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Recent advances in imaging technology and additive manufacturing have led to the introduction of customized unicompartmental
knee arthroplasty (UKA) that can potentially improve functional performance due to customized geometries, including customized
sagittal and coronal curvature and enhanced bone preservation. The purpose of this study involved evaluating the biomechanical
effect of the tibial insert design on the customized medial UKA using computer simulations. We developed sagittal and coronal
curvatures in a native knee mimetic femoral component design. We utilized three types of tibial insert design: flat, anatomy
mimetic, and conforming design. We evaluated contact stress on the tibial insert and other compartments, including the lateral
meniscus and articular cartilage, under gait and squat loading conditions. For the conforming UKA design, the tibial insert and
lateral meniscus exhibited the lowest contact stress under stance phase gait cycle. However, for the conforming UKA design, the
tibial insert and lateral meniscus exhibited the highest contact stress under swing phase gait cycle. For the flat UKA design, the
articular cartilage exhibited the lowest contact stress under gait and squat loading conditions. The anatomy mimetic UKA
design exhibited the most normal-like contact stress on the other compartments under gait and squat loading conditions. The
results reveal the importance of conformity between the femoral component and the tibial insert in the customized UKA. Based
on the results on the femoral component as well as the tibial insert in the customized UKA, the anatomy mimetic design
preserves normal knee joint biomechanics and thus may prevent progressive osteoarthritis of the other knee compartments.

1. Introduction

Osteoarthritis (OA) typically first affects the medial compart-
ment of the tibiofemoral (TF) joint [1] and is a growing
concern in younger patients [2]. There are various surgical
treatments for isolated medial compartment arthritis, includ-
ing unicompartmental knee arthroplasty (UKA), total knee
arthroplasty (TKA), and high tibial osteotomy [3]. The
utilization rate of UKA exhibits a growth rate three times
than that of TKA. Outstanding and dependable clinical
results in the first decade of its use led surgeons to expand
the indication for UKA to younger and more active patients
[4]. The advantages include a faster recovery rate due to
minimally invasive surgery, less bone loss, better functional

outcomes, and lower complication rates [5]. However, UKA
involves a demanding surgical technique, and precise com-
ponent positioning is essential [6].

Although patient factors play a role in UKA survivorship,
current UKA designs present an important limitation [7].
Various anatomical studies indicate a wide range of variabil-
ity in the size and shape of the medial and lateral tibial
components [8, 9]. High early failure rates are reported in
obese patients for designs with an inset or narrow tibia, while
early results for wider tibial components exhibit lower early
failure rates [10, 11]. Asians exhibit a smaller build and
stature when compared to their Western counterparts. How-
ever, most prostheses currently available in the market are
produced to fit the physique of Caucasian patients [12].
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The aforementioned difference was also observed in terms of
sex, in addition to ethnicity [13, 14]. To solve the problem,
patient-specific or customized implants are developed and
introduced [15]. A customized UKA can provide superior
cortical bone coverage and fit with minimal overhang and
undercoverage compared to off-the-shelf UKA [16]. Addi-
tionally, a recent computer simulation study indicates that a
customized UKA can yield mechanics closer to that of a
healthy knee joint [17].

A potential disadvantage of a completely customized
UKA is variability in the coronal and sagittal curvature of
the femoral component, which results in point loading at
select flexion angles when a curved tibial insert is used [18].
To address this problem, a flat polyethylene (PE) tibial insert
is paired with a constant coronal curvature femoral compo-
nent, and this guarantees constant loading conditions over
a large area, irrespective of the flexion angle [15, 17, 18].
However, this type of flat design involves a problem that does
not describe tibial insert anatomy.

The aim of this study involved evaluating the biomechan-
ics of different tibial insert conformity designs to provide a
design that is closer to that of a healthy knee joint. Thus,
we developed three different tibial insert surface designs: flat,
anatomy mimetic, and conforming tibial insert customized
UKAs. We hypothesize that the anatomy mimetic custom-
ized UKA provides biomechanics closer to that of the healthy
knee joint.

2. Materials and Methods

2.1. Design of Customized UKA. The customized medial UKA
was designed by using a preexisting three-dimensional (3D)
knee joint model [17, 19–21]. The customized medial UKA
design was initiated with the acquisition of medical image
data. Planes were introduced using the intersection of
condyles in both sagittal and coronal views. Intersection
curves were used to extract the articulating surface geometry
in both planes, which were imported into Unigraphics NX

(version 7.0; Siemens PLM Software, Torrance, CA, USA)
and fitted with rational B splines (Figure 1(a)) [17, 18, 21–23].

The patient’s bone defines the sagittal geometry of
the femoral component. Thus, the sagittal geometry is
completely patient-specific, and the resultant sagittal implant
radii vary along the anteroposterior dimension of the implant
[17, 18, 21–23]. The coronal curvatures of the patient are
measured at multiple positions along the length of the
femoral condyle. An average curvature is then derived for
each patient. Using this approach, a patient-derived constant
coronal curvature is achieved (Figure 1(b)). The tibial com-
ponent is designed based on the CT and MRI data of the
patient’s tibia to ensure complete cortical rim coverage. With
this method, the patient receives an implant with an
optimized fit. The tibial plateau and inserts are designed for
minimal bone cut and provide a smooth articulating surface
for the femoral component. The tibial component is patient-
specific, and thus, it can potentially provide complete cortical
rim coverage, which cannot be achieved with a conventional
implant [24].

We designed three different tibial insert conformities
(Figure 2). Generally, the flat design is used for the tibial
insert in a fixed-bearing UKA [25], which is similar to a
customized fixed-bearing UKA. Additionally, the customized

(a) (b)

Figure 1: (a) Intersection curves were used to extract the articulating surface geometry in the sagittal and coronal planes and (b) in the
development of the femoral component of the patient-specific UKA using sagittal curves and constant coronal curves.

FC UKA AMC UKA CC UKA

Figure 2: Cross-sections of the femoral component and tibial insert
of the customized UKA used in this study, with three different
conformities.
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design exhibits variability in the coronal curvature of the
femoral component and results in point loading at select
flexion angles when a curved tibial insert is used [17, 18].
To address that problem, a flat tibial insert is paired with a
constant coronal curvature femoral component, and this
provides constant loading conditions over a large area, irre-
spective of the flexion angle [17, 18]. Therefore, we developed
tibial insert conformity in flat customized (FC) UKA as the
initial design. For the second design, the real medial geom-
etry was measured, and a medial anatomy mimetic custom-
ized (AMC) UKA was developed. The sagittal cross-section
of the medial tibial insert has a concave geometry similar to
that of the native medial tibial cartilage, including a shallow
curvature for overcoming the stability provided by the
missing meniscus. As previously mentioned, the femoral
component coronal curvature varies, and edge loading
may occur in the conforming design. However, the implant
is used in the customized UKA, and various tibial insert
designs can be applied. Therefore, the third design corre-
sponds to a conforming customized (CC) UKA. Addition-
ally, the femoral component designs were identical in the
customized UKA.

2.2. Finite Element Model. The 3Dmedical imaging data used
for the customized UKA design were also used in the devel-
opment of the finite element (FE) model [17, 19, 20]. The
intact knee joint model had previously been developed and
validated [17, 19, 20], and the procedure can be found in
the literature. The FE model comprises the TF and patellofe-
moral (PF) joints and major ligaments (Figure 3).

All ligament bundles were modeled as nonlinear
springs, and the material properties were obtained from
a previous study [26]. The ligament insertion points were
set with respect to the anatomy obtained from magnetic

resonance imaging sets of the subject. The description is
available in previous studies [27, 28]. The ligaments were
simulated as nonlinear force elements, and their parabolic
and linear equations are as follows: if ε < 0, f ðεÞ = 0; if
0 ≤ ε ≤ 2ε1, f ðεÞ = kε2/4ε1; and if ε > 2ε1, f ðεÞ = kðε − ε1Þ,
where f denotes the tension of the ligament, ε denotes
the ligament strain, and k is the stiffness coefficient of
each ligament. The linear range threshold was specified
as ε1 = 0:03. In all test scenarios applied in this study, the soft
tissue elements remained in the same position. The bony
structures were modeled as rigid bodies using four-node shell
elements [29] while the interfaces between the articular
cartilage and the bones were modeled as fully bonded [29].
Six pairs of tibiofemoral contact between the femoral carti-
lage and the meniscus, the meniscus and the tibial cartilage,
and the femoral cartilage and the tibial cartilage were mod-
eled for both the medial and lateral sides of the joint [17].
The heights of the tibial insert for the three different designs
were matched to the original bone anatomy using a neutral
mechanical alignment, cutting the tibia orthogonal to the
coronal tibial mechanical axis [17]. The rotating axis was
defined as the line parallel to the lateral edge of the tibial
baseplate passing the center of the femoral component fixa-
tion peg. For the implanted model, a 1mm cement gap was
simulated between the component and the bone. The mate-
rials of the femoral component, PE insert, tibial baseplate,
and bone cement included cobalt-chromium-molybdenum
(CoCrMo) alloy, ultrahigh-molecular-weight polyethylene
(UHMWPE), titanium alloy (Ti6Al4V), and polymethyl
methacrylate (PMMA), respectively (Table 1) [17, 20, 30].
The femoral component requires contact with the tibial
insert, and the coefficient of friction between the PE and
the femoral component was selected as 0.04 [30].

The FE simulation comprised three types of loading con-
ditions corresponding to the loads used in the experiment for
model validation and the prediction of daily activity loading
scenarios. For the first loading condition, 150N was applied
to the tibia at 30° and 90° flexion in the FE knee joint to mea-
sure anterior-posterior (AP) tibial translations [19]. Further-
more, a second axial loading of 1,150N was applied to the
model to obtain contact stresses, which were compared to
those reported in a published study on the FE knee joint
model [29]. The third loading condition, which corresponds
to the gait cycle, and squat loading conditions, was applied to
evaluate knee joint mechanics. Computational analysis was
conducted by applying an AP force to the femur with respect
to the compressive load applied to the hip, with constrained
femoral internal-external rotation, free medial-lateral trans-
lation, and knee flexion determined through a combination
of the vertical hip and the load of the quadriceps. Thus, a

Figure 3: Validated FE native knee model used in this study,
including TF and PF joints and major ligaments.

Table 1: Material properties of the FE model.

Young’s modulus (MPa) Poisson’s ratio

CoCrMo alloy 220,000 0.30

UHMWPE 685 0.47

Ti6Al4V alloy 110,000 0.30

PMMA 1,940 0.40
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six-degree-of-freedom TF joint was created [31–33]. A
proportional-integral-derivative controller was incorporated
into the computational model to control the quadriceps in
a manner similar to that in a previous experiment [34]. A
control system was used to calculate the instantaneous
displacement of the quadriceps muscle, and this was
required to match the same target flexion profile used in
the experiment. Internal-external and varus-valgus torques
were applied to the tibia while the remaining tibial
degrees-of-freedom were constrained [31–33].

The FE model was analyzed using ABAQUS software
(version 6.11; Simulia, Providence, RI, USA). The study
investigated and compared the contact stress on the PE insert
and other compartments of the customized UKA designs
with three different conformities to a native knee. The
kinematics were calculated based on Grood and Suntay’s
definition of a joint coordinate system [35].

3. Results

3.1. Intact Model Validation. The intact FE model was
compared to the experiment using the Fe model’s subject
for validation purposes. Under the loading condition with a
30° flexion, the anterior tibial translation was 2.83mm in
the experiment and 2.54mm in the FE model, and the poste-
rior tibial translation was 2.12mm in the experiment and
2.18mm in the FE model. At 90° flexion, the anterior tibial
translation was 3.32mm in the experiment and 3.09mm in
the FE model, and the posterior tibial translation was
2.64mm in the experiment and 2.71mm in the FE model.
The experimental results show good agreement with those
obtained using the FE model [19]. Furthermore, the intact
FE model was validated by comparing it with computational
results from previous studies. Under an axial load of 1,150N,
average contact stresses of 3.1MPa and 1.53MPa were
observed on the medial and lateral menisci, respectively.
Both are within 6% of the 2.9MPa and 1.45MPa contact
stress values reported by Pena et al. [29]. These minor
differences may be due to geometrical variations between

the different studies, such as the thickness of the cartilage
and meniscus. The significant consistency between the vali-
dation results and the results reported in extant studies is
indicative of the validity of the results obtained with the FE
model in this study.

3.2. Comparison of the Contact Stress on the PE Insert and
Other Compartments of the Customized UKA Designs with
Three Different Conformities against That on a Native Knee
under Gait Cycle and Squat Loading Conditions. Figure 4
shows the contact stress on the PE insert of the three different
tibial insert designs for the customized UKA under gait and
squat loading conditions. During the stance phase gait cycle,
a difference was observed in the PE insert contact stress of the
three different tibial insert designs for the customized UKA.
The same trend was also observed under the squat loading
conditions. CC UKA exhibited the lowest PE inset contact
stress under stance phase gait cycle, followed by AMC UKA
and FC UKA. Under the squat loading conditions, CC
UKA exhibited the lowest PE insert contact stress. During
the swing phase, CC UKA exhibited the highest PE inset
contact stress, followed by AMC UKA and FC UKA.

Figure 5 shows the contact stress on the lateral meniscus
for different tibial insert designs and a native knee joint under
gait and squat loading conditions. Contact stress on the lat-
eral meniscus in the native knee was higher than that in the
three different tibial insert designs for the customized UKA
during the stance phase gait cycle. The trend of contact stress
on the lateral meniscus was also observed under deep flexion
squat loading conditions. The lateral meniscus, like the PE
insert, exhibited high contact stress during the stance phase
and low contact stress during the swing phase for the three
different tibial insert designs for the customized UKA, com-
pared to the native knee.

Figure 6 shows the contact stress on the articular cartilage
for the three different tibial insert designs for the customized
UKA under gait and squat loading conditions. During the
gait cycle, contact stress on the articular cartilage in the
native knee was lower than that in the three different tibial
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Figure 4: Comparison of the contact stress on the PE insert of three customized UKA designs with three different conformities under (a) gait
and (b) squat loading conditions.
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insert designs for the customized UKA. FC UKA and CC
UKA exhibited higher contact stress on the articular cartilage
than on the native knee in the swing phase. Furthermore, the
CC UKA exhibited higher contact stress on the articular car-
tilage than on the native knee under high flexion squat load-
ing conditions. Under gait and squat loading conditions, the
contact stress on the lateral meniscus and articular cartilage
indicates that the AMC UKA is closest to normal contact
mechanics.

4. Discussion

The most important finding of this study is that the AMC
UKA exhibits close to native knee contact mechanics. There-
fore, the AMC UKA prevents progressive OA of other
compartments.

We evaluated contact stress, which is closely related
to degenerative OA of the knee joint after medial UKA
[36, 37]. A previous study indicates that after a minimum

follow-up duration of ten years, medial UKA is associated
with excellent clinical and radiographic results [38].
Although the ten-year survival rate is excellent, radiographic
signs of progression of OA were observed in the other com-
partments [38]. Theoretically, UKA requires a technically
demanding procedure and precise component positioning
[6, 39]. Furthermore, UKA entails challenges due to surgical
difficulties, such as device failures, residual pain, subsidence,
and OA progression in the other compartments [38, 40]. To
overcome this problem, a customized instrumentation tech-
nique is applied to UKA.

Bell et al. evaluated the accuracy and clinical outcomes of
the customized instrumentation implementation technique
using a fixed-bearing UKA [41]. They proved that the tech-
nique might offer specific advantages to surgeons who per-
form lower volumes of UKA and can potentially improve
both clinical outcomes and implant survivorship of UKA
and achieve greater consistency in results [41]. However, it
is not possible for this type of customized instrumentation
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Figure 5: Comparison of the contact stress on the lateral meniscus in three customized UKA designs with three different conformities against
that on a native knee under (a) gait and (b) squat loading conditions.
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Figure 6: Comparison of the contact stress on the articular cartilage in three customized UKA designs with three different conformities
against that on a native knee under (a) gait and (b) squat loading conditions.
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to resolve the effect of morphology with respect to ethnicity
and gender differences. The Asian population exhibits a
smaller build and stature compared to the Western popula-
tion [12]. A majority of conventional UKA prostheses are
designed to match the Caucasian physique [42]. In UKA,
the geometry of the femoral and tibial components should
match the resected surface to the maximum extent possible
to provide optimal stability and load transfer [42]. Koeck
et al. indicated that customized instrumentation and implant
using fixed-bearing UKA can reliably restore the leg axis,
obtain a medial proximal tibial angle of 90°, prevent implant
malpositioning, and ensure maximal tibial coverage [43].
Steklov et al. indicated that a constant coronal curvature
can be applied to a customized UKA by measuring coronal
curvatures across the femoral condyle in each patient and
by deriving the average curvature [18]. This novel approach
combines the unique benefits of customized geometry with
proven design concepts in UKA to minimize PE wear [18].
However, as previously mentioned, the customized UKA
should overcome edge loading at select flexion angles when
a curved tibial insert is used [17]. To address the problem, a
flat PE tibial insert is paired with the constant coronal curva-
ture femoral component, and this ensures constant loading
conditions over a large area, irrespective of the flexion angle
[17, 18]. However, in a native knee, the medial and lateral tib-
ial plateaus exhibit anatomical asymmetric geometries with a
slightly dished medial plateau and a convex lateral plateau.

The result presents the pattern of various contact stresses
on the PE tibial insert and other compartments in the cus-
tomized UKA with respect to different tibial insert designs.
An interesting finding was observed in CC UKA: the CC
UKA exhibited increased contact stress on the PE insert dur-
ing the swing phase gait cycle and high flexion during squat
loading conditions. The most influential factor on contact
stress is the contact area. Therefore, the CC UKA with an
increased contact area should exhibit decreased contact
stress, although it did not exhibit this. Generally, conforming
design is used in the mobile-bearing UKA [36]. However, in
this study, the conforming design was used in the fixed-
bearing UKA. Abnormal kinematics and increased contact
stress were observed, and this was similar for the swing phase
and high flexion. When flexion increased, for the CC UKA,
movement of the tibial insert restores a similar contact area.
However, edge loading may occur in a fixed condition. For
the stance phase gait and deep flexion under squat loading
conditions in which the flexion angle does not show a signif-
icant effect, the CC UKA exhibited the lowest contact stress
due to the advantage of conformity.

In the lateral meniscus, a trend of contact stress simi-
lar to that in the PE insert was observed in the customized
UKA for the three different tibial insert designs. This
trend is probably due to the role the menisci play in pro-
tecting the TF cartilage layers when the load is transferred.
When the UKA was implanted, the contact stress on the
lateral meniscus is lower than that in the native knee dur-
ing the stance phase of the gait cycle in which loading is
mainly involved. This is primarily due to the change in
stiffness between the medial and lateral compartments
induced in the knee by the device [44].

On the lateral side, the cartilage layer of the TF exhibits
an elastic modulus of 15MPa. In contrast to the cartilage
layers, the tibial articular insert exhibits an elastic modulus
of 685MPa. Consequently, the material characteristics of
the medial and lateral compartments differ by more than 40
times. Notably, other compartments in the AMC UKA have
the advantage of contact mechanics similar to that of the
native knee in swing phase gait and high flexion. CC UKA
and FC UKA showed kinematic change, which led to lateral
cartilage contact stress because they did not restore tibial
insert conformity and native anatomy. This trend was found
for swing phase gait and high flexion squat loading condi-
tions. The most important advantage of the AMC UKA was
observed under high flexion where the effect of the anatomy
mimetic tibial insert was visible as the J curve of the femur
was maintained in the femoral component.

The contact area is most important during the stance
phase gait cycle and deep flexion during squat loading condi-
tions, during which the axial force was primarily visible.
However, the contact area, as well as the kinematics, is also
crucial during the swing phase gait cycle and high flexion
under squat loading conditions. Unfortunately, both the
femur and tibial mimetic AMC UKAs could not preserve
perfect normal knee contact mechanism. An important fac-
tor is that change in the mechanism due to change in material
stiffness plays the most crucial role, even if it corresponds to
an anatomy mimetic design. Furthermore, the tibial insert
could not perfectly replicate the role of mobile meniscus
characteristics. Generally, there are significant differences
between the biomechanics of the medial and lateral menisci
[45, 46]. The medial meniscus is significantly less mobile
than the lateral meniscus due to its attachment to the medial
collateral ligament and larger insertion areas.

In terms of clinical relevance, it is not possible to apply a
conforming design to the tibial insert when a customized
UKA is developed. Bernasek et al. reported unsatisfactory
results regarding the insertion of the same type of conform-
ing fixed-bearing UKA [47]. Furthermore, a previous study
indicated that significant degenerative changes in the other
compartments occurred in only one of the eighty-seven
knees in which an unconstrained UKA was implanted [48].
The results support the reliability of this study. The AMC
UKA should apply mobile characteristics to the tibial insert
to preserve knee mechanics closer to that of the native knee.
However, a reason for the application of the conforming
design to mobile-bearing UKA involves preventing bearing
dislocation. Therefore, a spinout mechanism should be con-
sidered for preventing dislocation through the application
of mobile characteristics in the AMC UKA to preserve native
knee mechanics.

Two strengths of this study are as follows: First, unlike
previous UKA studies, the FE model included the tibia,
femur, and related soft tissues [49, 50]. Second, unlike the
current biomechanical UKA model, this study included the
application of gait and squat loading conditions [49, 50].

Nevertheless, several limitations should also be noted.
First, the bony structures were assumed as rigid, while in real-
ity, bone exhibits cortical and cancellous tissues. However,
the primary purpose of the study did not involve evaluating
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the effects of different prostheses on bone. Furthermore, the
assumption exerted minimal influence on the study because
the stiffness of bone exceeds that of the relevant soft tissues
[29]. Second, the computational model represented a cus-
tomized UKA and the results are not necessarily expected
to extend to other implant designs, such as the customized
mobile-bearing UKA. Third, the material properties and
attachment points of the ligaments were assumed in the
model based on values from extant studies, although signifi-
cant variability exists regarding reported values. However,
the objective did not involve determining the actual values
of ligament forces but determining the effect of variability
in a customized fixed-bearing UKA with respect to the tibial
insert design corresponding to the femoral component. Fur-
thermore, the advantage of computer simulation of a single
subject is that we could determine the effects of the tibial
insert design of a customized UKA within the same individ-
ual and eliminate the effects of other variables, such as
weight, height, bony geometry, ligament properties, and
component size [51].

5. Conclusion

The anatomy mimetic design, which retains the native tibial
insert, exhibited significant contact mechanics improvement
over the customized UKA during gait and squat loading
conditions. The nonanatomic tibial insert geometry of the
customized UKA contributed to contact mechanics abnor-
malities, including the PE tibial insert and the other compart-
ments. Therefore, the AMC UKA may represent an essential
step in our attempt to restore the function of the native
mechanics of the knee. Based on the results for the femoral
component as well as the tibial insert in a customized UKA,
the anatomy mimetic design preserves normal knee biome-
chanics and thus may prevent progressive osteoarthritis of
the other compartments.
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