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Abstract: A phosphate-substituted, zwitterionic berberine derivative was synthesized and its binding
properties with duplex DNA and G4-DNA were studied using photometric, fluorimetric and polari-
metric titrations and thermal DNA denaturation experiments. The ligand binds with high affinity
toward both DNA forms (Kb = 2–7 × 105 M−1) and induces a slight stabilization of G4-DNA toward
thermally induced unfolding, mostly pronounced for the telomeric quadruplex 22AG. The ligand
likely binds by aggregation and intercalation with ct DNA and by terminal stacking with G4-DNA.
Thus, this compound represents one of the rare examples of phosphate-substituted DNA binders.
In an aqueous solution, the title compound has a very weak fluorescence intensity (Φfl < 0.01) that
increases significantly upon binding to G4-DNA (Φfl = 0.01). In contrast, the association with duplex
DNA was not accompanied by such a strong fluorescence light-up effect (Φfl < 0.01). These different
fluorimetric responses upon binding to particular DNA forms are proposed to be caused by the
different binding modes and may be used for the selective fluorimetric detection of G4-DNA.

Keywords: alkaloids; zwitterion; light-up probe; DNA ligand; G4-DNA; quadruplex DNA

1. Introduction

Among the various methods used for the detection of analytes in biological sys-
tems, small probe molecules that change their photophysical properties upon interaction
with the analyte are particularly useful as they may be employed to detect biomolecules
even in living organisms and may thus provide real-time information about biological
processes [1,2]. Along these lines, fluorescent probes that either change their emission
energy (color) or fluorescence quantum yield (intensity) upon association with a target
molecule are of special interest [3–5]. In this context, nucleic acids are an important tar-
get class of analytes because they are relevant in many biological processes [6,7] and are
therefore a key target in the treatment of several diseases [8–10]. Besides the detection of
double-stranded DNA, there is also growing interest for the detection of noncanonical
DNA structures like G-quadruplex DNA (G4-DNA) since they are relevant for biological
activities such as gene transcription [11–14] or telomerase inhibition [15]. Consequently,
many fluorescent probes have been reported that target DNA with high selectivity and
efficiency in vitro and in vivo [16–27]. Among the many different classes used for the
development of DNA-sensitive fluorescent probes, natural products like sanguinarine,
coralyne, or berberine (1a) are particularly well suited as starting points because of their
combination of favorable photophysical properties with a high biocompatibility and high
affinity toward G4-DNA [28,29]. In fact, many fluorescent light-up probes based on these
natural products have been developed that show a highly selective increase in their emis-
sion intensity upon binding to G4-DNA [20–34]. Among the natural products, berberine
and its derivatives are extensively studied substrates because the biocompatibility of this
class of compounds has been demonstrated with their application in the treatment of vari-
ous diseases [35–38]. Moreover, these compounds exhibit a light-up effect upon binding
to polyanionic analytes like DNA, which is, however, rather unselective for the parent
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berberine [28,33,39,40]. Since the fluorescence of berberine is dependent on the polarity
of the environment [41,42], the light-up effect upon complexation to DNA is significantly
influenced by the binding mode of the ligand. As a result, the introduction of substituents
that lead to particular binding modes of berberine derivatives to different DNA forms
should enable a more selective light-up effect of the bound ligand. In this context, we
focused our attention to anionic substituents. Based on the observation that anions can
coordinate to specific binding sites of DNA [43–46], we reasoned that a substitution of
berberine with anionic substituents may also result in particular binding modes, which
in turn would cause distinct light-up effects. However, to the best of our knowledge, the
DNA-binding properties of only a few DNA ligands with anionic substituents have been
investigated and it has been found that these ligands exhibit a negligible affinity toward
double-stranded DNA, which is supposedly caused by the strong repulsion between the
negatively charged ligands and the phosphate backbone of the DNA [47–49]. Thus, these
ligands obviously do not exhibit a significant affinity to the anion binding sides of the
DNA mentioned above. Nevertheless, the positively charged nitrogen atom of the iso-
quinolinium unit of berberine may compensate at least the negative charge and provide
an overall charge-neutral substrate. In fact, a zwitterionic anthraquinone has already
been reported that exhibits a similar binding affinity to DNA as compared to its cationic
parent system [50]. Along the same lines, porphyrine and phthalocyanine ligands with
negatively charged substituents, with hemin as the most prominent example, show a high
affinity and selectivity toward G4-DNA [51–56]. Therefore, it may be concluded that under
particular circumstances the G4-DNA tolerates a negative charge of the ligand. In this
context, we propose that a berberine derivative with an anionic substituent may also exhibit
some special DNA-binding properties based on the combination of the different structural
properties, which in turn should lead to particular optical responses of the DNA-bound
ligand. Hence, we synthesized a phosphate-substituted zwitterionic berberine derivative,
namely 9-O-Phosphonatoberberrubin (2), and investigated its interactions with duplex and
quadruplex DNA with a special focus on fluorimeric DNA detection.

2. Results and Discussion
2.1. Synthesis

The 9-O-Phosphonatoberberrubin (2) was synthesized from berberrubine (1b) in a
two-step synthesis (Scheme 1). In the first step, the reaction of berberrubine (1b) with
POCl3 gave an intermediate phosphoryl dichloride that was directly hydrolyzed to obtain
the product 2 with a 44% overall yield. The NMR-spectroscopic analysis (1H, 13C, COSY,
HSQC, HMBC), elemental analysis, and mass-spectrometric data were in accordance with
the structure assignment of product 2.
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Scheme 1. Synthesis of 9-O-Hydrogenphosphonatoberberrubin (2).

2.2. Absorption and Emission Properties

The absorption and emission properties of compound 2 could only be tested in a
few selected solvents because of its low solubility, especially in nonpolar solvents. This
derivative exhibited similar absorption and emission properties as the parent berberine
(1a) [41] with only a negligible effect from the solvent. Thus, the absorption maxima of
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the long-wavelength bands range between 424 nm (aqueous buffer) and 431 nm (MeOH,
EtOH, 1-PrOH, MeCN, Table 1, Figure S1). However, the near-UV absorption bands
between 346 nm (aqueous buffer) and 350 nm (MeOH) are slightly red-shifted as compared
to 1a (MeOH: ∆λ = 10 nm). At the same time, the derivative 2 has only a very weak
emission with maxima between 531 nm (1-PrOH) and 558 nm (MeOH). The fluorescence
quantum yields are generally higher in less polar solvents (e.g., 1-PrOH: Φfl = 0.04) as
compared to polar protic solvents (aqueous buffer: Φfl < 0.01), which was also found for
the parent berberine (1a) and may be interpreted as a result of a charge transfer (CT) in
the excited state [41,42]. Usually, a CT is closely accompanied by conformational changes
that may cause a symmetry-forbidden transition between the CT-excited state and the
ground state [57]. Specifically, the oscillator strength of the CT state is very low, which in
turn decreases the probability for emission from the CT state. Since the CT state is more
stabilized in polar solvents, the fluorescence quantum yields are especially low in these
solvents [57,58].

Table 1. Absorption and emission properties of derivatives 1a and 2 in different solvents.

Solvent λabs
a/nm lg ε b λfl

c/nm νabs − νfl
d/cm−1 Φfl

e

2 1a f 2 2 1a f 2 1a f 2 1a f

MeOH 431 429 3.98 558 540 5280 4790 0.01 0.01
EtOH 431 430 3.98 537 536 4580 4600 0.02 0.03

1-PrOH 431 3.94 531 4369 0.04
MeCN 431 430 3.91 537 537 4579 4630 0.03 0.02
DMSO 430 425 3.97 547 553 4974 5500 0.01 <0.01
Buffer 424 3.92 535 4893 <0.01

a Long-wavelength absorption maximum; c = 20 µM. b ε = Molar extinction coefficient in cm−1 M−1. c Fluorescence emission maximum;
λex = 430 nm. d Stokes shift: Energy difference between absorption and emission maximum. e Fluorescence quantum yield relative to
coumarin 153 in EtOH (Φfl = 0.544). Ref. [59]. f Ref. [41].

Overall, the resemblance of the absorption and emission properties of the berberine
derivative 2 with the ones of the parent compound 1a show that the phosphate group has
essentially no special impact on the electronic transitions of the berberine unit as compared
with the regular methoxy substituent of 1a.

To gain further insight into the factors that cause the weak fluorescence of compound
2, the dependence of the emission on the viscosity of the solvent was studied using
measurements in glycerol, with a 0.25% DMSO to achieve sufficient solubility, at different
temperatures (Figure 1) because the viscosity of this solvent changed from η = 1412 cP
at 20 ◦C to η = 32 cP at 80 ◦C [60]. These experiments revealed a fluorescence quantum
yield at a higher viscosity, i.e., Φfl = 0.03 at 20 ◦C, that decreased at a higher temperature
(Φfl = 0.01 at 80 ◦C). This observation indicated additional pathways for a nonradiative
deactivation of the excited state by conformational changes, for example, by torsional
motions of the substituents or the more flexible C5-C6 ethano unit. However, since the
fluorescence in solvents with low viscosity, such as 1-PrOH (Φfl = 0.04, η = 2.18 cP) [61]
or MeCN (Φfl = 0.03, η = 0.36 cP) [61], is comparable to the one in glycerol at 20 ◦C, the
fluorescence obviously depends not only on the viscosity.
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2.3. Photometric DNA Titrations

The binding properties of derivative 2 with double-stranded calf thymus (ct) DNA
and G4-DNA were investigated by photometric titrations. For this purpose, a small
series of biologically relevant quadruplex-forming oligonucleotides was selected, namely
the parallel c-myc (d[AG3AG3CGCTG3AG2AG3]) and c-kit (d[TGA(G3TG3TA)2]), and
the mixed parallel/antiparallel a2 (d[(ACAG3TGT)2]), which are found in the promoter
regions of myc, kit and insulin [11–14], as well as 22AG (d[A(T2AG3)3G3]), which is
located in the single-stranded DNA overhang of human telomers and forms a hybrid
antiparallel–parallel conformation [15]. As a general trend, a continuous decrease and
a red shift of the absorption bands at 346 nm and 424 nm were observed upon addition
of DNA (Figure 2, Figure S3). Interestingly, the red shift was slightly more pronounced
in the presence of G4-DNA (∆λ = 10–12 nm; ∆ν = 543–649 cm−1) as compared to ct
DNA (∆λ = 6 nm; ∆ν = 329 cm−1). Moreover, no isosbestic points were observed during
the titrations, which usually indicates different binding modes at varying ligand–DNA
ratio (LDR). The resulting binding isotherms from the photometric titrations were used to
determine the corresponding binding constants Kb (Table 2, Figure S5) [62]. Accordingly,
the binding constant of the ligand 2 with ct DNA was slightly lower (Kb = 2.2 × 105 M−1)
than the ones with G4-DNA (Kb = 5.0–6.9 × 105 M−1), and these values are in the same
range as the binding parameters of berberine (1a) with ct DNA (Kb = 9.7 × 104 M−1) [38]
and 22AG (Kb = 4.5 × 105 M−1) [28]. The relatively high affinity of derivative 2 to DNA
is somewhat surprising because the introduction of negatively charged substituents is
commonly believed to decrease the affinity of a DNA ligand. For example, the introduction
of phosphate groups to known DNA binders, such as naphthalimide, napthaldiimide, or
diaminomitosene [47–49], leads to a significantly decreased affinity to DNA as compared to
the parent compounds, presumably due to the electrostatic repulsion between negatively
charged phosphate substituent and the negatively charged DNA backbone. At the same
time, anions have been shown to bind to DNA via specific associations with the DNA
bases, and a zwitterionic anthraquinone has been reported to bind to DNA with the same
affinity as the corresponding cationic system [50]. Thus, the berberine 2 represented one of
the rare examples of ligands with anionic substituents that bind with sufficient affinity to
duplex DNA. At the same time, the affinity toward G4-DNA was in good agreement with
the one of the few already known anionic G4-DNA ligands [51–54].
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Figure 2. Photometric titration of 2 (c = 20 µM) with ct DNA (a) in a BPE buffer (cNa+ = 16 mM, pH 7.0, with 5% v/v DMSO)
and with a2 (b) in a K-phosphate buffer (cK+ = 110 mM, pH 7.0, with 5% v/v DMSO). The arrows indicate the changes in
absorption upon the addition of DNA. Inset: Plot of the absorption at 345 nm versus DNA concentration.

Table 2. Binding constants, Kb, and shifts of DNA melting temperature, ∆Tm, of 2 with ct DNA and
G4-DNA, and fluorescence quantum yields, Φfl, of the DNA-bound ligands.

DNA Kb/105 M−1 b Φfl
c ∆Tm/◦C d

ct DNA 2.2 ± 0.2 <0.01
22AG/F21Ta 5.0 ± 0.6 0.01 3.6
c-kit/FkitTa 6.9 ± 0.2 0.01 1.0
a2/Fa2T a 6.7 ± 0.2 0.01 0.6

c-myc/FmycT a 5.9 ± 0.4 0.01 2.2
a Dye-labeled oligonucleotides: F21T = fluo-G3(TTAG3)3-tamra, Fa2T = fluo-(ACAG3TGT)2-tamra, FmycT = fluo-
TGAG3TG3TAG3TG3TA-tamra, FkitT = fluo-AG3AG3CGCTG3AG2AG3-tamra, fluo = fluorescein, tamra = tetram-
ethylrhodamine b Determined from photometric titrations (cf. Figure S5). c Fluorescence quantum yield relative
to coumarin 153 in EtOH (Φfl = 0.544, Ref. [59]). d Determined from fluorimetric analysis of dye-labeled oligonu-
cleotides, LDR = 5; cDNA = 0.2 mM (in oligonucleotides); KCl–LiCl–cacodylat buffer cK+ = 10 mM, cNa+ = 10 mM,
cLi+ = 90 mM, pH 7.0) λex = 470 nm; λem = 515 nm; estimated error: ±0.5 ◦C.

2.4. Thermal DNA Denaturation Experiments

The stabilization of different G4-DNA forms toward thermally induced unfolding
via association with ligand 2 was examined by thermal DNA-denaturation experiments.
For that purpose, the melting temperature, Tm, of the dye-labeled quadruplex-forming
oligonucleotides F21T, Fa2T, FmycT, and FkitT was determined using fluorescence spec-
troscopy (Table 2, Figures S6 and S7) [63]. The induced shifts of the melting temperature,
∆Tm, indicated that ligand 2 slightly stabilized the quadruplex forms F21T (∆Tm = 3.6 ◦C,
at LDR = 5) and FmycT (∆Tm = 2.2 ◦C), and has essentially no effect on the oligonucleotides
FkitT (∆Tm = 1.0 ◦C) and Fa2T (∆Tm = 0.6 ◦C). Notably, the ∆Tm values were, in most
cases, not affected by the presence of a potentially competitive double-stranded DNA as
formed by the self-complementary oligonucleotide ds26 (F21T/ds26: ∆∆Tm = –0.4 ◦C;
FRETS = 0.89, FkitT/ds26: ∆∆Tm = 0.0 ◦C; FRETS = 1.00, Fa2T/ds26: ∆∆Tm = −0.2 ◦C;
FRETS = 0.67) (Figures S6 and S7), which revealed a selective association of the ligand with
the G4-DNA structures in the mixtures of both oligonucleotides. Only the stabilization
of oligonucleotide FmycT was affected marginally by the presence of ds26 (FmycT/ds26:
∆∆Tm = −1.3 ◦C; FRETS = 0.41).

2.5. CD and LD Spectroscopy

Circular dichroism (CD) spectroscopy and flow linear dichroism (LD) spectroscopy were
used to examine the interactions of ligand 2 with double-stranded ct DNA in more detail
(Figure 3, Figure S8). Upon the addition of ligand 2, the CD signal of ct DNA at 278 nm
continuously decreased and the intensity of the negative signal at 258 nm strongly increased
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at LDR = 2.0, which may be caused by a strong overlapping induced CD (ICD) signal of
the absorption band of 2 at 290 nm or by changes of the secondary structure of the DNA
during complex formation [64,65]. At the same time, a positive ICD signal developed with a
maximum of 430 nm together with a strong bisignate ICD band with zero transition at the
absorption maximum of 2 at 345 nm at LDR = 1.0–2.0, which indicates the aggregation of the
ligand along the DNA backbone at high LDR [64,65]. To assess whether aggregation occurs
exclusively in the presence of ct DNA, the absorption of a more concentrated solution of 2
(c = 500 µM) in a buffer solution was recorded at different temperatures (Figure S2). The ab-
sorption of the ligand did not change at different temperatures, which indicated that derivative
2 does not aggregate in the absence of DNA even at these relatively high concentrations.
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The flow LD spectra of ct DNA-ligand mixtures revealed negative LD bands with
peaks at 354 nm and 430 nm upon addition of the ligand at LDR = 0–0.5 (Figure 3B). Such
negative LD bands originate from a coplanar alignment of the ligand relative to the DNA
bases and prove the intercalation of the ligand into ct DNA as the dominant binding mode at
low LDR [66] as it has already been found for the parent ligand 1a [67]. Other than derivate
2, however, 1a does not exhibit ICD signals under identical conditions [68], pointing to a
different binding mode, specifically a different orientation within the intercalation pocket
as compared to ligand 2. In the case of the intercalated berberine (1a), the π stacking of the
isoquinolinium part with the DNA bases has been proposed, whereas the benzodioxole
unit is accommodated in the groove [67]. Due to the steric hinderance and the negative
charge of the phosphate substituent, this binding mode is rather improbable for ligand 2.
Instead, in this case the benzodioxole unit more likely intercalates into the binding pocket
and the bulky isoquinolinium-phosphate part points into the groove. In this particular
binding mode, the negatively charged phosphate group has the ability to interact with
amino groups of adenine, guanine, or cytosine via hydrogen bridging as already reported
for sulfate or phosphate ions [43–46]. However, due to the strong electrostatic repulsion
between neighboring ligands, the number of available intercalation sites is limited, leading
to aggregation along the DNA backbone as additional binding mode at high LDR. Likewise,
a known zwitterionic anthraquinone has been assumed to bind by outside-edge binding
to DNA [50], which is in agreement with the aggregation of 2 at high LDR. Nevertheless,
as a notable difference the ligand 2 also intercalates into DNA as confirmed by the LD
spectroscopic investigations.

The binding interactions of ligand 2 with G4-DNA were also examined with CD
spectroscopy (Figure 4). Upon the addition of 2 to oligonucleotide a2, a decrease of the
CD signal at 265 nm and an increase of the shoulder at 290 nm were observed. Although
these changes were only marginal, they may originate from a shift of the equilibrium from
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the parallel (260 nm) to the antiparallel (295 nm) conformation of the quadruplex [69,70].
In contrast, the characteristic DNA signals of 22AG, c-kit and c-myc only fluctuated
a bit or did not even change at all, which indicated that the original conformation of
these oligonucleotides remained intact upon association with ligand 2 [71]. Interestingly,
only solutions of ligand 2 with antiparallel G4-DNA structures c-myc and c-kit exhibited
ICD bands, whereas the hybrid-type 22AG and the mixed parallel/antiparallel a2, both
of which contained loops above the terminal quartet, did not exhibit a significant ICD
signal. Thus, weak positive ICD signals were detected at 354 nm after the addition of 2 to
oligonucleotides c-myc and c-kit, which corresponded to the short-wavelength absorption
band of the ligand. Since positive ICD signals are caused by a nondegenerative coupling of
orthogonal transition dipole moments of the ligand and the DNA bases [70,72], the ICD can
be used to deduce the relative orientation of the ligand within the binding site. In fact, it
had been proposed recently that such a positive ICD band of berberine–adenine conjugates
originates from terminal stacking with the ethano unit of the berberine pointing inside the
quadruplex and the bulky substituents at the 9 position extending into the groove [29].
Since the latter 9-O-substituted berberine derivatives and 2 are assumed to have similar
transition dipole moments, it is concluded that the positive ICD signal of 2 also indicates
a resembling binding mode with c-myc and c-kit (Figure 5). In this binding mode, the
phosphate substituent protrudes into the groove where it can coordinate by hydrogen
bonding to an amino group of the quartet [44]. The intercalation of the ligand is excluded
because this binding mode would require a thermodynamically unfavorable unwinding of
the quadruplex structure, and it should lead to a significant change of the CD sinature of
the G4-DNA, which we did not observe.
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In contrast, no ICD signals of ligand 2 were observed in the presence of 22AG and
a2, which is often proposed to indicate terminal π stacking [73,74], also in the case of the
parent berberine 1a [28,75]. Without a clear positive or negative ICD signal, however, the
orientation of the ligand in the binding site cannot be determined from this result, but
the lack of a positive ICD at least shows that the ligand is positioned differently in the
binding site of 22AG and a2 than with c-myc and c-kit. This discrepancy may be the result
of the different structures of the G4-DNA forms. Specifically, 22AG and a2 contain adenine,
guanine, and thymine residues close to the terminal quartets [76,77], whereas, for c-myc
and c-kit, fewer binding sites are available at these particular positions. In the case of c-kit,
only one amino group of an adenine base is accessible, and c-myc contains only one free
thymine base at one of the terminal quartets [78,79]. Therefore, the π-stacked ligand has
further opportunities to bind with the phosphate to the amino substituents in the loops of
22AG and a2. Furthermore, 22AG contains an adenine triplet above the terminal G-quartet,
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which offers an additional binding site for the phosphate group because it has been shown
that anions bind well to the adenine quartet [45,46].
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2.6. Fluorimetric Titrations

Upon the addition of DNA, the emission of ligand 2, which is hardly detectable in
aqueous buffer solution, continuously increased and emission bands between 530 nm
(22AG) and 544 nm (ct DNA) developed (Figure 6, Figure S4). Most notably, upon the
addition of G4-DNA, a clear light-up effect was observed (Φfl = 0.01), whereas the emission
after the addition of ct DNA still remained very low (Φfl < 0.01). Since the quenching of
the fluorescence of 2 in an aqueous solution is mainly caused by a CT and conformational
relaxation (see above), the partial suppression of both deactivation channels is proposed
to cause the increased emission intensity of the DNA-bound ligand. Firstly, emission
quenching by conformational motions is likely suppressed or at least hindered in the
sterically constrained binding sites. Secondly, the deactivation of the excited state by a CT
is suppressed in the less polar environment within the DNA binding site [55,56,80,81]. In
the case of the complexation of ligand 2 and ct DNA, however, two different binding modes
need to be considered. Upon aggregation along the DNA backbone at high LDR, the ligand
is not completely shielded from the polar aqueous environment, so the excited state is still
deactivated by CT. Moreover, the aggregation enables additional deactivation pathways by
excitonic coupling or charge transfer between the aggregated molecules [82,83], leading,
in combination with the CT, to a very low fluorescence of the DNA-bound aggregate.
Moreover, upon intercalation into the duplex DNA, the conformational freedom is hindered
and the ligand is somewhat shielded from the buffer solution. Overall, the combination of
these effects upon binding of 2 to ct DNA results in a small but still significant increase in
the emission intensity.

The more pronounced increase in the emission intensity of the G4-DNA-bound lig-
and 2 may indicate that the conformational flexibility of the ligand was suppressed more
efficiently upon complexation to this DNA form, e.g., by a tight accommodation of the
ligand in the binding site. Furthermore, the ligand was shielded from the aqueous envi-
ronment, thus leading, in combination with the restriction of conformational flexibility,
to a more pronounced light-up effect. Interestingly, the complexes of 2 with c-myc and
c-kit, which showed a positive ICD, also exhibited slightly lower fluorescence quantum
yields (c-myc: Φfl = 0. 008; c-kit: Φfl = 0.008) compared to the complexes with 22AG
(Φfl = 0.011) and a2 (Φfl = 0.010). Although these differences were very small, especially
considering the error limit, they may still indicate the different binding modes of 2 to the
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particular G4-DNA forms (see above), which in turn caused a slightly different extent of
fluorescence quenching.
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3. Materials and Methods
3.1. Equipment

Absorption: Varian Cary 100 Bio with baseline correction. Emission: Varian Cary
Eclipse at 20 ◦C. Cuvettes: Quartz cells (10 mm × 4 mm). NMR spectra: Jeol ECZ 500 (1H:
500 MHz, 13C: 125 MHz) at 25 ◦C at 25 ◦C (DMSO-d6). NMR spectra were processed with the
software MestReNova and referenced to the solvent DMSO-d6 (δ(DMSO-d5): 1H = 2.50 ppm,
13C: δ = 39.5 ppm). Elemental analyses data: HEKAtech EUROEA combustion analyzer,
by Rochus Breuer, Organische Chemie I, Universität Siegen. Mass spectrometry (ESI):
Finnigan LCQ Deca (U = 6 kV; working gas: Ar; auxiliary gas: N2; temperature of the
capillary: 200 ◦C). Circular dichroism (CD) and flow-linear dichroism (LD): Chirascan CD
spectrometer, Applied Photophysics. For LD spectra: High Shear Cuvette Cell Accessory
(Applied Photophysics). The LD samples were recorded in a rotating cuvette with a shear
gradient of 1200 s−1. Melting points (uncorrected): BÜCHI 545 (BÜCHI, Flawil, CH).

3.2. Materials

Berberrubine (1b) was synthesized according to published procedures [84]. Calf thy-
mus DNA (ct DNA, type I; highly polymerized sodium salt; ε = 12824 cm−1M−1) [85]
was purchased from SigmaAldrich (St. Louis, MO, USA) and used without further pu-
rification. Oligodeoxyribonucleotides (HPLC purified) d[A(GGGTTA)3GGG] (22AG),
d[(ACAGGGGTGTGGGG)2] (a2), d[TGAG3TG3TAG3TG3TA] (c-myc), d[(AG3AG3CGCTG3
AG2AG3)] (c-kit), d[CA2TCG2ATCGA2T2CGATC2GAT2G] (ds26), d[fluo-(GGGTAA)3GGG-



Molecules 2021, 26, 2566 10 of 14

tamra] (F21T), d[fluo-(ACAGGGGTGTGGGG)2-tamra] (Fa2T), d[fluo-TGAG3TG3TAG3TG3
TA-tamra] (FmycT), and d[fluo-(AG3AG3CGCTG3AG2AG3)-tamra] (FkitT) (fluo = fluores-
cein, tamra = tetramethylrhodamine) were purchased from Metabion Int. AG (Planegg/
Martinsried). The concentration of ct DNA is given in base pairs (bp).

The ct DNA was dissolved in a BPE buffer solution. Solutions of oligonucleotides
were prepared in a K-phosphate buffer, heated to 95 ◦C for 5 min, and cooled slowly to
room temperature within 4 h. K-phosphate buffer: 25 mM K2HPO4, 60 mM KCl; adjusted
with 50 mM KH2PO4, 60 mM KCl to pH 7.0; BPE (biphosphate EDTA) buffer: 6.0 mM
Na2HPO4, 2.0 mM NaH2PO4, 1.0 mM Na2EDTA; pH 7.0. All buffer solutions were prepared
from purified water (resistivity 18 MΩ cm) and biochemistry-grade chemicals. The buffer
solutions were filtered through a PVDF membrane filter (pore size 0.45 µm) prior to use.

3.3. Synthesis

10-Methoxy-5,6-dihydro-[1,3]dioxolo[4,5-g]isoquinolino[3,2-a]isoquinolin-7-ium-9-yl hydro-
gen phosphate. A mixture of 1b (321 mg, 1.00 mmol) and Et3N (153 µl) in CH2Cl2 (40 mL)
was cooled to 0 ◦C and POCl3 (109 µl, 183 mg, 120 µmol) was added. The reaction mixture
was stirred for 30 min at r.t. and the formed precipitate was filtered. The yellow crude
was dissolved in an aqueous HCl solution (1 M, 20 mL) and the aqueous solution was
extracted with CH2Cl2 (3 × 30 mL). The organic layer was washed with water (2 × 20 mL)
and brine (20 mL) and dried with Na2SO4. The drying agent was filtered off and the
solvent was removed by distillation to leave the product 2 as a yellow amorphous solid
(177 mg, 441 µmol, 44%). To obtain an analytically pure sample, 2 was recrystallized from
MeOH/EtOAc into product 2 as yellow needles; m.p. > 246 ◦C (dec.), 1H-NMR (500 MHz,
DMSO-d6, Figure S9): δ = 3.21 (t, 3J = 6 Hz, 2H, 5-H), 3.87 (s, 3H, OCH3), 4.86 (t, 3J = 6 Hz,
2H, 6-H), 6.17 (s, 2H, OCH2O), 7.10 (s, 1H, 4-H), 7.81 (s, 1H, 1-H), 8.02 (d, 3J = 9 Hz,
1H, 12-H), 8.18 (d, 3J = 9 Hz, 1H, 11-H), 8.96 (s, 1 H, 13-H), 10.12 (s, 1H, 8-H). 13C NMR
(125 MHz, DMSO-d6, Figure S10): δ = 26.5 (C5), 55.9 (C6), 57.1 (OCH3), 102.1 (OCH2O),
105.5 (C1), 108.5 (C4), 120.3 (C13), 120.5 (C13b), 122.1 (C8a), 123.5 (C12), 127.1 (C11), 130.5
(C4a), 133.0 (C12a), 137.0 (C13a), 138.6 (C9), 146.6 (C8), 147.7 (C2), 149.8 (C3), 150.9 (C10).
MS (ESI+): m/z (%) = 302 (100) [M + H]+. El anal for C19H16NO7P × 1.5 H2O: calcd. (%) C
53.28, H 4.47, N 3.27 found (%) C 53.67, H 4.21, N 3.04.

4. Conclusions

In summary, a novel berberine-based DNA ligand with a phosphate substituent was
synthesized that binds with high affinity to ct DNA and G4-DNA. With these particular
properties, this derivative represents one of the few reported phosphate-substituted DNA
ligands. Most notably, ligand 2 binds preferentially to G4-DNA relative to duplex DNA and
exhibits a selective light-up effect upon binding to quadruplex-forming oligonucleotides,
whereas the emission intensity increases to a much lesser extent upon binding to the double-
stranded ct DNA. The significantly increased emission intensity in 2 upon association with
G4-DNA is mainly caused by the binding mode, namely terminal π stacking, which shields
the ligand from the polar aqueous environment and suppresses fluorescence quenching by
a CT. Considering the selectivity of the light-up effect, this ligand has the potential to be
employed for the fluorimetric detection of G4-DNA structures in biological samples.

Overall, it was demonstrated that a phosphate unit does not necessarily decrease the
affinity of a DNA-binding ligand and that this substituent may even support the selective
association with G4-DNA. Therefore, we propose that this observation may be used as
starting point for the development of a novel type of DNA-binding ligand by combining
other established cationic DNA intercalators, e.g., ethidium, acridinium, or quinolizinium,
with a phosphate group.

Supplementary Materials: The following items are available online, Figure S1: Absorption and
emission spectra of 2, Figure S2: Absorption spectra of 2 in a BPE buffer at different temperatures,
Figure S3: Photometric titration of 2 with 22AG, c-kit and c-myc, Figure S4: Fluorimetric titration
of 2 with 22AG, c-kit and c-myc, Figure S5: Fitting curves of binding isotherms from photometric
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titrations of 2 with DNA, Figure S6: Normalized changes in emission intensity of the dye-labeled
oligonucleotides upon the addition of 2, Figure S7: Induced shift in the melting temperature, ∆Tm, of
dye-labeled oligonucleotides upon addition of 2, Figure S8: CD spectra of oligonucleotides 22AG
and c-kit in the absence and presence of 2, Figure S9: 1H-NMR spectrum of 2, Figure S10: 13C-NMR
spectrum of 2. References [30,59,62,86,87] are cited in the supplementary materials.
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