes) in the molecular function
were the most representative level 2 GO terms in all three data
sets, respectively (Figure 3A and Supplementary Table 2).
To further identify the active biochemical pathways, we
mapped it to the reference canonical pathways in the Kyoto
Encyclopedia of Genes and Genomes (KEGG). KEGG is
thought to provide a basic platform for systematic analysis
of gene function in terms of the network of gene products
(Kanehisa and Goto, 2000). A total of 24,199 unigenes were
annotated based on a BLASTX search of the KEGG database
(Supplementary Table 3): 263 biosynthesis pathways were
predicted and classified into five categories, of which the
ribosome pathway was the largest, containing 287 genes (287
out of 1,586, 18.10%) (Figure 3B, Supplementary Figure 1A,
and Supplementary Table 10). The annotated unigenes were
categorized into different functional groups based on the
Cluster of Orthologus Groups (COG) database (Supplementary
Table 14). Unigenes (3,700) could be classified into 23 COG
categories. Out of the 3,700 unigenes, general function prediction
only (679, 18.35%) was assigned to the COG category of general
function prediction, which represented the largest functional
group of the 23 COG categories, followed by translation,
ribosomal structure, and biogenesis (433, 11.70%), transcription
(329, 8.90%), replication, recombination and repair (293,
7.92%), and signal transduction mechanisms (290, 7.84%)
(Supplementary Figure 2A).

Between the BcL.2-25 and BcL.2-4 groups, 964 DEGs
(p < 0.05) were detected, including 437 upregulated and 527
downregulated genes (Figure 4C). Through GO enrichment
stratification analysis, cellular process (GO:0009987, 552
genes) and metabolic process (GO:0008152, 534 genes) in
the biological process, cell part (GO:0004464, 741 genes)
and cells (GO:0005623, 741 genes) in the cellular component
and binding activity (GO:0005488, 429 genes), and catalytic
activity (GO:0003824, 433 genes) in the molecular function
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FIGURE 2 | Statistics of the common genes and specific genes in different groups. (A,B) Venn diagram of up-/downregulated differentially expressed genes between
G2 and G0 groups. (C,D) Venn diagram of up-/downregulated differentially expressed genes between G3 and G1 groups. (E,F) Venn diagram of up/downregulated
differentially expressed genes in all groups. G0: BcL.2-25 vs. BcL.2-4; G1: BcL.1-25 vs. BcL.2-25; G2: BcL.1-25 vs. BcL.1-4; G3: BcL.1-4 vs. BcL.2-4.

were the most representative level 2 GO terms, respectively
(Figure 4A and Supplementary Table 4). Through KEGG
pathway enrichment analysis (Supplementary Table 5), the
protein processing in the endoplasmic reticulum pathway
was the largest, containing 26 genes (26 out of 251, 10.36%)
(Figure 4B, Supplementary Figure 1B, and Supplementary

Table 11). Through COG classification of differentially expressed
genes, out of 554 unigenes (Supplementary Table 15), general
function prediction only (109, 19.68%) was assigned to
the COG category of general function prediction, which
represented the largest functional group of the 21 COG
categories, followed by posttranslational modification, protein
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FIGURE 3 | Enrichment analysis of differentially expressed genes between C2 and C1 groups. (A) Gene Ontology (GO) classification statistics of differentially
expressed genes. It mainly includes three branches: biological process, cellular component, and molecular function. (B) Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment statistics of differentially expressed genes. (C) Volcano plot statistics of the number of differentially expressed genes. C1: BcL.1-25, C2:
BcL.1-4.

turnover, chaperones (59, 10.65%), amino acid transport and
metabolism (49, 8.84%), carbohydrate transport and metabolism
(45, 8.12%), and signal transduction mechanisms (35, 6.32%)
(Supplementary Figure 2B).

Between the BcL.1-25 and BcL.2-25 groups, 1,448 DEGs
(p < 0.05) were detected, including 1,052 upregulated and 396
downregulated genes (Figure 5C). Through GO enrichment
stratification analysis, cellular process (GO:0009987, 729
genes) and metabolic process (GO:0008152, 695 genes) in

the biological process, cell part (GO:0004464, 988 genes) and
cells (GO:0005623, 989 genes) in the cellular component and
binding activity (GO:0005488, 556 genes), and catalytic activity
(GO:0003824, 465 genes) in the molecular function were the most
representative level 2 GO terms, respectively (Figure 5A and
Supplementary Table 6). Through KEGG pathway enrichment
analysis (Supplementary Table 7), the ribosome pathway was the
largest, containing 96 genes (96 out of 366, 26.23%) (Figure 5B,
Supplementary Figure 1C, and Supplementary Table 12).
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FIGURE 4 | Enrichment analysis of differentially expressed genes between C4 and C3 groups. (A) GO classification statistics of differentially expressed genes. It
mainly includes three branches: biological process, cellular component, and molecular function. (B) The KEGG pathway enrichment statistics of differentially
expressed genes. (C) Volcano plot statistics of the number of differentially expressed genes. C3: BcL.2-25, C4: BcL.2-4.

Through COG classification of differentially expressed genes,
out of 681 unigenes (Supplementary Table 16), general function
prediction only (124, 18.21%) was assigned to the COG category
of general function prediction, which represented the largest
functional group of the 23 COG categories, followed by
translation, ribosomal structure, and biogenesis (109, 16.01%),
transcription (51, 7.49%), replication, recombination, and repair
(50, 7.34%), and amino acid transport and metabolism (44,
6.46%) (Supplementary Figure 2C).

Between the BcL.1-4 and BcL.2-4 groups, 1,479 DEGs
(p < 0.05) were detected, including 854 upregulated and 625
downregulated genes (Figure 6C). Through GO enrichment
stratification analysis, cellular process (GO:0009987, 750
genes) and metabolic process (GO:0008152, 697 genes)
in the biological process, cell part (GO:0004464, 1,056
genes) and cells (GO:0005623, 1,057 genes) in the cellular
component and binding (GO:0005488, 610 genes), and
catalytic activity (GO:0003824, 536 genes) in the molecular
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FIGURE 5 | Enrichment analysis of differentially expressed genes between C3 and C1 groups. (A) GO classification statistics of differentially expressed genes. It
mainly includes three branches: biological process, cellular component, and molecular function. (B) KEGG pathway enrichment statistics of differentially expressed
genes. (C) Volcano plot statistics of the number of differentially expressed genes. C1: BcL.1-25, C3: BcL.2-25.

function were the most representative level 2 GO terms,
respectively (Figure 6A and Supplementary Table 8). Through
the KEGG pathway enrichment analysis (Supplementary
Table S9), the DNA replication pathway was the largest,
containing 13 genes (13 out of 329, 3.95%) (Figure 6B,
Supplementary Figure 1D, and Supplementary Table 13).
Through COG classification of differentially expressed genes,
out of 681 unigenes (Supplementary Table 17), general
function prediction only (144, 17.98%) was assigned into
the COG category of general function prediction, which
represented the largest functional group of the 23 COG
categories, followed by carbohydrate transport and metabolism

(74, 9.24%), posttranslational modification, protein turnover,
chaperones (67, 8.36%), replication, recombination and repair
(65, 8.11%), and amino acid transport and metabolism (58,
7.24%) (Supplementary Figure 2D).

Clustering and Functional Enrichment of
Differentially Expressed Genes in All
Treatments
Among them, 13 DEGs were detected in all treatments,
including seven upregulated and six downregulated. Some of
the DEGs were involved in response to stress (GO:0006950)
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FIGURE 6 | Enrichment analysis of differentially expressed genes between C4 and C2 groups. (A) GO classification statistics of differentially expressed genes. It
mainly includes three branches: biological process, cellular component, and molecular function. (B) KEGG pathway enrichment statistics of differentially expressed
genes. (C) Volcano plot statistics of the number of differentially expressed genes. C2: BcL.1-4, C4: BcL.2-4.

and stimulus (GO:0050896), as well as response to abiotic
stress (GO:0009628), such as freezing (GO:0050826), cold
(GO:0009409), and salt (GO:0009651) stress. Some of the
DEG respond to growth hormone (GO:0060416) and water
deprivation (GO:0009414) (Supplementary Table 1). In
addition, we performed cluster analysis on all screened
differentially expressed genes (Figures 3C, 4C, 5C, 6C).
Nearly all differentially expressed genes are upregulated

between BcL.1-25 (N-25) and BcL.1-4 (N-4) groups;
between BcL.2-25 (B-25) and BcL.2-4 (B-4) groups, most
of the genes were upregulated, while the BcL.2-25 (B-25)
group showed more upregulated genes; between BcL.1-25
(N-25) and BcL.2-25 (B-25) groups, the performance of
upregulated genes and downregulated genes is very similar
to that between BcL.1-4 (N-4) and BcL.2-4 (B-4) groups
(Supplementary Figure 3).
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FIGURE 7 | Verification of common differentially expressed genes by quantitative real-time polymerase chain reaction (qRT-PCR). Thirteen common differentially
expressed genes (DEGs) were chosen for qRT-PCR validation. The relative expression levels of each gene were expressed as the fold change between BcL.1-25
(black column) and BcL.1-4 (gray column).

Quantitative Real-Time-Polymerase
Chain Reaction Validation of the
Candidate Differentially Expressed
Genes Responsive to Cold Tolerance
To test the reliability of the transcriptome sequencing results,
qRT-PCR analysis was used. In this study, 13 common candidate
DEGs were selected and detected in all treatments by qRT-PCR
analysis (Figure 7). The results of transcriptome sequencing were
compared with the results of qRT-PCR experiments. Our results
showed that even if the fold changes in the expression levels of
certain genes detected by transcriptome sequencing and qRT-
PCR analysis did not match, almost all expression levels analyzed
by qRT-PCR were highly consistent with the transcriptome
sequencing results. These results also confirmed the reliability
of transcriptome sequencing data (Figure 7). Through qRT-PCR
analysis, it was found that there was only one downregulated

gene (Brassica_rapa_new gene_1,153), and its expression level
was different from the RNA-Seq data (Figure 7).

Overview of Small RNA Sequencing Data
In this study, these samples included C1 (BcL.1-25), C2
(BcL.1-4), C3 (BcL.2-25), and C4 (BcL.2-4), which were
collected, sequenced, and analyzed. Total reads (34,182,333)
were generated, and 8,836,042 unique reads were isolated. After
removing low-quality reads, the length distribution of the small
RNAs (18–35 nt) revealed that a length of 24 nt was the most
abundant class among both clean and unique reads in all groups
(Figure 8 and Table 1).

Analysis of Known miRNA
In order to obtain the details of the miRNA matched on
each sample, the abovementioned reads were mapped to the
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FIGURE 8 | Length distribution and abundance of small RNAs in four libraries from Pak-choi. (A) Frequence percentage (%) and length of sRNA distribution in C1
(BcL.1-25) group. (B) Frequence percentage (%) and length of sRNA distribution in C2 (BcL.1-4) group. (C) Frequence percentage (%) and length of sRNA
distribution in the C3 (BcL.2-25) group. (D) Frequence percentage (%) and length of sRNA distribution in the C4 (BcL.2-4) group.

reference sequence, which are compared with the specified range
of sequences in miRBase, including the secondary structure of
the known miRNAs on the match, and the information on the

TABLE 1 | Type and quantity of miRNA.

Sample Total reads Total bases (bp) Uniq reads Uniq bases (bp)

C1 7,404,323 195,732,796 1,708,990 42,044,898

C2 9,762,950 244,486,883 2,480,460 59,410,849

C3 8,345,217 194,120,302 2,669,504 62,223,537

C4 8,669,843 207,657,265 1,977,088 47,080,337

Sample: The sample ID; Total reads: the total number of sRNAs; Total bases (bp):
The total length of the sRNA; Uniq reads: the type of sRNA; Uniq bases (bp): The
total length of various sRNAs.

sequence, length, and number of occurrences of the miRNA
in the present invention. When the miRNA developed into a
mature body from the precursor, the process was completed by
dicer digestion. The specificity of the cleavage site makes the
miRNA mature sequence the first base. There was a strong bias,

TABLE 2 | Known miRNA alignment table for each sample.

Types Total C1 C2 C3 C4

Mapped mature 110 78 91 95 91

Mapped hairpin 80 73 75 77 77

Mapped uniq miRNA 6,168 1,244 1,692 1,774 1,458

Mapped total miRNA 868,276 129,932 196,191 203,485 338,668
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TABLE 3 | Statistical table of predicted new miRNA and comparison of
miRNA of each sample.

Types Total C1 C2 C3 C4

Mapped mature 75 65 70 72 73

Mapped star 56 38 43 48 44

Mapped hairpin 84 78 80 81 81

Mapped uniq miRNA 10,967 2,318 2,837 2,985 2,827

Mapped total miRNA 346,364 60,344 80,423 101,934 103,663

so the first base distribution of miRNAs of different lengths was
also carried out, in addition to the base distribution statistics
of the miRNAs. As shown in Table 2, the number of miRNAs
in the C4 group was the highest, 338,668, and the number
of miRNAs in the C1 group was the least, 129,932. However,
in the C3 group, the types of miRNAs were the most, 1,774;

TABLE 4 | Number of combined difference (DIFF), upregulated (UP), and
downregulated (DOWN) miRNAs in each group.

Group Diff Up Down

C2 vs. C1 36 20 16

C4 vs. C3 78 31 47

C3 vs. C1 77 44 33

C4 vs. C2 84 37 47

the C1 group had the least types, 1,244. In Figure 9, we
listed the secondary structure of the 10 known miRNAs on
the match.

Predicted New miRNA
The signature hairpin structure of miRNA precursors can be
used to predict new miRNAs. As shown in Table 3, the number

FIGURE 9 | Secondary structure of the known miRNA on the match. (A–J) Secondary structure of 10 known miRNAs on the match from Pak-choi. The entire
sequence is miRNA precursor, and the red highlight is where the mature sequence is located.
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of miRNAs was the highest in the C4 group, 103,663, and the
number of miRNAs was the least in the C1 group, 60,344.
However, in the C3 group, the types of miRNAs were the most,
2,985; the C1 group had the least types, 2,318. We listed the
secondary structure of the 10 predicted new miRNA on the match
(Figure 10).

Screening and Identification of
Differential miRNAs
The correlation analysis of gene expression levels between
samples was carried out to test the reliability of the experimental
results and the rationality of sample selection. In Figure 11C,
R2, the square of the Pearson correlation coefficient, was
basically at 0.772–1, indicating that the similarity of expression
patterns between samples is higher. In Figure 11, the TPM
density distributions of miRNA under different experimental
conditions were compared. Finally, by using volcano plots,
we inferred the overall distribution of differential miRNA.
Differential miRNAs were screened based on fold changes in
levels and corrected significance levels (padj/q value). In the
C2 and C1 groups, 20 differential miRNAs were upregulated,

and 16 differential miRNAs were downregulated. In the C4
and C3 groups, 31 differential miRNAs were upregulated, and
47 differential miRNAs were downregulated. In the C3 and
C1 groups, 44 differential miRNAs were upregulated, and
33 differential miRNAs were downregulated. In the C4 and
C2 groups, 37 differential miRNAs were upregulated and 47
differential miRNAs were downregulated (Figure 12).

Cluster Analysis of Differential miRNAs
The clustering pattern of differential miRNA expression under
different experimental conditions was determined by using
differential miRNA cluster analysis. For each comparison
combination, a set of differential miRNAs was obtained and
was used for hierarchical clustering analysis. The number of
miRNAs with high expression levels of C1, C2, and C3 was
higher than that of the C4 group. In addition, the number of
highly expressed miRNAs was the highest in the C2 group,
while C4 had the lowest. In the C4 group, while some miRNAs
had comparatively lower expression levels, others, such as
bra-miR9557-3p and bra-miR9557-5p, were expressed at very
high levels (Figure 13).

FIGURE 10 | Secondary structure of predicted new miRNA. (A–J) Secondary structure of 10 predicted new miRNA. The entire sequence is miRNA precursor, and
the red highlight is where the mature sequence is located.
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FIGURE 11 | Gene expression patterns and correlations in each sample. (A) Box plot of TPM distribution in all groups. (B) TPM density distribution diagram of
miRNA expression levels. (C) Pearson correlation of miRNA expression between samples. C1: BcL.1-25, C2: BcL.1-4, C3: BcL.2-25, C4: BcL.2-4.

Venn Diagram of Differential miRNAs
Next, we show more intuitively the common and unique
differences of each comparison combination. When the number
of miRNAs was greater than or equal to two and less than or
equal to five, the number of differential miRNAs, which was
obtained by comparison in each group, can be counted and
plotted as a Venn diagram (Figure 14). In Figure 14A, there
were 17 common differential miRNAs; while in Figure 14B, there
were 38 common differential miRNAs. In all combinations, eight
common differential miRNAs are shown in Figure 14C (Table 4
and Supplementary Table 18).

Enrichment Analysis of Differential
miRNA Candidate Target Genes
After obtaining the differentially expressed miRNAs between the
groups, according to the correspondence between the miRNA

and its target genes, we performed GO and KEGG enrichment
analysis on the set of target genes of each group of differentially
expressed miRNAs.

Through the GO enrichment stratification analysis, between
the C2 and C1 groups, single-organism cellular process
(GO:0044763, 896 genes), membrane (GO:0016020, 747 genes),
and protein binding (GO:0005515, 994 genes) were the
most representative GO terms in biological process, cellular
component, and molecular function, respectively (Figure 15A
and Supplementary Table 19). Between the C4 and C3 groups,
single-organism cellular process (GO:0044763, 1,748 genes),
membrane (GO:0016020, 1,431 genes), and protein binding
(GO:0005515, 1,973 genes) were the most representative GO
terms (Supplementary Figure 4A and Supplementary Table 21).
Between the C3 and C1 groups, single-organism cellular process
(GO:0044763, 1,841 genes), membrane (GO:0016020, 1,511
genes), and protein binding (GO:0005515, 2,041 genes) were
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FIGURE 12 | Volcano plot of differential miRNA. (A) Differential miRNA from C2 vs. C1. (B) Differential miRNA from C4 vs. C3. (C) Differential miRNA from C3 vs. C1.
(D) Differential miRNA from C4 vs. C2. X-axis, miRNA expression fold change in different experimental groups/different control groups; Y-axis, statistical significance
of the change in the expression level of miRNA. Red dots indicate significantly differential upregulated miRNAs, green dots indicate significantly differential
downregulated miRNAs, and blue dots indicate those without significantly differential miRNAs. C1: BcL.1-25, C2: BcL.1-4, C3: BcL.2-25, C4: BcL.2-4.

the most representative GO terms (Supplementary Figure 5A
and Supplementary Table 23). Finally, between the C4 and
C2 groups, single-organism cellular process (GO:0044763, 1,880
genes), membrane (GO:0016020, 1,515 genes), and ion binding
(GO:0005515, 2,198 genes) were the most representative GO
terms (Supplementary Figure 6A and Supplementary Table 25).

Through the KEGG pathway enrichment analysis, between
the C2 and C1 groups, the starch and sucrose metabolism
pathway was the largest, with 42 genes, followed by the plant–
pathogen interaction pathway, with 36 genes (Figure 15B and
Supplementary Table 20). Between the C4 and C3 groups, the

starch and sucrose metabolism pathway, was the largest, with
74 genes, followed by the plant–pathogen interaction pathway,
with 67 genes (Supplementary Figure 4B and Supplementary
Table 22). Between the C3 and C1 groups, the plant–pathogen
interaction pathway, with 68 genes, and the RNA transport
pathway, also containing 68 genes, are both the pathways with
the most genes (Supplementary Figure 5B and Supplementary
Table 24). Between the C4 and C2 groups, the plant–pathogen
interaction pathway was the largest, with 86 genes, followed
by the starch and sucrose metabolism pathway, with 78 genes
(Supplementary Figure 6B and Supplementary Table 26).
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FIGURE 13 | Cluster analysis of differentially expressed miRNA. The above
figure is the overall hierarchical clustering chart. Clustering is performed by the
log10 (TPM + 1) value. Red indicates high expression miRNA, and blue
indicates low expression miRNA.

DISCUSSION

As a convenient tool for transcriptome analysis, RNA-Seq, has
been increasingly targeted in species that do not have access
to genomic sequences (Li et al., 2013; Liu et al., 2013; Soetaert
et al., 2013). Here, we used RNA-Seq to measure the gene
expression levels in non-heading Chinese cabbage of different
varieties and under low-temperature treatment. To obtain all
the DEGs from RNA-Seq data, the expression of all genes was
analyzed depending on the RPKM. By comparing the data from
each groups, we found that between the BcL.1-25 and BcL.1-
4 groups, the most differentially expressed genes (6,208 DEGs)
were enriched, and their number was almost six times that of the
other groups, and the difference was the greatest. At the same
time, the ribosome pathway is worth mentioning, and the most
abundant genes (287 genes) were also shown, far more than those
of the other groups. The results showed that cold stress could
affect the genes involved in the expression of these pathways.
Previous reports have also detected these rich pathways, partially
reflecting the credibility of our results (Kreps et al., 2002; Pang
et al., 2013). This also suggests that the ribosomal pathway might
be involved in cold stress.

RNA-Seq was searched for some low temperature-related
differentially expressed genes. qRT-PCR was used to identify
gene expression levels (Taylor et al., 2010). To confirm the
reliability of the RNA-Seq results, we performed qRT-PCR
experiment to identify them. According to the qRT-PCR results,
the expression patterns of all unigenes were consistent with the
transcriptome sequencing data, showing that our experimental
results were reliable.

Small RNAs are short, non-coding RNAs, usually 19–25 nt in
length, and two protruding sizes of 21 and 24 nt, respectively
(Kim et al., 2012). In general, an miRNA corresponds to
a 21 nt class of small molecule RNA. Research have also
found that small RNAs showed a wide range of functions,
including heterochromatin formation, gene silencing, and DNA
methylation (Lippman and Martienssen, 2004; Penterman et al.,
2007). By small RNA sequencing, the result showed that a 24-nt
length is the most abundant category, among pure and unique
reads in all groups (Figure 8). Our result was highly consistent
with previous studies on A. thaliana (Rajagopalan et al., 2006),
Oriza sativa (Zhu et al., 2008), Medicago truncatula (Szittya et al.,
2008), and Populus trichocarpa (Puzey et al., 2012).

Furthermore, the known miRNAs are analyzed, and new
miRNAs are predicted. We discovered that these selected known
miRNAs have at least two stem-loop structures that are obtained
by self-folding (Figures 9A–J), suggesting that there might
be protein or chromosomal binding sites. Meanwhile, these
predicted miRNAs have at least two stem-loop structures that
are obtained by self-folding (Figures 10A–J), suggesting that
there might also be protein or chromosomal binding sites.
The functions of these miRNAs and their target genes were
comprehensively analyzed and might provide new insights
into miRNA-mediated epigenetic control of Pak-choi under
low temperature.

To better understand the functional roles of these predicted
miRNA targets, the target genes, which were functionally
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FIGURE 14 | Venn diagram of differential miRNA. The large circles represent each comparison combinations, and the sum of the number in each large circle
represents the total number of differential miRNAs from the comparison combinations, and the overlapping portions of the circles represent the number of common
differential miRNAs between the combinations. (A) Venn diagram of differential miRNA between C4 vs C3 and C2 vs C1 groups. (B) Venn diagram of differential
miRNA between C4 vs C2 and C3 vs C1 groups. (C) Venn diagram of differential miRNA in all groups. C1: BcL.1-25, C2: BcL.1-4, C3: BcL.2-25, C4: BcL.2-4.

TABLE 5 | Primers used in the paper.

Primer name Forward primer sequence (5′–3′) Reverse primer sequence (5′–3′)

evm.TU.BraA01003362 AAACTTCCCAAATCTCAA TGTAGACTCATCCTTCAT

evm.TU.BraA03001657 AGGATGTGATAAGGTAAC ATCTCAGGTCTAACTATG

evm.TU.BraA06001385 CTAACATCATCGTTGAGTAT CATAAGGAGTGGAAGGTA

evm.TU.BraA07000744 TGAAGGAGTGTTGGCATA TCGTTGAGTGATGAAGAGT

evm.TU.BraA09000675 CGCCGAGAATACTACCAT ACCGAGTGCTAAGAAGAG

evm.TU.BraA09001549 GCTTCTTCAACCATCATC TGTCTAATCTTCTTCTTCTCT

evm.TU.BraA10002276 ATTAAGGCTTACGCAATG CCAATGATGAGTCCAATG

Brassica_rapa_newGene_1153 GGTAATAGGCGACTGGATA CAATGAACTGGCTCTACG

evm.TU.BraA01000616 TCTTCTCCTGATGACTGT CTTCTTCTTCCTCCTCTTC

evm.TU.BraA06001282 ATGGCAACGAATAGTGAGA GAGGTTACAGTAGAAGATGGT

evm.TU.BraA08001363 GGAAGACTATACTATGACAA TAAGGAAGCAGAACAGGAA

evm.TU.BraA09000654 CGAGTTATCAGAGGCAATC TGACGAGATGACTGTGTT

evm.TU.BraA10000511 CTTCCTAAGTTAGCCAATCT CTGCCACAAGGTAGTTAT

qBcACTIN GTTGCTATCCAGGCTGTTCT AGCGTGAGGAAGAGCATAAC

annotated in biological processes, and the KEGG pathway was
also used to describe the corresponding metabolic pathways.
After low-temperature treatment, most target genes were
enriched in the metabolic pathways of starch and sucrose, and
was basically consistent with the results of the abovementioned
transcriptome study. This indicated that a series of biosynthetic

and metabolic pathways might be induced after low-temperature
treatment (Hu et al., 2016). Here, a combination of transcriptome
and small RNA sequencing was used to analyze the cold
tolerance of non-heading Chinese cabbage. This study might
promote further molecular regulation mechanisms of cold
tolerance in Pak-choi.
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FIGURE 15 | Enrichment analysis of candidate target genes for differentially expressed miRNA between the C2 and C1 groups. (A) Histogram of GO enrichment for
candidate target genes from C2 vs. C1. Three basic classifications of Go term (from left to right, BP, biological processes; CC, cellular components; MF, molecular
functions). (B) KEGG enrichment scatter plot of candidate target genes from C2 vs. C1. X-axis, the Rich factor; Y-axis, the name of the pathway. The size of the
dots indicates the number of candidate target genes in this pathway, and the colors of the dots correspond to different Q value ranges. C1: BcL.1-25, C2: BcL.1-4,
C3: BcL.2-25, C4: BcL.2-4.

CONCLUSION

In this study, a total of 63.43 Gb clean data were obtained from
the transcriptome analysis. Based on the comparison results, a
total of 1,860 new genes were discovered in Pak-choi, and 13
common DEGs were detected in all treatments, including seven
upregulated and six downregulated. Some of the DEGs were
involved in response to abiotic stresses, such as freezing, cold,
and salt stresses. Among them, the cold stress response is more
obvious, so we used qRT-PCR experiment to confirm changes in
the expression levels of these genes. Furthermore, we performed
miRNA sequencing analysis on the same material. We found
that the results revealed a total of 34,182,333 small RNA reads
and a total of 88,604,604 kinds of small RNA, among which the
most common size was 24 nt. In all materials, the number of
common differential miRNAs was eight. The number of known
mature miRNAs and the number of precursors were 110 and 80,
respectively. The number of predicted novel miRNA matures,
and the numbers of precursors were 75 and 84, respectively.
According to the GO and KEGG enrichment analysis, single-
organism cellular process in the biological process, membrane
in the cellular component, and protein binding in the molecular
function were almost all the most representative level GO terms
in all data sets, while the starch and sucrose metabolism pathway
was almost all the largest, followed by the plant–pathogen
interaction pathway. Our findings highlighted the significance of
cold signaling in Pak-choi and might provide a foundation for
subsequent research under abiotic stress in the future.

MATERIALS AND METHODS

Plant Growth Environment and
Treatment Conditions
The materials used in this study were non-heading Chinese
cabbage varieties, Suzhouqing (BcL.1) and Sijiucaixin (BcL.2),
provided by the Nanjing Agricultural University, Cabbage System
Biology Laboratory. Suzhouqing (BcL.1) and Sijiucaixin (BcL.2)

were both laboratory-specific and commonly used varieties,
stored in an open herbarium in the laboratory. Seedlings were
transferred into plastic pots containing a mixture of soil and
vermiculite (volume ratio is 3:1), and cultured in a growth
chamber under 16 h light (22◦C)/8 h dark (18◦C). After growing
for about 30 days, the plants were moved to light incubators
at 4◦C (BcL.1-4, BcL.2-4) and 25◦C (BcL.1-25, BcL.2-25) for
up to 6 h, respectively. The leaves of plants were harvested,
immediately frozen in liquid nitrogen, and stored at −80◦C for
experimental purpose.

Transcriptome Sequencing
Following the manufacturer’s instructions, we used RNAiso
Plus reagent (TaKaRa, Dalian, China) to extract total RNA
from the samples. RNA samples were examined by using a
spectrophotometer and electrophoresed on a 1% agarose gel.
cDNA library construction and transcriptome sequencing
were performed by Biomarker Technologies (Beijing, China).
Transcriptome sequencing was done by Beijing Biomarker
Biotechnology1 Co., Ltd. By Illumina HiSeq X 10 sequencing
platform and Pe150 mode sequencing, all clean reads
were subsequently mapped to the Brassica rapa reference
genome sequence (IVFCAASv1)2. The clean reads of each
sample sequence were aligned with the designated reference
genome. Gene expression analysis was performed based on
the comparison results; differentially expressed genes were
identified based on their expression levels in different samples,
and their functional annotation and enrichment analysis were
also performed (Wang et al., 2017).

Transcriptome Assembly and Functional
Annotation
The raw data of the transcriptome sequencing were purified
by trimming adapters, removing reads containing poly-N, and
rejecting the low-quality data (quality value ≤ 10 or unknown

1http://wwwF.biomarker.com.cn/
2http://brassicadb.org
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nucleotides larger than 5%) to get the clean reads. Meanwhile,
the proportion of nucleotides with quality values greater than
30 (Q30) and GC content of the clean data were calculated.
Then, all of the clean reads were assembled, using the Trinity
program (Grabherr et al., 2011). First, the certain short reads with
overlap regions were assembled into longer contiguous sequences
for each library. Then, the distance of different contigs was
recognized, mapping the clean reads, based on the paired-end
information, to obtain the sequence of the transcripts. Finally,
the unigenes were obtained, performing the sequence of potential
transcript to the TGI Clustering tool (Pertea et al., 2003). The new
genes discovered were performed with NR (Deng et al., 2006),
Swiss-Prot (Apweiler et al., 2004), GO (Ashburner et al., 2000),
COG (Tatusov et al., 2000), KOG (Koonin et al., 2004), Pfam
(Finn et al., 2013), and KEGG (Kanehisa et al., 2004) databases,
using BLAST (Altschul et al., 1997) software. KOBAS2.0 (Xie
et al., 2011) was used to obtain the KEGG orthology result of
the new gene for sequence alignment. After predicting the amino
acid sequence of the new gene, we used the HMMER (Eddy,
1998) software to align with the Pfam database and obtained the
annotation information of the new gene.

Differentially Expressed Gene Analysis
Following fragments per kilobase of exon per million fragments
mapped reads (FPKM) method, the expression level of unigene
was calculated (Mortazavi et al., 2008). The ratio of the FPKM
values (using 0.001 instead of 0 if the FPKM was 0) was taken as
the fold changes in the expression of each gene to identify DEGs
between each groups. The false discovery rate (FDR) control
method was used to identify the threshold of the p-value in
multiple tests and to compute the significance of the difference
in transcript abundance (Reiner et al., 2003). In this result, only
fold change with | log2 (case_FPKM/control_FPKM)| ≥ 1, and
an FDR ≤ 0.001 were taken as the threshold for significantly
differential expression. The log2-transformed FPKM value for
DEGs was applied to generate heat map by MeV 4.7 (Howe
et al., 2011). Meanwhile, the DEGs were annotated with the GO
and KEGG databases.

Validation of Differentially Expressed
Genes With Quantitative Real-Time
Polymerase Chain Reaction
qRT-PCR was used to confirm the expression of common
differentially expressed genes in Pak-choi. Total RNA was
extracted from each sample. The first-strand cDNA was
synthesized, using a PrimeScriptTM II First Strand cDNA
synthesis kit (TaKaRa Bio, Dalian, China), according to the
manufacturer’s protocol. The primers were designed, using the
software Beacon Designer 7.9, and listed in Table 5. The
quantified expression levels of the tested genes were normalized
against the housekeeping genes Cyclophilin 1 (CYP1) (Ma et al.,
2016). The qRT-PCR assays were performed with three biological
and technical replicates. Each reaction was performed in 20-µl
reaction mixtures containing a diluted cDNA sample as template,
SYBR Premix Ex Taq (2×) (TaKaRa, Kyoto, Japan) and gene-
specific primers. Conditions for quantitative analysis were as

follows: 95◦C for 3 min, then 40 cycles (95◦C 30 s, 60◦C 30 s), and
72◦C for 30 s. qRT-PCR was performed according to a previous
report (Song et al., 2016). The comparative Ct value method was
adopted to analyze the relative gene expression according to a
previous analysis and RNA expression levels relative to the actin
gene were calculated as 2−11CT (Pfaffl, 2001; Song et al., 2016).

Small RNA Sequencing
By high-throughput sequencing (such as Illumina
HiSeqTM2500/MiSeq and other sequencing platforms),
sequenced raw image data files were converted into sequenced
reads by base calling analysis. The raw data, containing the
sequence information of read sequences and the corresponding
sequencing quality information, were stored in FASTQ
(abbreviated as fq) file format. Referring to the standard
definition of miRNA (Allen et al., 2005; Schwab et al., 2005),
the candidate target gene of miRNA was compared as the
query sequence with the Brassica rapa database3. The control
samples and inoculation samples were mixed for small RNA
library construction, respectively. According to the reported
procedures, the construction of small RNA libraries were
completed (Sunkar et al., 2008). Three micrograms of total
RNA per sample was used as input material for the small RNA
library (Huang et al., 2018). Small RNA library construction
and small RNA deep sequencing proceeded following the
detailed protocol provided by the genome sequencing company
(Novogene, China).

Bioinformatic Analysis of Sequence Data
The raw data were first processed through custom Perl and
Python scripts. The clean data were mapped to the reference
sequence in miRBase21.0 by Bowtie (Langmead et al., 2009),
without mismatch to look for known miRNAs. Then, the
other reads were integrated to predict novel miRNAs using
the available miREvo (Wen et al., 2010) and miRDeep2
(Friedländer et al., 2011) software. The miRNA counts as well
as base bias were identified by using custom scripts. Then, the
miFam.dat4 was used to look for families of known miRNAs.
The novel miRNA precursor was submitted to Rfam5 to look for
Rfam families.

Venn Diagrams of Known miRNAs and
Novel miRNAs
Normalization formula (normalized expression = mapped read
count/total reads ∗ 1,000,000) was used to estimate miRNA
expression levels (Zhou et al., 2010). DEG seq R package was
used to analyze the differential expression of two samples with
the criterion of Q < 0.01 and | log2 (fold change)| > 1
(Storey, 2003).

Construction of Degradome Libraries
Target genes of candidate miRNAs were verified by degradome
sequencing by using total RNA, the same as the RNA used

3http://brassicadb.org/brad/
4http://www.mirbase.org/ftp.shtml
5http://rfam.sanger.ac.uk/search/
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for small RNA sequencing library construction, following
the published parallel analysis of RNA End (PARE)
protocol (German et al., 2009). The data analysis was
processed, following the procedure instructions (Novogene,
China).

Target Gene Prediction and Annotation
for Known and Novel miRNAs
The psRobot_tarin psRobot was performed to predict
target genes of miRNA (Wu et al., 2012). To further
explore the detailed molecular mechanism of miRNAs in
Pak-choi response to cold stress, the target transcripts of
differentially expressed miRNAs were analyzed by GO and
KEGG functional annotation suites. Subsequently, the Revigo
tool6 was implemented for enrichment analysis of the target
genes. The KOBAS software was used to test the statistical
enrichment of the target gene candidates in the KEGG pathways
(Mao et al., 2005).
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Supplementary Figure 1 | Classification diagram of KEGG pathway types.
(A) KEGG pathway types from C2 vs. C1. (B) KEGG pathway types from C4 vs.
C3. (C) KEGG pathway types from C3 vs. C1. (D) KEGG pathway types from C4
vs. C2. X-axis, the number of genes in this pathway and their ratio to the total
number of genes; Y-axis, the name of the KEGG metabolic pathway. C1:
BcL.1-25, C2: BcL.1-4, C3: BcL.2-25, C4: BcL.2-4.

Supplementary Figure 2 | COG classification of differentially expressed genes.
(A) COG classification from C2 vs. C1. (B) COG classification from C4 vs. C3.
(C) COG classification from C3 vs. C1. (D) COG classification from C4 vs. C2.
X-axis, the specific content of each COG classification, Y-axis, the number of
genes. C1: BcL.1-25, C2: BcL.1-4, C3: BcL.2-25, C4: BcL.2-4.

Supplementary Figure 3 | Cluster analysis of differentially expressed genes.
X-axis, name and clustering results of samples; Y-axis, differential gene and gene
clustering results. Different columns in the figure represent different samples, and
different rows represent different genes. The color represents the expression level
log10 (FPKM + 0.000001) of the gene in the sample.

Supplementary Figure 4 | Enrichment analysis of candidate target genes for
differentially expressed miRNA between C4 and C3 groups. (A) Histogram of GO
enrichment for candidate target genes from C4 vs. C3. Three basic classifications
of Go term (from left to right, BP: biological processes, CC: cellular components,
MF: molecular functions). (B) KEGG enrichment scatter plot of candidate target
genes from C4 vs. C3. X-axis, the Rich factor; Y-axis, the name of the pathway.
The size of the dots indicates the number of candidate target genes in this
pathway, and the colors of the dots correspond to different Q-value ranges. C1:
BcL.1-25, C2: BcL.1-4, C3: BcL.2-25, C4: BcL.2-4.

Supplementary Figure 5 | Enrichment analysis of candidate target genes for
differentially expressed miRNA between C3 and C1 groups. (A) Histogram of GO
enrichment for candidate target genes from C3 vs. C1. Three basic classifications
of Go term (from left to right, BP: biological processes, CC: cellular components,
MF: molecular functions). (B) KEGG enrichment scatter plot of candidate target
genes from C3 vs. C1. X-axis, the Rich factor; Y-axis, the name of the pathway.
The size of the dots indicates the number of candidate target genes in this
pathway, and the colors of the dots correspond to different Q-value ranges. C1:
BcL.1-25, C2: BcL.1-4, C3: BcL.2-25, C4: BcL.2-4.

Supplementary Figure 6 | Enrichment analysis of candidate target genes for
differentially expressed miRNA between C4 and C2 groups. (A) Histogram of GO
enrichment for candidate target genes from C4 vs. C2. Three basic classifications
of Go term (from left to right, BP: biological processes, CC: cellular components,
MF: molecular functions). (B) KEGG enrichment scatter plot of candidate target
genes from C4 vs. C2. X-axis, the Rich factor; Y-axis, the name of the pathway.
The size of the dots indicates the number of candidate target genes in this
pathway, and the colors of the dots correspond to different Q-value ranges. C1:
BcL.1-25, C2: BcL.1-4, C3: BcL.2-25, C4: BcL.2-4.

Supplementary Table 1 | Thirteen common differentially expressed genes (seven
up-regulated and six down-regulated) in all materials.

Supplementary Table 2 | GO enrichment analysis of differentially expressed
genes between C2 and C1 groups.

Supplementary Table 3 | KEGG enrichment analysis of differentially expressed
genes between C2 and C1 groups.

Supplementary Table 4 | GO enrichment analysis of differentially expressed
genes between C4 and C3 groups.
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Supplementary Table 5 | KEGG enrichment analysis of differentially expressed
genes between C4 and C3 groups.

Supplementary Table 6 | GO enrichment analysis of differentially expressed
genes between C3 and C1 groups.

Supplementary Table 7 | KEGG enrichment analysis of differentially expressed
genes between C3 and C1 groups.

Supplementary Table 8 | GO enrichment analysis of differentially expressed
genes between C4 and C2 groups.

Supplementary Table 9 | KEGG enrichment analysis of differentially expressed
genes between C4 and C2 groups.

Supplementary Table 10 | KEGG enrichment pathway type of differentially
expressed genes between C2 and C1 groups.

Supplementary Table 11 | KEGG enrichment pathway type of differentially
expressed genes between C4 and C3 groups.

Supplementary Table 12 | KEGG enrichment pathway type of differentially
expressed genes between C3 and C1 groups.

Supplementary Table 13 | KEGG enrichment pathway type of differentially
expressed genes between C4 and C2 groups.

Supplementary Table 14 | COG classification statistics of differentially expressed
genes between C2 and C1 groups.

Supplementary Table 15 | COG classification statistics of differentially expressed
genes between C4 and C3 groups.

Supplementary Table 16 | COG classification statistics of differentially expressed
genes between C3 and C1 groups.

Supplementary Table 17 | COG classification statistics of differentially expressed
genes between C4 and C2 groups.

Supplementary Table 18 | Number of common differential miRNAs.

Supplementary Table 19 | GO enrichment analysis of differential miRNA target
genes between C2 and C1 groups.

Supplementary Table 20 | KEGG enrichment analysis of differential miRNA
target genes between C2 and C1 groups.

Supplementary Table 21 | GO enrichment analysis of differential miRNA target
genes between C4 and C3 groups.

Supplementary Table 22 | KEGG enrichment analysis of differential miRNA
target genes between C4 and C3 groups.

Supplementary Table 23 | GO enrichment analysis of differential miRNA target
genes between C3 and C1 groups.

Supplementary Table 24 | KEGG enrichment analysis of differential miRNA
target genes between C3 and C1 groups.

Supplementary Table 25 | GO enrichment analysis of differential miRNA target
genes between C4 and C2 groups.

Supplementary Table 26 | KEGG enrichment analysis of differential miRNA
target genes between C4 and C2 groups.
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