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Abstract: One of the most effective strategies for eliminating new and emerging infectious diseases
is effective immunization. The pandemic caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) warrants the need for a maximum coverage vaccine. Moreover, mutations that arise
within the virus have a significant impact on the vaccination strategy. Here, we built a comprehensive
in silico workflow pipeline to identify B-cell- and T-cell-stimulating antigens of SARS-CoV-2 viral
proteins. Our in silico reverse vaccinology (RV) approach consisted of two parts: (1) analysis of the
selected viral proteins based on annotated cellular location, antigenicity, allele coverage, epitope
density, and mutation density and (2) analysis of the various aspects of the epitopes, including
antigenicity, allele coverage, IFN-γ induction, toxicity, host homology, and site mutational density.
After performing a mutation analysis based on the contemporary mutational amino acid substitutions
observed in the viral variants, 13 potential epitopes were selected as subunit vaccine candidates.
Despite mutational amino acid substitutions, most epitope sequences were predicted to retain
immunogenicity without toxicity and host homology. Our RV approach using an in silico pipeline
may potentially reduce the time required for effective vaccine development and can be applicable for
vaccine development for other pathogenic diseases as well.

Keywords: SARS-CoV-2; in silico approach; immunoinformatics; antigens; epitope discovery; reverse
vaccinology

1. Introduction

SARS-CoV-2 first emerged in China, specifically in Wuhan, in December 2019 [1],
and spread globally to most countries in the following months [2]. The virus causes a
severe disease designated as coronavirus disease 2019 (COVID-19). Although 80% of
the individuals with confirmed infection show one or more mild symptoms, including
fever, fatigue, muscle or body aches, headache, nausea, diarrhea, or vomiting, 1–5% of the
COVID-19-positive individuals can develop severe respiratory problems. Such symptoms
may lead to acute respiratory distress syndrome (ARDS) which can be a life-threatening
condition in which the lungs cannot supply enough oxygen to the vital organs of the
body [1–3].

SARS-CoV-2 belongs to the genus of Betacoronavirus of the Coronaviridae family, which
also includes the severe acute respiratory syndrome coronavirus and the Middle East
respiratory syndrome coronavirus. SARS-CoV-2 is an enveloped, positive-stranded RNA
virus with a genome size of approximately 29.8 kb that encodes 29 different proteins [1,4,5].
The virus has four structural proteins: surface glycoprotein (spike), envelope protein (E),
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membrane glycoprotein (M), and nucleocapsid protein (N). Spike is a key protein on the
viral surface, which mainly binds to the host cell surface protein angiotensin-converting
enzyme 2 (ACE2) to mediate the entry of the virus into the target cell [6,7]. The virus has
16 non-structural proteins (nsps); the first 11 are encoded within ORF1a, while the last
5 are encoded within ORF1b. In addition to the structural and non-structural proteins, the
virus contains nine accessory proteins named ORF3a, ORF3b, ORF6, ORF7a, ORF7b, ORF8,
ORF9b, ORF9c, and ORF10 [5,8,9].

With the lack of effective antiviral treatments, there is an urgent need for a protective
vaccine that is effective against different strains of SARS-CoV-2 and with wide immuniza-
tion coverage across the world’s nations and ethnic groups. Several projects for effective
vaccine development have been undertaken, and some of these vaccines are now commer-
cially available for human administration [10–15]. Most efforts to develop vaccines against
SARS-CoV-2 focus on the spike protein as the main antigenic target. Although the spike
protein is a promising B-cell epitope that is expected to induce the production of neutral-
izing antibodies, a mixture of diverse B- and T-cell epitopes would be more effective in
ensuring a robust and life-long humoral and cell-mediated immunity. The major challenge
in developing such an efficient vaccine is to discover a group of appropriate B- and T-cell
epitopes that can confer immunity against a wide range of viral strains. More importantly,
the current emergence of SARS-CoV-2 variant mutations worldwide warrants an urgent
need for the identification of appropriate B- and T-cell epitopes of the original virus as well
as of the new variants of the virus.

Since discovering antigens and epitopes by an experimental approach can be very
tedious, expensive, and time-consuming, using an in silico approach to discover novel B-
and T-cell epitopes has become the preferred strategy. This approach is considered one
of the most effective for discovering antigens by screening the entire microbial proteome
using various prediction tools [16]. The in silico vaccine candidate identification approach,
designated as reverse vaccinology (RV), starts with the genetic material of the selected
pathogen with the subsequent performance of rational computational predictions to come
up with a manageable list of targets to be validated experimentally. This approach sig-
nificantly reduces the time needed to develop a vaccine and provides reasonable targets
that are identified based on the selection criteria. RV has been frequently applied with
success to discover vaccine candidates for various types of pathogenic microbes (mostly
bacteria) [16–21]. To date, however, RV has not been rigorously applied to the analysis of
viral genomes to identify potential candidates for viral vaccine development.

Although several in silico studies have been carried out with the aim of identifying
SARS-CoV-2 epitopes, most of these studies focused on individual proteins—mainly the
spike protein—or a small subset of SARS-CoV-2 proteins [22–30]. Although a limited num-
ber of studies have analyzed the whole proteome of SARS-CoV-2, they identified epitopes
without further comprehensive workflow to generate a shortlist of the most promising
epitopes [26,27,30]. Instead, a long list of potential epitopes confined only to the T-cell
category is provided, requiring further analysis and validation. Furthermore, most of these
reports examined the sequence of the reference SARS-CoV-2 genome without considering
emerging mutational events that may cause epitope escape. This type of epitope escape
may reduce the efficacy of the immune response, resulting in sub-neutralizing antibodies
that can generate antibody-dependent enhancement [31–33].

In the present study, we propose a comprehensive reverse-vaccinology workflow
that can be used to identify and shortlist potential T- and B-cell epitopes. Starting with
the analysis of three aspects of viral proteins, namely cellular location, antigenicity, and
epitope density, antigenic proteins were selected, among which candidate epitopes were
subsequently identified. The identified candidate epitopes were further analyzed based
on their predicted antigenicity, allele coverage, and induction of interferon-gamma (IFN-
γ). Furthermore, mutation analysis of all variant isolates was performed to determine
the conservation of the selected epitopes. Our comprehensive approach includes both
horizontal (across the whole coding regions of the genome) and vertical (across many
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sequenced genomes) screening for B- and T-cell epitopes. Based on our results, we provide
a shortlist of the candidate epitopes for designing a potential vaccine against SARS-CoV-2,
suggesting the usefulness of a comprehensive RV workflow that can be applied to other
pathogens as well.

2. Materials and Methods
2.1. SARS-CoV-2 Genome Data Source

The full multi-FASTA format protein sequences of SARS-CoV-2 were downloaded
from the Microbial Genomes Resources at NCBI (https://www.ncbi.nlm.nih.gov/genome).

2.2. Antigenic Protein Prediction

Proteins were selected based on their annotated location using the Uniport database
(https://www.uniprot.org/). Proteins that were annotated as viral membrane proteins
were selected as prospective B-cell immunogenic targets. In contrast, proteins that were
annotated as host membrane proteins were selected as prospective T-cell activators.

Prediction of the antigenicity of the selected proteins was carried out using two web tools:
AntigenPro and Vaxijen v2.0 [34,35]. AntigenPro is a sequence-based antigenicity prediction
tool that uses multiple representations of the primary sequence along with five machine learn-
ing algorithms (http://scratch.proteomics.ics.uci.edu/index.html). The online tool Vaxijen
predicts antigenicity based on the physicochemical properties of proteins, which is independent
of sequence alignment (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html). The
option for the selection of the target organism was set for virus with the default cutoff score of
0.4. Next, two values obtained from the two tools were averaged and normalized, in which
unity was the highest possible value and zero was the lowest possible value.

2.3. Epitope Mapping

The Immune Epitope Database (IEDB; https://www.iedb.org) epitope-prediction
tools were applied to both the B- and T-cell candidates, as previously described [26,36].
This resource site contains a set of freely available tools for epitope prediction for both T
cells and B cells and is useful for designing new vaccines. Briefly, the BepiPred algorithm
was used for predicting B-cell epitopes using 0.55 as the cutoff parameter, in which the
epitope sequences were required to have more than 7 amino acid residues. In addition,
MHC binding predictions were used for T-cell epitopes, in which a median consensus
percentile cutoff ≤20 was used for CD4(+) T-cell epitopes, and a phenotypic frequency with
a 6% cutoff was used for CD8(+) T-cell epitopes. In addition, allele coverage was calculated
for the CD8(+) epitopes using the 12 most common alleles (HLA-A*01:01, HLA-A*02:01,
HLA-A*03:01, HLA-A*11:01, HLA-A*23:01, HLA-A*24:02, HLA-B*07:02, HLA-B*08:01,
HLA-B*35:01, HLA-B*40:01, HLA-B*44:02, and HLA-B*44:03). The epitope density (ED)
was calculated for proteins that were selected in the previous step by dividing the number
of predicted epitopes within the protein by the length of the protein (in terms of the number
of amino acids); ED of a protein = No. of epitopes/length of the protein.

2.4. Epitope Analyses: Antigenicity, Interferon γ Induction, Toxicity, and Host Homology

The VaxiJen v2.0 was used to prioritize epitopes based on their antigenicity using
virus as the target organism with a default cutoff score of 0.4, and epitopes with 0.4 or
higher scores were selected for further analyses. In addition, for the T-cell epitopes, the
stringency was increased for CD4(+) by reducing the consensus percentile cutoff to 10%
(as the lower the value, the higher the affinity), and for the CD8(+) T-cell epitopes, allele
coverage was assessed among the 12 supertypes. Furthermore, the IFNepitope online tool
(http://crdd.osdd.net/raghava/ifnepitope/) was used to predict IFN-γ induction [37].

Next, the ToxinPred online tool was used to predict the potential toxicity of the selected
epitopes (http://crdd.osdd.net/raghava/toxinpred/) [38]. In addition, the NCBI BLAST
website was used to detect any potential homology of the selected epitopes in the human
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genome (https://blast.ncbi.nlm.nih.gov/Blast.cgi). These steps were performed to exclude
selected epitopes that were predicted to be toxic or had host (human) homology.

Toll-like receptors (TLRs) detect conserved pathogen-associated molecular patterns
(PAMPs) of pathogens including viruses [39]. Among TLRs, activation of TLR4 has been
targeted in vaccine development, as its activation directs the production of inflammatory
cytokines thus assuring effective immune response [40]. Thus, for vaccine efficiency
validation, docking analysis of the T-cell epitopes with the Toll-like receptor-4 (TLR4) was
performed using HPEPDOCK (http://huanglab.phys.hust.edu.cn/hpepdock/) [41]. TLR4
was obtained from Protein Data Bank (ID 3FXI) and a TLR4 agonist peptide; APPHALS
was retrieved as a control [42].

2.5. Analysis of SARS-CoV-2 Mutations

Mutations in SARS-CoV-2 viral variants at the time of the analysis were collected from
the CoV-GLUE resource (http://cov-glue.cvr.gla.uk) and were then categorized for further
analysis [43]. This publicly accessible web server utilizes the information on SARS-CoV-2
variants obtained from GISAID (https://www.gisaid.org/) [44,45]. Mutation analysis
was performed for all SARS-CoV-2 proteins to define the distribution of mutations within
the viral proteome as a percentage of mutational presence. Furthermore, the mutation
density (MD) for the selected viral proteins was calculated by dividing the total number of
mutations found within the protein by the length of the protein (in terms of the number of
amino acids); MD = No. of total mutations/length of the protein, where the values were
normalized to 1 as the highest possible value and 0 as the lowest possible value.

The site mutation density within the selected epitopes (i.e., replacement frequency)
was used to heighten the selection criterion in order to maximize the effectivity range of the
selected epitopes. The site mutation density was calculated at each amino acid replacement
within the epitope region by dividing the number of sequences at the amino acid site
with 100,000 sequences (normalized per 100,000 sequences); site mutation density = (total
number of sequences within the specific mutation site)/100,000. After performing the
mutation analysis using the site mutation density, the selected epitopes were divided into
three categories. The first category consisted of epitope sequences with sites with a mutation
density of less than 0.01. The epitopes of this category were accepted. The second category
consisted of epitopes that had more than 3 sites with a mutation density greater than 0.5;
the epitopes of this category were excluded. The third category comprised epitopes that
had 1–3 sites with a mutation density between 0.01–0.5. The epitopes of this category were
considered for reanalysis. The third category was subjected to reanalysis with online tools,
such as Vaxijen, ToxinPred, and BLAST, to check the effect of the mutation in the epitope
sequence on the epitope’s immunogenicity, toxicity, and host homology, respectively.

2.6. Structure Prediction

Among the selected immunogenic proteins, ORF10, which encodes 38 amino
acids with no known homolog protein, was subjected to structural and functional
prediction using PredictProtein (https://predictprotein.org/) and PEP-FOLD3
(https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/) online tools [46,47].
PredictProtein is a sequence-based analysis tool that predicts and annotates functions
based on the secondary structure of the selected protein. PEP-FOLD3 is one of the fastest de
novo prediction and analysis tools and provides a 3D prediction of the selected proteins and
short peptides. In addition, PEP-FOLD3 was used to predict the structure of epitopes from
the third category, which resulted from the mutation analysis of the epitopes, to compare
epitopes with or without mutations.

3. Results
3.1. Reverse-Vaccinology Workflow Applied for the Prediction of SARS-CoV-2 Antigens

Through an in silico approach, a comprehensive RV pipeline was proposed for better
antigen identification using available online immunoinformatics tools. The in silico work-

https://blast.ncbi.nlm.nih.gov/Blast.cgi
http://huanglab.phys.hust.edu.cn/hpepdock/
http://cov-glue.cvr.gla.uk
https://www.gisaid.org/
https://predictprotein.org/
https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
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flow of this study is illustrated in Figure 1 and consisted of two main stages of analysis:
protein analysis and epitope analysis. Briefly, the proteome of SARS-CoV-2 was retrieved
for the identification of both B-cell- and T-cell-candidate antigens (hereafter denoted as
B-cell and T-cell antigens, respectively). The selection of antigenic protein candidates
was based on the cellular location of the protein, protective antigenicity score, calculated
epitope densities, and allele coverage. As for the epitope analysis, epitopes were prioritized
based on their predicted antigenicity score, followed by toxicity prediction and host homol-
ogy. For T-cell epitopes, the ability to induce IFN-γ and allele coverage were additionally
assessed for selection. After the candidate epitopes were selected as both T-cell and B-cell
antigens, mutation analysis was carried out to determine the distribution of the mutations
observed in the current SARS-CoV-2 variants, within the selected proteins, as well as in
the identified epitopes. All of the online analysis tools used in this study were adjusted
for default parameters unless otherwise specified. Our RV-based systematic workflow
was built to provide a list of the most promising candidate epitopes for the induction of B
cells and T cells to augment protective immunity against the SARS-CoV-2 virus for better
vaccine development.

Figure 1. Illustration of our workflow of reverse vaccinology applied for the in silico screening of
immunogenic SARS-CoV-2 viral epitopes. First, data retrieval of the selected pathogen (SARS-CoV-2)
was carried out, which was followed by protein analysis through the determination of three aspects
(cellular localization, antigenicity, and epitope density). Subsequently, the identified B-cell and T-cell
epitopes were analyzed based on their predicted antigenicity, allele coverage, and IFN-γ induction
(for T-cell epitopes). Next, epitopes were further checked for their toxicity and host homology. Finally,
mutation analysis was conducted to determine the conservation of the selected epitopes.

3.2. Selection and Analysis of SARS-CoV-2 Proteins as Antigens Responsive to Immune Cells

Subunit vaccines provide several advantages over whole-pathogen vaccines because
they are composed of parts of the pathogen, and the subunits or parts of the pathogen
are sufficient to trigger and provide protective immunity (as antigens) without the need
for using whole-pathogen entities. Thus, the selection of antigenic part(s) is one of the
important steps in vaccine development, as it affects the effectiveness of the vaccine. Given
that protein-based subunit vaccines are to be developed for immunization against the
current outbreak of COVID-19, our selected proteins can be useful for the development of
protein subunit-based vaccines.

In the first step, the viral proteome was examined, and candidate proteins were
selected according to their annotated cellular locations based on the Uniprot database
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annotation. Proteins that were found on the surface of the viral membrane were considered
B-cell antigens (Table 1). Three proteins were annotated as viral membrane proteins:
membrane glycoprotein (M: YP_009724393.1), nucleocapsid protein (N: YP_009724397.2),
and surface glycoprotein (spike: YP_009724390.1). For the T-cell antigens, five proteins
were annotated as being present on the host cell membrane, and were therefore selected
(Table 2): nsp3 (YP_009724389.1), nsp4 (YP_009724389.1), nsp6 (YP_009724389.1), spike
(YP_009724390.1), and ORF3a protein (YP_009724391.1). Since ORF10 (YP_009725255.1) has
no annotated cellular location, it was tentatively included as both a B-cell and T-cell antigen.

Table 1. B-cell antigens of SARS-CoV-2 and their corresponding antigenicity scores *, epitope density, number of mutations,
and mutation density.

NCBI Ref. Seq.
Accession ID Protein Name Length (aa) Antigeni-city

Score *
Epitope
Density

No. of
Mutations

Mutation
Density

YP_009724393.1 Membrane
glycoprotein 222 0.42 0.032 564 0.58

YP_009724397.2 Nucleocapsid
phosphoprotein 419 0.79 0.031 1560 0.85

YP_009724390.1 Surface glycoprotein
(spike) 1273 0.65 0.032 4360 0.78

YP_009725255.1 ORF10 38 0.45 0.131 127 0.77

* Antigenicity score was obtained by averaging two scores from both AntigenPro and VaxiJen online tools.

Table 2. T-cell antigens of SARS-CoV-2 and their corresponding antigenicity scores *, epitope density, allele coverage,
number of mutations, and mutation density.

NCBI Ref.
Seq.

Accession ID
Protein Name Length

(aa)
Antigen-icity

Score *

Epitope
Density
(CD4+)

Epitope
Density
(CD8+)

Allele
Coverage

No. of
Mutations

Mutation
Density

YP_009724389.1 nsp3 1944 0.30 0.017 0.065 1.00 6869 0.81
YP_009724389.1 nsp4 499 0.42 0.044 0.080 1.00 1599 0.73
YP_009724389.1 nsp6 289 0.37 0.062 0.058 0.75 801 0.63

YP_009724390.1
Surface

glycoprotein
(spike)

1273 0.65 0.015 0.067 1.00 4360 0.78

YP_009724391.1 ORF3a 275 0.50 0.036 0.069 0.92 1193 1.00
YP_009725255.1 ORF10 38 0.45 0.026 0.131 0.25 127 0.77

* Average values obtained from AntigenPro and VaxiJen.

Protein antigenicity of the selected B-cell and T-cell antigens was predicted using both
AntigenPro and VaxiJen online tools (antigenicity scores obtained from each tool are shown
in Supplementary Tables S1.1 and S1.2). The average antigenicity scores for B-cell and T-cell
antigens are summarized in Tables 1 and 2, respectively. In the case of the B-cell antigens,
the average protein antigenicity scores were 0.79 for the nucleocapsid phosphoprotein and
0.65 for the spike protein. Both ORF10 and membrane glycoprotein had relatively similar
antigenicity scores of 0.45 and 0.42, respectively (Table 1). In case of the T-cell antigens, the
average antigenicity scores were as follows: spike (0.65), ORF3a (0.50), ORF10 (0.45), nsp4
(0.42), nsp6 (0.37), and nsp3 (0.30) (Table 2). A higher antigenicity score implies a higher
capability of the respective antigen to produce the desired immune response.

We noticed that the AntigenPro online tool shows different protein antigenicity scores
as compared with the VaxiJen tool because they used different prediction methods (Sup-
plementary Tables S1.1 and S1.2). The two tools gave a contradictory score for the ORF10
protein; the VaxiJen tool ranks it as the most antigenic protein on our list (0.85), while
AntigenPro ranks it as the least antigenic protein (0.04). The reason why ORF10 protein
gets a low score with the AntigenPro tool is likely that ORF10 protein has no similar protein
reported previously. Since the AntigenPro tool is unable to analyze proteins with amino
acid lengths longer than 1500, nsp3 (1944 aa) was not assessed (Supplementary Table S1.1).
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In contrast, the VaxiJen tool provided a score of 0.61 for nsp3, which is higher than that of
the spike protein (0.55) (Supplementary Table S1.2).

After selecting the immunogenic proteins of SARS-CoV-2, 464 epitopes derived from
the selected viral proteins were identified by searching the IEDB; 66 epitopes were identified
as B-cell epitopes, and 398 epitopes were identified as T-cell epitopes, including 293 CD4(+)
T-cell epitopes and 105 CD8(+) T-cell epitopes. Next, epitope density was calculated for
each selected protein, and the values are summarized in Table 1 (for B-cell antigens) and
Table 2 (for T-cell antigens). For the selected T-cell antigens, epitope density was calculated
based on the activation of both CD8(+) T cells and CD4(+) T cells, along with the allele
coverage for CD8(+) T cells (Table 2). The allele coverage was calculated using the following
12 alleles within the population: HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-A*11:01,
HLA-A*23:01, HLA-A*24:02, HLA-B*07:02, HLA-B*08:01, HLA-B*35:01, HLA-B*40:01,
HLA-B*44:02, and HLA-B*44:03. The scores of allele coverage ranged from 0 to 1, in which
unity corresponds to full coverage value (i.e., 12 coverages out of 12 allele subtypes).

B-cell epitope densities for three virion membrane proteins (nucleocapsid protein,
membrane glycoprotein, and spike protein) were found to have similar scores at around
0.03, while ORF10 had the highest epitope density with a value of 0.131, which is 4-fold
higher than that of the other three proteins. The CD4(+) epitope densities of T-cell antigens
ranged from 0.015 to 0.062 (nsp6 (0.062), nsp4 (0.044), ORF3a (0.036), ORF10 (0.026), and
low values for both spike protein and nsp3 (0.015 and 0.017, respectively). Thus, the
spike protein and nsp3 are less likely to activate CD4(+) cells (helper T cells) because both
proteins were predicted to contain fewer CD4(+) epitopes compared to the other antigenic
proteins (nsp6, nsp4, ORF3a, and ORF10). In contrast, CD8(+) epitope densities ranged
from 0.058 to 0.131 for the T-cell antigens; the highest value was obtained for ORF10 (0.131),
followed by the nsp4 protein (0.080). Thus, ORF10 and nsp4 are very likely to activate
CD8(+) cells (i.e., cytotoxic T cells). As for the allele coverage score, the lowest score (0.25)
was assigned to ORF10, followed by nsp6 with a score of 0.75. The remaining three proteins
(spike protein, nsp3, and nsp4) exhibited the highest score of 1.0 with maximum allele
coverage, suggesting that these three proteins have a wider coverage within the population.

3.3. Analysis of Epitopes Selected from the Antigenic SARS-CoV-2 Proteins

Another type of subunit vaccine, the epitope-based vaccine, relies on the fundamental
immunogenic components of the antigens, which are mainly responsible for protective
and specific immune responses. Thus, our next step was to analyze the epitopes in our
selected antigens, which were SARS-CoV-2 proteins selected in the preceding screening
steps. Seven epitopes identified from the previous step using the IEDB online tool were first
subjected to the VaxiJen online tool to predict their antigenicity scores with a cutoff > 0.4.
Among the B-cell epitopes (Table 3), the spike protein has an epitope with a score of 1.19,
and another epitope with a score of 0.88. ORF10 harbors the most antigenic epitope with a
score of 1.34, while membrane glycoprotein contains an epitope with a score of 1.00 and
another epitope with a score of 0.53. The two epitopes within the nucleocapsid protein
have scores of 0.74 and 0.52 (Table 3).

It is well known that IFN-γ plays a crucial role in defense activation and the regulation
of pathways to elicit the antiviral activity of CD8(+) and CD4(+) T cells [48,49]. In addition
to the antigenicity score, the ability of the T-cell epitopes to induce IFN-γ was predicted
using the IFNepitope online tool (Table 4). Subsequently, allele coverage was calculated
for CD8(+) T-cell epitopes for the 12 most distributed alleles within human populations
(Table 4). For the CD4(+) T-cell epitopes, allele coverage was assessed based on the
IEDB consensus percentile with 10 % as a cutoff to enhance selection stringency. The
IEDB consensus percentile is a uniform scale that allows comparisons between different
predictors of HLA class II responses at the population level. This is a preferred method for
the prediction of affinity to CD4(+) as the median consensus percentile (MCP), in which a
lower value reflects a higher affinity of the epitope for CD4(+) cells. Analysis of the T-cell
epitopes resulted in the identification of five epitopes for CD8(+) cells and three epitopes
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for CD4(+) cells, which were found to fulfill three criteria, namely antigenicity, IFN-γ
induction, and allele coverage, for both CD8(+) and CD4(+) cells (Table 4). Among the
T-cell epitopes, the five epitopes for the stimulation of CD8(+) cells were predicted to have
maximum allele coverage (12 out of 12 allele subtypes) with different antigenicity scores.
The highest antigenicity score of 1.27 was observed in the third epitope of nsp3, which was
followed by the nsp6 and ORF10 epitopes with scores of 1.11 and 0.90, respectively. These
three epitopes were predicted to be CD8(+) cell-activating epitopes. Moreover, with respect
to the CD4(+) cell-stimulating epitopes, the ORF3a epitope had the highest antigenicity
score (0.81) with a median consensus percentile of 4.8. The remaining two CD4(+) cell-
stimulating epitopes, nsp3 and nsp4, with an identical score of 0.41, showed a median
consensus percentile of 9.9 and 2.0, respectively. Subsequently, toxicity and host homology
were assessed using ToxinPred (Supplementary Table S1.3) and BLAST-NCBI, respectively.
None of the selected epitopes were predicted to have toxicity or host homology (in humans).
Thus, a total of 15 epitopes in the 8 viral proteins were identified as antigenic epitopes
responsive to immune cells, making them potential vaccine candidates (Tables 3 and 4 for
B-cell antigens and T-cell antigens, respectively).

Table 3. B-cell epitopes of SARS-CoV-2 and their corresponding antigenicity scores.

NCBI Ref. Seq. Accession ID B-Cell Epitope Sequence VaxiJen Score

YP_009724393.1 (M)
105 RTRSMWSFNPETN 117 (epitope 1) 1.00

168 ITVATSRTLSYYKLGASQRVAGDSGFAA 195 (epitope 2) 0.53

YP_009724397.2 (N)

354 NKHIDAYKTFPPTEPKKDKKKKTDEAQPLPQRQKKQPTVTLL-
PAADM 400
(epitope 1)

0.52

177 RGGSQASSRSSSRSRNSSRNSTPGSSRGTSPARMAGNGG 215
(epitope 2) 0.74

YP_009724390.1 (Spike) 65 FHAIHVSGTNG 75 (epitope 1) 0.88
10 LVSSQCVNLTTRT 22 (epitope 2) 1.19

YP_009725255.1
(ORF10) 28 AQVDVVNFNLT 38 1.34

Table 4. T-cell epitopes of SARS-CoV-2 and their corresponding antigenicity scores, IFN-γ induction, and HLA coverage
(CD8+) and/or MCP (CD4+).

NCBI Ref. Seq.
Accession ID

T-Cell Epitope Sequence
(Responsive T Cell) VaxiJen Score IFNepitope HLA Coverage

(CD8+)/ MCP*(CD4+)

(nsp3)
YP_009724389.1

1437 TLNDLNETL 1445 (CD8)
(epitope 1) 0.75 + 12/12

2351 FSYFAVHFISNSWLM 2365
(CD4) (epitope 2) 0.41 + 9.9

2901 KLIEYTDFA 2909 (CD8)
(epitope 3) 1.27 + 12/12

(nsp4)
YP_009724389.1

3151 KHFYWFFSNYLKRRV 3165
(CD4) 0.41 + 2.0

(nsp6)
YP_009724389.1 3666 WLDMVDTSL 3674 (CD8) 1.11 + 12/12

(Spike)
YP_009724390.1 258 WTAGAAAYY 266 (CD8) 0.63 + 12/12

(ORF3a)
YP_009724391.1 66 KKRWQLALSKGVHFV 80 (CD4) 0.81 + 4.8

(ORF10)
YP_009725255.1 27 IAQVDVVNF 35 (CD8) 0.90 + 12/12

* Median Consensus Percentile.
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Moreover, T-cell epitopes were analyzed for their TLR4 binding using the HPEPDOCK
server; as a control, a synthetic lipopolysaccharide peptide was used (docking scores are
summarized in Supplementary Table S2, overview of the molecular docking for epitopes
is in Figure S2). Compared with the docking score of the control peptide (−152.192), all
identified T-cell epitopes were predicted to have higher scores except for the epitope 1
of nsp3, TLNDLNETL, with a score of (−151.528). More importantly, the HPEPDOCK
negative docking score reflects a better docking with a higher binding affinity between
T-cell epitopes and TLR4, suggesting that these selected epitopes are likely promising
vaccine candidates.

3.4. Analysis of Mutational Replacements in the Selected Epitopes

Developing a vaccine that covers the entire population of recipients as much as possi-
ble is the most important goal in effective vaccine development. Accordingly, variations
and polymorphisms in the antigens may create challenges in subunit vaccine development.
Therefore, a mutation analysis of all publicly available isolates of SARS-CoV-2 derived
from patients was performed to check for the mutations within the selected epitopes. First,
all mutations were collected from the CoV-GLUE, a web application to track SARS-CoV-2
genome sequences (32,435 mutations at the time of analysis as of January 2021, Supplemen-
tary Table S1.4). The distribution of mutations in the SARS-CoV-2 proteome was analyzed,
and the number of mutations in each protein was ranked and presented as a percentage
(Figure 2). The analysis showed that 21% of mutations were distributed in the nsp3 pro-
tein followed by 13% in the spike protein. Viral proteins with a mutation distribution of
less than 10% and higher than 3% were ranked in the following order: nsp12 (8%), nsp2
(7%), nsp13 (5%), nsp14 (5%), nsp4 (5%), N (5%), nsp15 (4%), and ORF3a (4%). After the
analysis of the mutational distribution of the SARS-CoV-2 proteome, the mutation density
(MD) for the selected proteins was calculated, in which values of MD were normalized
to be 1 as the highest possible value and 0 as the lowest possible value (Tables 1 and 2).
Among our selected proteins, ORF3a has the highest mutation density (1.00) followed by
the nucleocapsid phosphoprotein and nsp3 with values of 0.85 and 0.81, respectively.

Figure 2. Distribution of SARS-CoV-2 mutations represented as percentage per protein (mutations
collected from the CoV-GLUE).
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Next, epitopes that were selected from our RV workflow were screened to select epi-
topes with minimal or null mutations (Supplementary; Table S1.5 containing the mutations
among selected epitopes). To do this, the mutation density per amino acid site (i.e., site
mutation density) was calculated per 100,000 sequences. The site mutation density results
were grouped into three categories. The first category consisted of epitopes with mutations
with MD < 0.01. These epitopes were accepted. The second category consisted of epitopes
with > 3 sites, each with MD > 0.5. These epitopes were excluded. The third category
consisted of epitopes with 1–3 sites, each with MD between 0.01 and 0.5. These epitopes
were subjected to reanalysis.

Based on these categories, two epitopes were excluded as both harbored more than
three mutations (each with MD > 0.5): nucleocapsid phosphoprotein epitopes (epitope 1:
177RGGSQASSRSSSRSRNSSRNSTPGSSRGTSPARMAGNGG215 with seven mutations and
epitope 2: 354NKHIDAYKTFPPTEPKKDKKKKTDEAQPLPQRQKKQPTVTLLPAADM400
with five mutations). On the other hand, five epitopes were subjected to reanalysis for their
antigenicity, toxicity, and host homology using new sequences with the highest frequent
replacement (summarized in Table 5). Among the three epitopes of the spike protein,
two epitopes were found to have mutations; the B-cell epitope (10LVSSQCVNLTTRT22)
had L18F and R21I mutations, and the T-cell epitope (258WTAGAAAYY266) had a A262S
mutation. The ORF10 epitope (27IAQVDVVNF35) had a V30L mutation. Comparison of
the reanalyzed antigenicity scores of these epitopes to those of their original sequences
showed similar and/or higher antigenicity scores. Both the membrane glycoprotein epitope
(168ITVATSRTLSYYKLGASQRVAGDSGFAA195), with a T175M mutation, and the ORF3a
epitope (66KKRWQLALSKGVHFV80), with a K75N mutation, showed lower antigenicity
scores compared to their original sequences. Despite mutational replacements, most epitope
sequences are predicted to retain immunogenicity without toxicity and host homology.
Thus, filtering out 2 epitopes through mutation analysis provided a shortlist of 13 potential
epitopes, from which 8 epitopes with no modification and 5 epitopes with suggested
modifications are shown in Table 5.

Table 5. Epitopes selected for reanalysis with their respective site mutation densities and the highest frequent replacement.
New sequences of epitopes are listed with their antigenicity scores (Bold and underlined sequences denote replaced residues).

Protein Name Site Mutation
Density

Highest Frequent
Replacement New Epitope Sequence VaxiJen Score

Spike

0.210 L18F LVSSQCVNFTTRT (Epitope 1) 1.4
0.016 R21I LVSSQCVNLTTIT (Epitope 1) 1.0
− L18F/R21I LVSSQCVNFTTIT (Epitope 1) 1.2

0.024 A262S WTAGSAAYY (Epitope 2) 0.60

M 0.012 T175M ITVATSRMLSYYKLGASQRVAGDSGFAA 0.44

ORF3a 0.026 K75N KKRWQLALSNGVHFV 0.70

ORF10 0.437 V30L IAQLDVVNF 0.94

3.5. Structural Prediction of Epitopes with Replacements and ORF10

The structures of epitopes with replaced amino acids (Table 5) were predicted and
compared with the structures of unmutated epitopes (Figure 3). As compared with the
structure of the unmutated spike protein epitope 1, the mutated spike epitope 1 did not
show any significant change in its alpha-helical structure with replacement of amino
acids: Leu to Phe at position 18, Arg to Ile at 21, and double replacements Phe/Ile at
18/21. Similarly, the alpha-helical structures of the epitope of ORF3a and epitope 2 in the
spike protein were not different from those of the unmutated epitopes. In contrast, the
epitope with a replacement of T175M present in the membrane glycoprotein was predicted
to exhibit a significant change in its alpha-helical structure as compared to the original
epitope, which is likely to affect vaccine efficacy. Interestingly, the ORF10 epitope with the
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V30L mutation was predicted to have a loop structure similar to the unmutated epitope,
which is likely due to its simple and random structure.

It is well known that viruses exploit the ubiquitination pathway for their pathogenesis
and replication [50,51]. A previous interactome analysis of SARS-CoV-2 revealed that
ORF10 protein may play a role in hijacking the ubiquitination pathway of the host proteins,
in which ORF10 directly interacts with one member of the Cullin 2 (CUL2)-RING E3
ligase complex [52]. Given that ORF10 is involved in the manipulation of host proteins
for viral pathogenesis, we performed a structural analysis of ORF10 despite its lack of
homology to known proteins or conserved domains. The structural features of ORF10
were assessed using two protein structure prediction tools, PredictProtein and PEP-FOLD3.
Several secondary structural features of the ORF10 protein were predicted (Supplementary
Figure S1). Based on the ORF10 amino acid sequence, most amino acids were predicted to be
exposed to the solvent (Supplementary Figure S1). Although ORF10 is a short polypeptide
with 38 amino acids, it is predicted to have an alpha-helix that can form a complex with the
CUL2 member. In addition, ORF10 has highly antigenic epitopes (Tables 3 and 4), which
are promising subunit vaccine candidates awaiting further validation studies in vivo. The
role of ORF10 is still controversial, as there are two different views: one view relies on the
lack of evidence on ORF10 expression or function in host cells, suggesting that ORF10 is a
non-essential and most likely non-expressed protein [53], while the second view suggests
ORF10 as a potential target for vaccine development [54], which supports our prediction.

Figure 3. Structural prediction of epitopes with amino acid substitutions (Table 5) using the PEP-
FOLD3 tool with their local structure prediction profile. Graphical presentation of local structure
prediction profile with color codes: red, helical; green, extended; and blue, coil.
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4. Discussion

During the current pandemic caused by SARS-CoV-2, effective vaccination is an urgent
concern. In this in silico study, we aimed to identify potential B- and T-cell epitopes by
first analyzing probable SARS-CoV-2 proteins for a manageable list of epitopes that are
promising candidates for vaccine development. Our epitope selection process involved the
identification of major antigens for the stimulation of B and T cells using protein analysis
and epitope-based analysis and provides a comprehensive workflow for the discovery of
antigenic candidates. SARS-CoV-2 proteins, such as spike, M, and N, were selected as B-cell
antigens and were reported as B-cell targets in SARS-CoV-2 patients [55]. Nucleocapsid
phosphoprotein, which is responsible for the first B-cell response, has been reported to
antagonize the RNAi pathway (antiviral immune defense mechanism) and play a role in
immune evasion by suppressing IFN-I [56,57]. Membrane glycoprotein, which is the most
abundant viral protein in SARS-CoV-2, plays a role in viral assembly and the negative
regulation of the host antiviral response. It has been reported to exhibit pathogenicity
through its C-terminal region [58], which was found to have a highly immunogenic domain
in our study; the selected epitope (105-117) lies within the pathogenic C-terminal region
(100221). The spike protein is the main target for neutralization by B cells, as it holds the
receptor-binding domain (RBD) that binds to the host target cell receptor, which mediates
the fusion of the viral membrane to the host cell membrane [59,60].

The alternatively selected T-cell antigens comprise non-structural proteins as potential
targets, such as nsp3, nsp4, and nsp6, which together initiate and assemble the double-
membrane vesicles [61,62]. The viral non-structural protein nsp3, also known as papain-like
protease protein, was found to be involved in regulating the host’s innate immune response
by antagonizing the NF-kB signaling and IFN induction pathways [63,64]. Nsp6 is known
to be associated with the restriction of autophagosome expansion, inhibiting the transfer of
viral components to lysosomes [65]. In addition, the ORF3a protein has also been selected
as the T-cell antigen; this protein is known to be involved in the suppression of the innate
immune response. Importantly, ORF3a is also responsible for generating cytokine storms
through the activation of NF-κB and the NLRP3 inflammasome pathways [66,67].

Choosing the appropriate epitopes is the most critical step in the development of a
subunit vaccine. Accordingly, our work aimed to provide a list of SARS-CoV-2 antigens con-
sisting of viral proteins as well as epitopes. Our predicted antigens could thus be utilized
to test either viral proteins to mimic their natural configuration during the development
of a subunit vaccine or peptide epitopes as potent immune activator parts of the antigens
during the development of peptide-based vaccines [68,69]. To gain protective antiviral
immunity, both T-cell and B-cell responses were included in our study; not only were
both T-cell and B-cell epitopes identified, but they were further analyzed and prioritized.
Mutation analysis, host homology analysis, and epitope toxicity prediction are critical
steps required to discover better vaccine candidates with higher coverage and minimal
side effects.

Mutations within the selected epitopes could potentially impact the population cov-
erage and efficiency of the vaccine. Thus, after the analysis of contemporary mutants
of SARS-CoV-2 among worldwide isolates collected from the GISAID, we checked the
conservation of immunogenicity in the selected epitopes to offer broader protection vaccine
candidates. According to the World Health Organization, new variant strains that harbor
approximately 14 mutations may impact transmissibility and therapies [70].

Among these 14 mutations, N501Y and P681H were found within the RBD of the spike
protein, which was not found within the selected epitopes. In contrast, the L18F mutation,
which has a high mutation frequency, is found within our selected epitopes (epitope 2
in the spike protein) [71,72]. Although L18F has a high frequency among sequences, no
reported impact on virus transmissibility or severity has been reported. Hence, using this
variant to design a subunit vaccine based on the respective epitopes would not hamper the
coverage and immunogenic response.
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Recently, a peptide microarray study of the SARS-CoV-2 proteome was performed
to analyze antibody interactions at amino acid resolution [73]. Among the list of epi-
topes identified in the serum, several epitopes were found to be matched with our
selected epitopes, such as the two epitopes derived from the membrane glycoprotein,
namely 105RTRSMWSFNPETN117 and 168ITVATSRTLSYYKLGASQRVAGDSGFAA195, and
the ORF3a-derived epitope, 66KKRWQLALSKGVHFV80 (the matched sequence is under-
lined). In addition, an epitope derived from the spike protein—258WTAGAAAYY266—has
been identified in several in silico studies [25,26,74,75] and was later identified as one of the
epitopes that induce long-term immunity [76]. Moreover, several studies have identified
that immunodominant epitopes from patients were overlapped with 8 epitopes out of
13 identified epitopes from our list [77–79]. Altogether, these studies further validate our
approach, supporting the use of the epitopes screened in our study to develop an efficient
SARS-CoV-2 vaccine. To our knowledge, our study is the first attempt to utilize a workflow
involving the assessment of a series of parameters, including antigenicity, allele coverage,
and mutation analysis, for evaluating the selected epitopes.

In conclusion, using an in silico approach to screen vaccine candidates, we obtained
effective candidates that can be used for SARS-CoV-2 vaccine development. Our in silico
RV approach was composed of two parts: (1) analysis of the various functional aspects
of viral proteins, including antigenicity, allele coverage, epitope density, and mutation
density, was carried out for the selected proteins based on annotated cellular location; and
(2) epitopes were analyzed for antigenicity, allele coverage, IFN-γ induction, toxicity, host
homology, and site mutational density. By narrowing down the list of candidate epitopes
with mutational replacements, we offer a list of 13 epitopes as subunit vaccine candidates.
The candidates identified using our approach can be further tested as recombinant proteins
in in vitro or in vivo studies to validate their antigenicity and avoid unwanted side effects
such as antibody-dependent enhancement.

Supplementary Materials: The following content is available online at https://www.mdpi.com/
article/10.3390/v13050787/s1: Figure S1: Analysis of ORF10 protein; Figure S2: HPEPDOCK molec-
ular docking analysis showing structures of T-cell epitopes with TLR4; Table S1, Excel spreadsheet
containing the following: (1) B-cell target antigenicity scores, (2) T-cell target antigenicity scores, (3)
ToxinPred results (B-cell epitopes are blue shaded, T-cell epitopes are orange shaded, and epitopes
with mutations have no colored shade), (4) Mutations collected from CoV-GLUE, and (5) Mutations
within the selected epitopes (replaced mutations indicated as a red-colored background; intensity
indicating density); Table S2: T-cell epitopes and their docking scores.
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