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Diverse genetic error modes constrain large-scale
bio-based production
Peter Rugbjerg 1, Nils Myling-Petersen1, Andreas Porse1, Kira Sarup-Lytzen1 & Morten O.A. Sommer 1

A transition toward sustainable bio-based chemical production is important for green growth.

However, productivity and yield frequently decrease as large-scale microbial fermentation

progresses, commonly ascribed to phenotypic variation. Yet, given the high metabolic burden

and toxicities, evolutionary processes may also constrain bio-based production. We experi-

mentally simulate large-scale fermentation with mevalonic acid-producing Escherichia coli. By

tracking growth rate and production, we uncover how populations fully sacrifice production to

gain fitness within 70 generations. Using ultra-deep (>1000×) time-lapse sequencing of the

pathway populations, we identify multiple recurring intra-pathway genetic error modes. This

genetic heterogeneity is only detected using deep-sequencing and new population-level

bioinformatics, suggesting that the problem is underestimated. A quantitative model explains

the population dynamics based on enrichment of spontaneous mutant cells. We validate our

model by tuning production load and escape rate of the production host and apply multiple

orthogonal strategies for postponing genetically driven production declines.

DOI: 10.1038/s41467-018-03232-w OPEN

1 The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, DK-2800 Kongens Lyngby, Denmark.
Correspondence and requests for materials should be addressed to M.O.A.S. (email: msom@bio.dtu.dk)

NATURE COMMUNICATIONS |  (2018) 9:787 | DOI: 10.1038/s41467-018-03232-w |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-2561-5063
http://orcid.org/0000-0003-2561-5063
http://orcid.org/0000-0003-2561-5063
http://orcid.org/0000-0003-2561-5063
http://orcid.org/0000-0003-2561-5063
http://orcid.org/0000-0003-4005-5674
http://orcid.org/0000-0003-4005-5674
http://orcid.org/0000-0003-4005-5674
http://orcid.org/0000-0003-4005-5674
http://orcid.org/0000-0003-4005-5674
mailto:msom@bio.dtu.dk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


B io-based production of chemicals and fuels is important to
develop a more sustainable society. However, it remains
difficult to scale-up many processes that rely on engineered

organisms to produce industrially relevant quantities of bio-
compounds, which frequently require 100 m3 fermentation
volumes. Indeed, a lack of robustness of synthetic production
strains is considered a main challenge for implementing large-
scale bioprocesses1,2. Furthermore, despite advantages such as
higher volumetric productivity, the industrial implementation of
continuous fermentation is often limited by appearance of non-
producer cells3–5. Indeed, declining productivity constrains the
economic feasibility of most fermentation reactions to shorter
fed-batch operations6, ultimately limiting our societal transition
toward bio-based chemical and fuel production.

Poor performance of bio-based processes is speculated to arise
from phenotypic cell-to-cell variation rather than single-
nucleotide polymorphisms (SNPs)7,8. Suboptimal physical reac-
tor conditions such as limited aeration and stochastic gene
expression are thought to underlie population heterogeneities9–11.
As such, subpopulations have been observed to temporarily cease
production, then resume production at an unpredictable time12.
In addition, the high-level cellular biosynthetic activity required
for economically viable bioprocesses might reduce the fitness of
producer cells enough to select for non-producing mutant cells
during industrially relevant timescales. Such genetic heterogeneity
would be more detrimental than temporal phenotypic variations,
as genetic heterogeneity results in the irreversible loss of pro-
duction from a subpopulation in the fermentation tank.

The fitness cost of biosynthesis is pathway-specific and arises
from metabolic loads such as enzyme synthesis, DNA synthesis,
protein misfolding, and drains on endogenous metabolites
(required for glycolysis and redox power), but it can also result
from the accumulation of toxic intermediates and by-products13–
18. We employ the term “production load” to the sum of these
effects, which present a selective disadvantage for productive cells
in direct competition with non-productive cells. The fitness of a
production organism can be improved in a variety of ways,
including rational engineering19, adaptive laboratory evolu-
tion20,21, functional metagenomics22, and fermentation optimi-
zation23,24. Despite recent progress, production organisms still
retain a fitness cost that cannot be eliminated that is directly
linked to the burden of non-natural biosynthetic productivity.
Accordingly, production cells may be selected against in com-
petition with more fit non-producing cells. However, the extent to
which such evolutionary processes limit fermentation output
remains unclear and depends on eventual population size, pro-
duction load, and the number of cell divisions required to reach
industrial fermentation scales.

Generating the fermentation population inside an industrially
sized 200 m3 fed-batch bioreactor involves a gradual scale-up
from a master cell bank aliquot and requires approximately 60–80
cell generations to reach population sizes of approximately 1020

cells. Such timescales and population sizes could allow for both
the generation and selection of non-producing organisms and
might allow these organisms to reach substantial densities in the
final fermentation population.

One mechanism that led to non-producing cells in early,
engineered bioprocesses is the loss of plasmids that encode
components of the biosynthetic pathway. Strategies have been
developed to limit the loss of plasmid-borne pathway cassettes,
including punishing mis-segregation using plasmid-encoded
selection genes, toxin-antitoxin systems, and chromosomal inte-
gration of the pathway genes25–27. However, maintenance of the
biosynthetic pathway cassette does not preclude the accumulation
of genetic errors targeting pathway genes or central metabolic
host genes in trans, which leads to a loss of biosynthetic activity

and potentially improved fitness. Indeed, limiting the mutation
rate in Escherichia coli by deleting error-prone DNA polymerases
and chromosomal insertion sequences (ISs) has led to higher end-
point L-threonine productivity and overexpressed recombinant
protein titer28,29. Such reports suggest that genetic heterogeneity
resulting from processes other than gene loss might play a key
role in limiting fermentation productivity. However, the actual
mechanism and population-level dynamics of such genetically
driven production disruption remains poorly understood, pre-
venting the establishment of a framework for explaining and
addressing such production failure modes.

In this study, we investigate the phenotypic and genotypic
dynamics of E. coli strains engineered to produce mevalonic acid
over timescales relevant to industrial-scale fermentations. Meva-
lonic acid is a precursor to the important secondary metabolite
class of isoprenoids, acting as a chemical building block for col-
orants, medicines, flavors, fuels, and fragrances30. Using ultra-
deep, time-lapse sequencing of the fermentation populations, we
resolve diverse, previously difficult-to-decipher, and non-
canonical IS transposition events that limit production.

Results
Stability of the mevalonic acid-producing phenotype. We
wanted to study the phenotypic dynamics of mevalonic acid-
producing E. coli over industrially relevant timescales. Inoculation
of large fermenters typically involves gradual scale-up from an
aliquot of a master cell bank by serial growth in vessels of
increasing volume4. During these cultivations, the original clone,
giving rise to the master cell bank aliquots, proliferates through
>60 cell generations (Supplementary Table 1). To experimentally
simulate this growth process, we serially transferred production
strain lineages every 8 h for a total of nine times, corresponding to
approximately 80 cell divisions (generations; Fig. 1a). Specifically,
we cultured five parallel lineages of an E. coli TOP10 clone har-
boring an induced mevalonic acid pathway plasmid (pMevT)
maintained under constant antibiotic selection to prevent plasmid
loss (Methods). To analyze phenotypic and genetic population
dynamics, we sampled and freeze-stocked the growing popula-
tions every 8 h.

Engineered biosynthesis of mevalonic acid proceeds from
acetyl-CoA units through condensation to acetoacetyl-CoA (by
AtoB) and 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA; by
ERG13) prior to reduction with NADPH to form mevalonic acid
(by tHMGR)30–32. Growth impairment from mevalonic acid
production in E. coli arises largely from the HMG-CoA
intermediate, which interferes with central fatty acid metabolism
and the cell membrane19. As a result of high-level mevalonic acid
production, our production strain had a 30% production load,
measured relative to a non-producing control strain harboring a
pathway-excised plasmid (Supplementary Fig. 1).

To assess the dynamics of the population fitness during the
experiment, we evaluated population growth rates (Methods).
The average population growth rate gradually increased as a
function of generation number, following a sigmoidal pattern that
stabilized at a new level after 60–75 generations (Fig. 1b). The
population growth rate at the beginning of the experiment was
28% below the final population growth rate, highlighting a
considerable change in fitness of the simulated fermentation
populations (Fig. 1b). This factor combines all fitness changes
over the simulated fermentations, e.g., also possible remaining
loads of a disrupted pathway. Notably still, the difference was
similar to the measured production load (30%).

Next, we determined the mevalonic acid titer of each sampled
population throughout the simulated fermentation (Fig. 1c).
Starting from generation 34, product titers began a decline by

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03232-w

2 NATURE COMMUNICATIONS |  (2018) 9:787 | DOI: 10.1038/s41467-018-03232-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


several percent per generation before leveling off at undetectable
concentrations around generation 70. The onset of the decline in
mevalonic acid production coincided with the increase in
population growth rate and followed an inversely proportional
pattern to the increased growth rate.

Population-level growth rates were negatively highly correlated
with production titers following an exponential decline (R2=
0.99; Supplementary Fig. 2). This correlation demonstrates how
mevalonic acid production was reduced as more fit non-
producers took over the fermentation population.

Modeling and measuring production decline at scale. Antibiotic
resistance and plasmid loss dynamics have previously been stu-
died using population dynamical models33–36, but related analysis

has not expanded to gene instabilities of metabolically engineered
production organisms. To elucidate evolutionary factors of bio-
technological production decline, we developed a simple, two-
state deterministic model for the population structure of engi-
neered production strains during fermentation (Fig. 2a, Supple-
mentary Note 1). In our model, a fermentation population
contains producing and non-producing cells with different
growth rates resulting from the production load. The escape rate
describes the transition of producing cells to non-producing cells
and represents the combined action of all disruptive mutations
that abolish the production load (Fig. 2a). This escape rate
depends on numerous factors, including host mutation rate, the
size of the genetic targets that abolish production when mutated,
and the susceptibility of the genetic targets to recombination or
other deleterious genetic events. Owing to production load, the
producer cells will be gradually outcompeted by non-producers.
The magnitude of the production load determines the rate by
which spontaneously formed non-producing cells will enrich in
the population. This model offers a simplified description of the
population dynamics during fermentation and can be represented
with two coupled ordinary differential equations (Supplementary
Note 1). Solving these equations yields the respective growth
functions of producing and non-producing cells over time,
assuming a single producing cell as the starting point,
constant escape rate, production load, and no nutrient limitation
(Supplementary Note 1). To incorporate effects of likely dis-
crete escape events, we also generated a stochastic version of our
model (Supplementary Note 4). However, for large populations
(>1000 cells), a deterministic model captures an average of the
population dynamics and is computationally more efficient due to
the existence of an exact analytical solution (Supplementary
Table 4)37,38.

To assess the applicability of our model, we fitted it to the
experimentally determined production stability (relative product
titers) by nonlinear regression to predict the escape rate and
production load (Fig. 2b). Using the experimentally determined
production load (30%, Supplementary Fig. 1), the model
estimated an effective escape rate of 2.5 × 10–8/generation (95%
confidence interval (CI95%): ±1.2 × 10–8; Supplementary Table 5).
Such good fit of the production stability data is consistent with
our assumption of a genetic basis for production decline.

Our model describes how the fraction of producing cells in the
fermentation population will decline sigmoidally over time when
a production load is involved in bio-based production (Fig. 2c).
Notably, the initial decline determined by the escape rate is low
(Fig. 2c) and difficult to detect phenotypically. The production
load mainly determines the half-life steepness of this transition,
whereas the escape rate largely shifts the timing of the transition.

Fig. 1 Stability of the mevalonic acid-producing phenotype. a Large-scale
industrial production of mevalonic acid was simulated through serial
transfer of five parallel mevalonic acid-producing populations. The length of
the fermentation simulation was chosen to mimic the generation number of
a fermentation population in a 200m3 fermentation tank. Production
populations were sampled every 8 h for subsequent phenotypic and
genotypic analysis (Supplementary Table 2). b Population-level average
local growth rates were determined for parallel populations over the course
of the experiment (Methods). The means are shown relative to the last
time point (absolute value 0.84/h). A transition of the mean population
growth rate is observed after 35 generations, in which the population
growth rate increases to a stable phenotypic state after 70 generations,
alleviating the measured production load (Supplementary Fig. 1). c
Mevalonic acid titers during the simulated fermentations. The means are
shown relative to the earliest time point (Supplementary Table 3) and were
calculated from five parallel lineages of the E. coli TOP10 mevalonic acid-
producing clone. Error bars denote s.e.m. (n= 5)
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To explore this concept, we calculated the fraction of producer
cells over time in specific cases, with production loads of 0–30%
and escape rates of 10−5–10−8/generation (Fig. 2c). We found
that slight changes to either parameter have dramatic con-
sequences for the maintenance of producing cells in a fermenta-
tion population. These model predictions describe how significant
improvements in fermentation end-performance can result from
reductions in production load or escape rate.

Production decline originates within pathway genes. Many
genome-encoded cell functions are necessary for maintaining
biosynthetic production, and any disruption offers an evolu-
tionary trajectory for an engineered strain to regain fitness at the

expense of production. In a cell factory strain, proteome and
genome adaptations might limit metabolic productivity through
changes to specific or global transcription factors, protein folding
control, or precursor fluxes. We therefore wanted to test whether
the production plasmid from the evolved populations still con-
ferred mevalonic acid production to a non-evolved host. Plasmid
populations were extracted from the five end points and re-
introduced into fresh E. coli TOP10 strains. The transformed
cultures did not show any detectable mevalonic acid production,
demonstrating that the mevalonic acid pathway had been dis-
rupted to incapacitate its biosynthetic potential. Additionally, we
found no SNPs in the genomes of nine randomly selected colo-
nies from the end-point populations relative to the ancestral
strain (Supplementary Table 6).

F
ra

ct
io

n 
pr

od
uc

in
g 

ce
lls

 (
%

)

0

10 

15

30

Production
load (%)

Clone test and bank

2 L lab-scale

200 L scale

200 000 L production

Continuous (chemostat) production

Escape rate (per gen)

kescape = 1 × 10–5

kescape = 1 × 10–8

a

b

Titer

Model fit

Mevalonic acid-producing
E. coli

Generations

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

R
el

at
iv

e 
m

ev
al

on
ic

 a
ci

d 
tit

er
 (

%
)

Generations

Producer

Biosynthesis

Non-producer

Biosynthesis
Escape rate

Production load

c

0 50 10025 75

100

0

80

20

60

40

Fig. 2 Mathematical modeling is consistent with the observed mevalonic acid production titer. a Producer cells mutate from the production state at a
specific escape rate, thereby alleviating the production load (fitness cost of production; Supplementary Note 1). b The best fit of the mathematical model
(Supplementary Table 5) to the observed mevalonic acid titer throughout laboratory-simulated mevalonic acid fermentations (relative to earliest time
point, Supplementary Table 3). Error bars indicate the s.e.m. (n= 5). For reference, possible reactor sizes corresponding to particular generation numbers
are shown (Supplementary Table 1). c Modeled fractions of producer cells remaining in the population, in which producer cells irreversibly mutate to non-
producers at various escape rates. The magnitude of the production load drives the rate by which spontaneously formed non-producers will enrich the
population

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03232-w

4 NATURE COMMUNICATIONS |  (2018) 9:787 | DOI: 10.1038/s41467-018-03232-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


Ultra-deep-sequencing reveals pathway disruption dynamics.
To investigate the genetic basis of production failure at the
population level, we ultra-deep-sequenced the heterologous
mevalonic acid biosynthetic pathway from three lineages at five
sampling points during the experimentally simulated fermenta-
tion, and all five at the generation 70 end point (paired-end 2 ×
150 bp Illumina sequencing at average depth of 7200×, Methods).

Prior studies of cell heterogeneity applied SNP analyses to
cultured production strains, yet these studies found no evidence
of genetic variance7. We similarly found a lack of SNPs above 1%
frequencies in our mevalonic acid pathway end-point populations
(Supplementary Fig. 3). However, we observed that a declining
share of the reads mapped to the production plasmid sequence
(Fig. 3a), indicating structural rearrangements of the biosynthetic
pathway or other critical parts. This observation prompted us to
develop a bioinformatics approach to analyze genetic hetero-
geneity focusing on structural rearrangements and insertions.

Notably, we observed that reads not mapping to our
production pathway frequently exhibited a near-perfect partial
alignment to our production pathway. We termed such reads
broken reads and focused our analysis on these reads (Methods).
The consensus sequence of several of the unaligned broken read
ends showed perfect identity to the termini of ISs and tn1000
(also known as gamma-delta), which are mobile elements resident
in the E. coli TOP10 genome. Accordingly, we speculated that
these broken reads result from integration of ISs within the
production pathway. Notably, the gap between the right and left
breakpoints usually exhibited signature lengths of 3–12 bp,
suggesting possible IS target sites (Fig. 3b). At several high-
frequency IS target sites, a clear rise in insertion site coverage was
observed, likely resulting from duplication of the target insertion
region (Supplementary Fig. 4)39. To quantify disruption

dynamics, we tracked the fraction of position-specific coverage
relative to corresponding coverage of non-disrupted reference
sequences (Fig. 4a; Methods). We generally detected the position-
specific presence of such disruptions in the pathway populations
at frequencies down to 0.04% (three reads).

We found that during the experimentally simulated fermenta-
tion, six specific positions in atoB and ERG13 of the metabolic
pathway were disrupted by IS10, IS186, and IS5 insertions, jointly
constituting >91% at the end points, generation 70 (Fig. 4a, b).
While the atoB and ERG13 pathway genes became increasingly
disrupted during the experiment, the final pathway gene tHMGR
remained free of disruptions (Fig. 4a). This striking degree of
preservation of the tHMGR gene is probably due to the
cytotoxicity of HMG-CoA19, the substrate of tHMGR. Sponta-
neous mobile element disruptions of tHMGR likely became toxic
in cells with active atoB and ERG13, as these cells would
accumulate cytotoxic HMG-CoA concentrations. Because several
atoB disruptions were also enriched despite the presence of a
chromosomal copy, it is very likely that enriched insertions
within atoB also abolish ERG13 activity by means of IS-mediated
transcriptional termination40 owing to the operon structure of the
mevalonic acid biosynthetic pathway.

Given that complete production loss was observed in the
populations, we speculated that other mobile elements could
explain the remaining 9% fraction. As a strategy to fully resolve
the population reads, we mapped all reads to the 24 unique
mobile element subgroups in the E. coli DH10B genome41, i.e.,
not detecting for loci-specific dynamics (Methods). We found
that joint mobile element coverage relative to the original pMevT
approached 99.9% (s.e.m.= 1.1%) at generation 70 (Fig. 4c). A
spectrum of 10 host mobile element subgroups each transposed to
a frequency above 0.01% in the end-point populations (Fig. 4d).

Using ultra-deep-sequencing data to infer population structure
is more direct than relative production titers because of prior
knowledge of the initial, pure starting point and no requirement
for sample re-cultivation. By fitting the time-resolved total mobile
element fractions to our production stability model, we improved
the confidence of the prediction and estimated an escape rate of
8.7 × 10−8/generation (CI95%: ±0.2 × 10−8; Supplementary
Table 5). We therefore fitted our data without a pre-determined
production load to see how well the model could estimate both
parameters freely. From sequencing-based stability data alone, the
model very confidently predicted an alleviated production load of
28.1% (CI95%: ±0.1%) and a revised escape rate of 2.1 × 10–7/
generation (CI95%: ± 0.1 × 10–7; Supplementary Table 5). The
predicted 28.1% production load is notably similar to the
experimentally determined 30% production load. An escape rate
of 2.1 × 10–7/generation corresponds well to previously observed
mobile element transposition rates into the selectable cycA gene
in E. coli DH10B41. The escape rate of our simple model assumes
a complete cellular transition from producing to non-producing
behavior upon escape. Within each cell, escape begins with a
single plasmid mutation, which upon cell divisions is increasingly
selected toward a pure non-producing plasmid population (at ca.
15 copies for p15A-origin plasmids42), potentially giving rise to
an intracellular escape heterogeneity. The process toward
intracellular escape fixation is driven by uneven plasmid
segregation and increasingly selective advantage with each
additional pathway escape. Consequently, the effective produc-
tion escape rate kescape (used in our deterministic and stochastic
modeling) captures the average rate of these combined processes
and therefore likely underestimates the actual IS insertion rate.

Given the lack of selectable composite elements in ISs such as
antibiotic resistance genes, spontaneous insertion rates have
traditionally been harder to detect for ISs than for transposons
carrying selectable features. Ultra-deep time-lapse sequencing
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strategies similar to this study should thus be useful to further
elucidate the molecular fundamentals of bacterial IS transposi-
tion. On a full cell population basis, broad-spectrum enrichment
of four unique mobile element subgroups was detected to final
frequencies above 1% (Fig. 4d). No apparent correlation between
DH10B genomic IS copy number and the enrichment rate was
observed (Fig. 4d), as exemplified by subgroups IS2 and IS5,
which enriched slowly although present at 12 and 13 genomic
copies, respectively. This behavior is in contrast to the 27%/
generation enrichment of IS10 and IS186, which are present at
only three and four DH10B copies. IS10 and IS186 thus enriched
to 93% of the end heterologous mevalonic acid pathway
population.

Target site selection of mobile elements is influenced by
specific consensus sequences and molecular activities, such as on-
going transcription40. The consensus IS10 target site was present
in tHMGR, the p15A origin, and the f1 origin39, but insertions
were not detected in these loci since disruption of these elements
would likely not be advantageous for growth. Instead, IS10
insertions were observed in non-canonical sites within the atoB
and ERG13 genes. It is surprising that IS10 disrupts the
production load through such non-canonical target consensus
(Supplementary Fig. 5), and this observation suggests that the
spectrum of some ISs is far wider than previously thought.

Tracking broken read dynamics throughout the experimentally
simulated fermentation also allowed us to estimate non-mobile
element structural variations that were enriched in the popula-
tions, and to compare these variations to those without apparent
fitness advantages that merely remained at constant frequencies
during the experiment. Structural variations detected in the
pathway terminator region were not enriched (Supplementary
Fig. 6), and thus likely did not influence production. Such
variations might have been observed as artificial noise owing to
secondary structure formation during sample preparation. We
also searched for signs of direct-repeat homologous recombina-
tion, but this was not observed, likely owing to the lack of
repetitive sequences larger than 18 bp in the pathway plasmid.

The relatively high estimated production escape rate (2.1 ×
10–7/generation) is also consistent with the low presence of
enriched pathway SNPs (Supplementary Fig. 4), given the basal
SNP formation rate of 10–10/bp/generation43. To assess whether
the genetic error modes were host-dependent, we repeated the
experiment with similar procedures using a cell bank of a
different production strain, E. coli K-12 strain XL1 (Methods).
The end points of five parallel-cultured populations were deep-
sequenced to map the error landscape. Comparison of the error
modalities in the two different strains revealed both recurrent
motifs as well as clone-specific mechanisms (Supplementary
Fig. 7). Such strain differences could be due to different
chromosomal IS copy numbers. Next, we also wanted to
investigate whether the findings of diverse IS insertions were
specific to the studied genetic pathway and expression system. We
therefore constructed a constitutively expressed mevalonic acid
pathway using the different, heterologous genes mvaS and mvaE
of Lactobacillus casei31 (Supplementary Fig. 8). We experimen-
tally simulated a large-scale fermentation with the pathway
plasmid pMVA1 in TOP10 (h11). Upon deep-sequencing of the
end-point populations (79 generations), we found a diverse error
modality again consisting of nine transposed IS subfamily types
and low-frequency SNPs (Supplementary Fig. 8, Supplementary
Table 8) directly within the expression cassette of the pathway
genes. In two lineages (m0 and m2), we found 10 bp deleted
from the promoter pJ23100 (20.2 and 0.2%) and 9 bp deleted the
RBS of atoB (0.3%, n.d.) without obvious structurally mechanistic
clues given in the nucleotide sequence, thus adding such
illegitimate, non-homologous recombination to the spectrum of

error modes observed. No such short deletions were however
detected in the time-lapse sequenced experiment with the pMevT
pathway (strain h2), indicating that this error mode at this
formation rate was plasmid specific.

Model-guided optimization of production stability. As descri-
bed by the mathematical model, reductions in production load
and escape rate represent powerful approaches to improve strain
stability. To explore these, we sought to improve production
stability by both media and strain engineering to limit the pro-
duction load and escape rate, respectively. The production load
resulting from HMG-CoA cytotoxicity is speculated to result
from a destabilized lipid membrane due to inhibitions in early-
step lipid biosynthesis24, which may be countered by elevated
medium osmotic pressure44. We therefore quantified the growth
rate of mevalonic acid-producing and non-producing populations
in a range of NaCl concentrations. At higher osmotic pressure
(7.5–12.5 g/L NaCl), we found that the growth rate of pure non-
producing cultures was reduced relative to producing cultures,
minimizing the original 30% growth inhibition to 18–28%
(Fig. 5a).

Our model predicts that a reduction of the production load
from 30% to, e.g., 22% would improve the half-life of producing
cells from 47 to 63 generations (Fig. 5b). For processes operating
in bioreactor scales >50 m3, such improved stability could provide
a crucial enhancement of the product yield and titer. We thus
experimentally simulated another long-term fermentation with
the same cell bank (h2m0) using one such optimized medium
composition (10 g/L NaCl). We measured the mevalonic acid
production of the population during the fermentation simulation.
The production dynamics showed a clear improvement in
stability and a slightly less sharp transition of the population
(Fig. 5c), matching the reduced selective advantage of production
loss. Indeed, the best model fit to this production stability profile
(Supplementary Table 5) estimates a reduced production load at
21% (CI95%: ±0.9%). This is very close to the measured
production load (Fig. 5a) and corresponds to an extension of
the production half-life from 54 to 66 generations. The HMG-
CoA accumulation of mevalonic acid production is associated
with osmotic and oxidative stress24. Cross-protection in osmotic
and oxidative stress response of E. coli45 may thus also explain
why elevated osmotic pressure in part alleviated the HMG-CoA
growth inhibition. The observed, reduced basal mevalonic acid
production may also explain the reduced growth inhibition of
these cells (Supplementary Table 3).

Reducing the escape rate offers an alternative strategy that is
especially favorable when production loads are difficult to
minimize. Due to the observed impact of IS-dominated pathway
disruptions, a host strain lacking ISs should prevent this escape
mechanism. To benchmark the dynamics in such chassis, we
transferred the metabolic pathway (pMevT) to a previously
generated, genome-reduced, and IS-free E. coli K-12 strain
MDS4246. We simulated a long-term fermentation with this host
strain using our standard medium and quantified the dynamics of
mevalonic acid production (Fig. 5c). The marked improvement in
production stability supports the hypothesis that lack of host
genomic ISs significantly improves production stability, leading to
good preservation of production at the end point of the
fermentation simulation (89 generations). However, lower escape
rate error modes resulting from SNPs and non-homologous
recombination may impact stability on a longer term. Further, the
fitness-neutral genome reductions guiding the construction of
MDS4246 may not necessarily be neutral to metabolic production
performance, as indicated by the lower mevalonic acid titer in the
MDS42 host (Supplementary Table 3).
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Stabilization by pathway coupled to essential gene. Our path-
way sequencing data indicated that the main atoB IS disruptions
conferred a transcriptional termination of subsequent pathway
genes (Fig. 4a). Accordingly, we speculated that evolutionary
production decline due to IS disruptions could be reduced by
coupling the production pathway transcriptionally to an essential
gene. We inserted murI into the pathway operon directly fol-
lowing the last pathway gene (Fig. 6a), while directly thereafter
deleting the chromosomal copy to avoid recombination and to
render the cell dependent on an active pathway operon. murI
encodes the glutamate racemase, which is not associated with
production, but essential for growth47.

Compared to essential gene-based stabilization against plasmid
loss48, such direct pathway stabilization would likely require
careful initial titration of essential gene expression, since both
elevated and depleted expression levels could reduce cell fitness
and thus destabilize the production phenotype. We therefore
tested eight different predicted RBS strengths49 (Supplementary
Table 11). Several of the resulting clones appeared to have too
high murI translational strength. This might cause a fitness cost
to select for transcriptional decline by IS insertion and amplify
production instability, as observed in pre-screen serial passing.
However, one clone was identified (kle1#1) with a predicted very
low RBS murI strength (Supplementary Table 11), which was
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slower-growing and appeared more stable in a pre-screen. kle1#1
was therefore tested in our simulated fermentation setup against
the non-coupled pMevT pathway h2 with wild-type chromoso-
mal murI.

As hypothesized, the essential gene-coupled pathway strain
maintained mevalonic acid production longer (Fig. 6b) than the
non-coupled control, resulting in an extension of the production
half-life from 53 to 63 generations. Deep-sequencing of the
pathway populations at generation 70 showed that the error
profile had changed (Fig. 6c), significantly disfavoring the
previously top-enriching IS10 type. This indicates that such IS
transposition resulted in an overall negative influence on cell
fitness due to a collateral detrimental change in murI expression
in the kle1#1 strain. In spite of the extended production stability
exhibited by kle1#1, we observed an elevated frequency of the
previously less active IS1, as well as an elevated abundance of
pathway frameshift SNPs (Fig. 6c). The selective enrichment of

IS1 may be due to a different influence on neighboring genes, e.g.
driven by outwardly-acting promoter activity as previously
observed for IS140. Furthermore, SNPs might not be prevented
by a transcriptionally coupled essential gene and their rise in
frequency relative to IS insertions (Fig. 6c) is therefore expected.
Interestingly, the two main pathway frameshift SNPs recurred
across the different clone banks of pMevT and pMevT-murI;
these insertions/deletions of A and C in atoB and ERG13 targeted
mononucleotide repeat stretches and were likely due to DNA
polymerase slippage (Supplementary Table 10). Thus, these
examples suggest that mononucleotide repeats in critical pathway
genetics parts should be tested for and avoided, e.g., as a new,
integral part of traditional codon optimization. Overall, the
results of the coupled essential gene demonstrate that modifica-
tions to the production host to counter specific error modes can
lead to the appearance of new error modes, albeit on a longer
timescale, resulting in improved pathway stability.
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Discussion
Bio-based production is a central contributor to the transition of
our society toward a greener and more sustainable future.
However, large-scale bioprocesses are hampered by high yield and
productivity requirements, and many new processes cannot be
made commercially viable due to declining performance at the
scale-up step. Prior work has focused on the phenotypic variance
that can contribute to the reduced performance of bio-based
processes50. While IS elements have been shown to disrupt pro-
duction phenotypes, the role of evolution and genetic mechan-
isms in production decline is not well characterized. In this study,
we experimentally simulated the timescales and population sizes
of large-scale bioprocesses in production of the key biochemical
building block, mevalonic acid. We introduced a simple frame-
work that captures population dynamics of engineered produc-
tion strains. We demonstrated in several different host strains
that evolution substantially affects population structure over
industrial timescales, with direct ramifications for bio-based
process performance. While ultra-deep-sequencing has advanced
the understanding of heterogeneities in human disease evolu-
tion51, so far no studies have investigated the potential for bio-
technological evolution at population depth, in part possibly due
to difficulties in resolving structural variations by short-read
sequencing of populations. We observed that pathway error
modes are dominated by a broad spectrum of IS insertions in
non-canonical target sites. These remove or alleviate the pro-
duction load, and the error modes differ between strains and
clone banks, but appear rapidly in a population.

We find that two key parameters influence the probability and
speed by which evolution can impact cell factory stability: the
escape rate, which is the rate by which non-producing mutants
are generated in a population; and the production load, which
manifests a lower fitness of producing cells in direct competition
with non-producers. Based on these parameters, a two-state
mathematical model accurately describes the essential population
dynamics of experimentally simulated fermentations. By de-
convoluting stability into its two principal parameters, the model
provides a quantitative framework for evaluating the scale-up
process, such as the long-term impact of a loaded pathway
enzymatic step. This model describes genetic heterogeneity at the
population level and assumes a two-state transition from pro-
ducer to non-producer cell, which may not be adequate, e.g., for
pathways operating with several independently loaded biosyn-
thetic genes. Further, the model assumes growth without nutrient
limitations and a constant escape rate and production load.
Average experimental estimations appear to approximate the load
well in our setup (Supplementary Fig. 1), and may help isolate the
production escape rate averages. However, escape rates may be
stimulated by different molecular stresses, e.g., in the final phase
of bioreactor growth, which are unaccounted for in our simula-
tion. In this study, we have approximated the industrial use of
gradually increasing seed train sizes under which most cell divi-
sions occur, by strict passing of cultures in exponential phase
throughout the study and shown good fit to a simple model.
Thus, integration of dynamic models with time-resolved pheno-
typic and genotypic data may help guide an investigator to
separate load and mutational effects during production strain and
process development to more rationally accommodate evolu-
tionary process limitations.

Our results offer a potential explanation of why lab-scale yields
and titers might not accurately predict large-scale fermentation
performance following a scale-up procedure, despite vector
maintenance. The observed pathway disruptions occur within a
plasmid population maintained by selection. We find that these
modeled dynamics of structural pathway disruption are similar to
those of segregational plasmid loss33, although they act at

different rate scales and are characterized by a diversity of error
modes (Fig. 4). As an example, our model predicts that an initially
pure producing population, with a production load of 30% and an
escape rate of 10−7/generation, will shift to 96% non-producing
cells over 60 generations, corresponding to a bioreactor of 2 m3.
Remarkably, the same population at lab-scale (age of 37 genera-
tions) might appear high performing with <3% non-producers in
the population. Because the majority of product is synthesized
when the fermentation population reaches the final density in
industrial-scale production, it is crucial to investigate the popu-
lation genotype at this point and not simply extrapolate pheno-
typic performance from lab-scale experiments. Time-lapse ultra-
deep-sequencing represents a valuable approach for determining
error modes, occurrence rates, and their alleviated loads at an
early stage. Such ultra-deep-sequencing may also be applied to
existing scaled-up fermentations, previously thought to be free of
genetic heterogeneity.

Common industrial practice employs production strain clone
banks stocked as frozen aliquots. Genetic errors in only a few cells
might reside in the starting seed although the population appears
healthy for a considerable number of divisions. Seeding fermen-
tations from the same cell bank clone therefore generates a highly
recurring stability profile. Cell bank aliquots should therefore be
evaluated for rare pre-existing mutations that disrupt production
and could be selected for during production scale-up. Deep-
sequencing of master cell bank aliquots could be applied to test
for this.

Considering that production load improvements by even a few
percent can substantially improve stability (Fig. 2c), the specific
contributors to production loads must be addressed for each
pathway and host cell considering a final large-scale process. For
example, reducing the production load from 28 to 23% should
extend the production half-life by 10 generations (assuming a
constant escape rate of 2.1 × 10–7/generation).

Practical strategies will be required to reduce factors of pro-
duction load, including medium optimization, improved balan-
cing of pathway gene expression, and the cellular export of toxic
by- or end products. Poor balancing may favor accumulation of
toxic pathway intermediates, which carry particularly high
potential as a production load. Because intermediates are intra-
cellular, associated toxicities selectively target the producing cells.
In this case, adding genes to degrade toxic by-products or to
dynamically redirect pathway flux and the use of specific meta-
bolite- or stress-induced pathway promoters may be advanta-
geous for limiting production load52–54. In the rare cases of
growth rate-coupled production, semi-continuous processes have
been commercialized to improve productivity, such as for R-lactic
acid in Lactobacillus55.

In attempts to improve stability, systems for maintaining
metabolic pathways through multiple chromosomal integrations
are often used56,57 while stabilizing duplications may also result
randomly during optimization58. Still, integrated pathways
remain subject to intra-pathway disruptions by SNPs, mobile
genetic elements, and illegitimate recombination, but indepen-
dence of the individual integration sites means that individual
escapes will not be enriched within the intracellular pathway
population such as uneven segregation allows in multi-copy
plasmid systems. Independently integrated pathway copies may
thus provide stabilization in addition to easier antibiotic-free
pathway maintenance, which today appears as the major
advantage of chromosomal propagation. Yet multiple targeted
integrations require significantly longer construction protocols,
especially at >50 copies and when limited to IP-free engineering.
Future studies should investigate the changes in intra-pathway
escape dynamics of such multi-copy, chromosomally integrated
production pathways. Based on our results, removal of mobile
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elements from the genomes of microbial production strains59 is a
relevant first step for long-term stabilization and the enabling of
toxic and burdened pathway expression. Such strategies postpone
the onset of significant genetic heterogeneity (Fig. 5c). Mechan-
istically, escape via homologous recombination points can be
avoided, e.g., by synonymous codons60. Alternatively, coupling of
essential genes to the production pathway operon can also
increase production stability (Fig. 6b).

Dynamic fermentation population models might serve as
technical tools to predict the necessary reduction in escape rate or
production load for a particular bioreactor size. Knowledge of
stability dynamics should ensure a more holistic evaluation of
strains by taking into account the potential for rapid performance
loss. By characterizing and modeling the interplay between
spontaneous genetic errors at depth and their selection by
metabolic burden and pathway toxicity, we have shown the paths
for their synergistic impact on pathway stability. Furthermore, we
have demonstrated how engineered reductions in both produc-
tion load and escape rate can improve stability. We expect that
the results, methodologies, and their implications will open new
opportunities for metabolic engineers in the quest to develop
sustainable and industrially scalable bioprocesses.

Methods
Strains. E. coli K-12 parental strains below were used to construct the strains
analyzed (Table 1) using the specified plasmids (Table 2).

E. coli TOP10, similar to DH10B (Invitrogen):
F− mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara,

leu) 7697 galU galK rpsL (StrR) endA1 nupG
E. coli XL1 (Agilent):
recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´ proAB lacIq ZΔM15

Tn10 (Tetr)]
E. coli MDS42 (Scarab Genomics):
MG1655 genome reduced for all ISs, fhuACDB, endA and more46.
Standard chemical transformation or electroporation was used for gene

introduction. Strain kle1#1 was constructed by lambda-red recombineering-based
deletion of chromosomal murI with a kanR deletion fragment (oligos,
Supplementary Table 11) in TOP10 cells harboring pSIM6 and pools of cloned
RBS-variable pMevT-murI (Supplementary Table 11, construction described
below). Recombineering followed standard procedures in which cells containing
pSIM6+ pMevT-murI with variable RBS were grown in selectable 2xYT at 30 °C to
mid-exponential phase for 3–5 h and induced at 42 °C for recombinase expression
for 20 min. Subsequently, cells were spun down at 4 °C, washed in ice-cold Milli-Q
H2O, and electroporated (1.8 kV) with the chromosomal murI knockout fragment,
purified from PCR. Electroporated cells were then recovered in SOC medium at 37
°C for 2 h, after which cells were plated on LB agar with 50 μg/mL kanamycin+
500 μM isopropyl β-D-1-thiogalactopyranoside (IPTG) and incubated at 37 °C to
continue curing of pSIM6. The selected final pMevT-murI plasmid in strain kle1#1
contained the following murI RBS sequence: TCTCAC.

For test in experimentally simulated fermentations, single colonies were
cultured and stored at −80 °C to serve as working clone banks (designated by m
numbers) following standard industrial practice61.

Plasmids. pMevT4 was generated by PstI digestion of pMevT followed by re-
ligation of the backbone using T4 DNA ligase and standard molecular biology
methods, excising the metabolic pathway cassette (atoB, ERG13, and tHMGR).
pMevT-murI RBS variants were generated by uracil-excision cloning of murI into
pMevT with a diversity of eight different murI RBS sequences added via the PCR
primers for the cloning fragments (Supplementary Table 11). pMVA1 was similarly

generated by uracil-excision cloning of PCR fragments, introducing a constitutive
J23100 promoter with a PCR primer (Supplementary Table 11). PCRs were con-
ducted by standard procedures with Phusion U DNA polymerase (Thermo).
Uracil-excision cloning was performed by approx. equimolar mixing of the
respective purified PCR products (Supplementary Table 11) in a 20 μL reaction,
including 2 μL FastDigest buffer (Thermo), 0.75 μL USER enzyme (NEB), and 0.75
μL FastDigest DpnI (Thermo). The reaction incubated for 60 min at 37 °C followed
by 20 min at 25 °C, and was subsequently transformed into chemically competent
E. coli TOP10 cells.

Media. For all cultivations, standard 2xYT characterization medium was used
unless otherwise stated. 2xYT medium consisted of 10 g/L yeast extract (Sigma-
Aldrich), 16 g/L tryptone (Bacto), 5 g/L NaCl (pH adjusted to 7.0) supplemented
with 30 μg/mL chloramphenicol, and 500 μM IPTG.

For genetic transformations, SOC medium was used. SOC consisted of 5 g/L
yeast extract, 20 g/L tryptone (Bacto), 10 mM NaCl, 2.5 mM KCl, 20 mM MgSO4,
and 20 mM D-glucose.

Simulated long-term fermentation by continuous growth. Five parallel lineages
of the pMevT-harboring TOP10 clone bank h2m0 were inoculated into aerated
cultures (EVO2; Table 3). Each culture contained 25 mL medium and was grown
for 8 h at 30 °C with horizontal shaking at 250 r.p.m. After 8 h, 0.5 mL broth was
inoculated into 25 mL fresh medium and incubated under the same conditions for
another 8 h. At each passage, the OD600 was recorded to determine the accumu-
lated number of cell divisions (Supplementary Table 2). Constant pathway
induction (500 μM IPTG) was applied to mimic constitutive promoter designs, as
the advantages of late induction (e.g., using plac) would be unattainable industrially
owing to inducer cost6. The simulation was repeated (EVO8 and EVO13) as
specified (Table 3). As backup in case of wrong experimental handling, an extra
parallel lineage was often cultivated in parallel, but the analyzed lineages were
always chosen randomly.

Long-term fermentation with different E. coli host strain. Five parallel lineages
of the pMevT-harboring E. coli XL1 clone bank (XL1-MevT) were inoculated into
aerated cultures (EVO2B; Table 3). Each culture contained 50 mL medium and was
grown for 12 h at 37 °C with horizontal shaking at 250 r.p.m. to match the slower
growth of XL1. After 12 h, 1 mL broth was inoculated into fresh medium and
incubated under the same conditions. At each passage, the OD600 absorbance was
recorded.

Long-term fermentation with pathway-coupled essential gene. Four parallel
lineages were inoculated from, respectively, four h2 and kle1#1 master clone banks
into aerated cultures and was cultured at 32 °C (EVO10; Table 3), but otherwise
following same methods as the first simulated long-term fermentation. Randomly,
three lineages of, respectively, h2 and kle1#1 were selected for subsequent analysis.
At each passage, the OD600 was recorded to determine the accumulated number of
cell divisions (Supplementary Table 9). Three of four lineages were randomly
selected for subsequent analysis.

Table 1 Strains analyzed in this study

Strain Plasmid Parental E. coli K-12 strain Chromosomal editing Clone banks

h2 pMevT TOP10 — m0, m1, m2, m3
h8 pMevT4 TOP10 — m0
XL1-pMevT pMevT XL1 — m0
h10 pMevT MDS42 — m0
h9 pMevT4 MDS42 — m0
kle1#1 pMevT-murI TOP10 murI::kanR m1, m2, m3
h11 pMVA1 TOP10 — m0, m1, m2, m3

Table 2 Plasmids used to generate strains

Plasmid Relevant features Reference

pMevT plac:atoB-ERG13-tHMGR:trrnB, camR, p15A 30

pMevT4 plac:trrnB, camR, p15A This study
pMevT-murI plac:atoB-ERG13-tHMGR-murI:trrnB, camR,

p15A
This study

pMVA1 pJ23100:atoB-mvaS-mvaE:trrnB, camR, p15A This study
pSIM6 exo, bet, gam, ampR, pSC101ts 63
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High-depth DNA sequencing and analysis. Upon each passage to new medium,
1.8 mL of the grown culture was stored at −20 °C. Similarly, 1.8 mL of grown
culture was stored at the simulated fermentation end. Production plasmid popu-
lations were subsequently purified from each time point using a standard plasmid
purification kit (Macherey-Nagel). The samples were then prepared for Miseq
sequencing using the Nextera XT v2 set A kit (Illumina) per the manufacturer’s
instructions with the addition of two “limited-cycle PCR” cycles.

Sequencing was performed in a pooled run with 150 bp paired-end reading.
CLC Genomics Workbench (version 8.5) was used for initial bioinformatics
analysis. First, the reads were mapped to the reference pMevT sequence (Addgene
#17815). Broken aligned reads were identified using the CLC Genomics
Workbench tool Breakpoint analysis to yield a table of the consensus broken
unaligned reads and their abundance (maximum three mismatches allowed in the
mapped read region, p-value for the fraction of unaligned reads set to 0.0001) to
obtain an initial overview of occurred structural variation. The fraction of mobile
element coverage to plasmid coverage was calculated by mapping of reads to the 24
unique E. coli DH10B mobile element sequences and the reference plasmid.
Subgroups IS10R and IS10L were combined as IS10 and IS1A, B and F as IS1.
Position-specific mobile element/reference coverage was calculated by mapping 80
bp sequences consisting of, respectively, the corresponding 40 bp reference plasmid
and 40 bp mobile element sequence or 80 bp reference plasmid sequence. These
mappings were performed with the alignment setting “global” and identity fraction
set to “0.6”. Mappings without any reads covering across the mobile element
junction were disregarded. SNPs and short deletions were called using the CLC
Genomics Workbench Low Frequency Variant Detection tool with a 1% required
significance level and 0.25% minimum frequency (unless otherwise specified). The
SNP frequencies in the sequenced populations were calculated by division with
their respective coverage values.

Five SNPs found in the plasmid backbone at >99% frequencies in the initial seed
were regarded as present in the starting plasmid. The deep-sequencing data are
available via the ArrayExpress repository (accession no: E-MTAB-5862).

Whole-genome sequencing of single colonies. DNA for whole-genome
sequencing from single colonies was extracted from a grown 2 mL culture using a
standard DNA extraction kit (Qiagen), but otherwise prepared as above for a
pooled Miseq run. For identification of SNPs, reads were mapped to the publicly
available DH10B genome, and detected for using the Low Frequency Variant
Detection tool of CLC Genomics with a minimum detection frequency of 80%.

Measurement of mevalonic acid production by high-performance liquid
chromatography. Upon each passage to a fresh culture, 900 μL medium was mixed
with 900 μL 50% glycerol and stored at −80 °C. Following the simulated fermen-
tation, each population sample from a 25 μL glycerol stock was used to inoculate
15 mL medium, and the culture was incubated at 30 °C with shaking at 250 r.p.m.
for 54–58 h. Following incubation, 300 μL aliquots were treated with 23 μL 20%
sulfuric acid. Samples were vigorously shaken and then spun down at 13 000 × g for
2 min. Supernatant (medium) samples were injected into an Ultimate 3000 high-
performance liquid chromatography running a 5 mM sulfuric acid mobile phase
(0.6 mL/min) on an Aminex HPX-87H ion exclusion column (300 mm × 7.8 mm,
Bio-Rad Laboratories) at 50 °C. A refractive index detector was used for detection.
A standard curve for mevalonic acid was generated with mevalonolactone (Sigma-
Aldrich) dissolved in 2xYT medium supernatant of an engineered non-producing
strain incubated under same conditions.

Measurement of population growth rates. To measure population growth rates,
1.5 μL aliquots of stationary-phase cultures grown for productivity analysis (as
described in the previous section) were used to inoculate 200 μL medium in
microtiter plate wells. The microtiter plate was sealed with a Breathe-Easy poly-
urethane seal (USA Scientific) and was incubated at with “fast” continuous shaking
in an ELx808 kinetic plate reader (BioTek), which measured the OD630 value every
10 min.

Background-subtracted OD630 values were computed using the measurements
from un-inoculated wells. The local growth rates were computed for each

background-subtracted OD630 value by regressions in rolling windows of five
measurement points and background-subtracted OD630 values. To represent the
growth rates in the actual fermentation simulations, the average was computed of
the local growth rates where the background-subtracted OD630 was >0.04 and <0.4.
R script appended (Supplementary Note 2).

Simulation of producer fraction and model fit. The ODE system was solved
analytically (Supplementary Note 1). Solution growth functions were then com-
bined to yield a function for the fraction of producer cells in time (Supplementary
Note 1). Nonlinear regression was performed to fit to this model with the nls2 R
package (Supplementary Note 3). A stochastic version of the model was con-
structed by employing the algorithm of Gillespie to simulate discrete mutational
events of our system in a stochastic manner62. We assume that each event (e.g., cell
division and mutation) occurs according to probabilities scaled with the parameters
obtained from the deterministic fit of our data (production load: 30%, escape rate:
2.1 × 10–7; Supplementary Note 4).

Data availability. All relevant data are available from the authors. Deep-
sequencing data from the study (Figs. 3, 4, and 6) have been deposited in
ArrayExpress under ID code E-MTAB-5862 (https://www.ebi.ac.uk/arrayexpress/
experiments/E-MTAB-5862).

R scripts used to process raw growth data and fit to model are provided
in Supplementary Notes 2 and 3. R script for running stochastic version of model is
provided in Supplementary Note 4.
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