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ED I TOR I A L

SARS‐CoV‐2 induced post‐translational protein
modifications: A trigger for developing autoimmune
diabetes?

Abstract

Emerging evidence indicates a bi‐directional relationship
between SARS‐CoV‐2 and diabetes. The possibility exists

that SARS‐CoV‐2 could induce diabetes, but it is not yet

clear whether this might be a fulminant‐type diabetes,

autoimmune diabetes, or a new‐onset transient hyper-

glycaemia. This viewpoint discusses mechanisms by which

SARS‐CoV‐2 might trigger type 1 diabetes mellitus

(T1DM). Specifically, we looked at the role of post‐
translational protein modifications (PTMs) and the gen-

eration of neoepitopes as a potential mechanism in the

induction of islet autoimmunity, and the pathways via

which coronavirus infections might exacerbate the for-

mation of PTMs and, in so doing, provoke the onset of

T1DM.
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1 | INTRODUCTION

A growing body of evidence supports a diabetogenic effect of

COVID‐19. The SARS‐CoV‐2 virus has been linked to dysglycae-

mia in existing diabetes,1 the development of new‐onset diabetes2

and an increase in severe diabetic complications, namely diabetic

ketoacidosis.3 It is, as yet, unclear whether SARS‐CoV‐2 might

also precipitate an autoimmune type 1 diabetes mellitus (T1DM):

studies in the UK4 and Germany5 have found an excess of T1DM

cases during the pandemic whilst, in Italy, one study reported 20%

fewer annual cases.6 Nevertheless, the possibility that SARS‐CoV‐
2 might trigger T1DM in genetically susceptible individuals should

be examined, given the known association between respiratory

viral infections, including coronaviruses, and the development of

islet autoimmunity.7 Such an exploration is further warranted in

light of evidence that individuals with COVID‐19 have relatively

increased autoantibody reactivities,8 and the publication of case‐

reports drawing a link between COVID‐19 and the onset of

autoimmune conditions, including Guillain‐Bare Syndrome, Graves

disease, and SLE.9

2 | POST‐TRANSLATIONAL PROTEIN
MODIFICATIONS AND ISLET AUTOIMMUNITY

Post‐translational protein modifications (PTMs) are essential for

normal cellular functioning. However, such modifications can also

enable a breaking of central tolerance through the generation of

neoepitopes that provide novel determinants able to activate T‐cells.
This phenomenon is well recognised in the pathogenesis of autoim-

mune conditions including rheumatoid arthritis (RA)10 and coeliac

disease.11 Several antibodies to post‐translationally modified islet

peptides have now been identified12 (Table 1). Indeed, antibodies to

post‐translationally modified insulin are not only more abundant than

those to native insulin in newly diagnosed T1DM patients13 but are

also more sensitive and specific biomarkers of disease progression

when compared to standard islet autoantibodies.14 As such, their

potential importance in the pathogenesis of T1DM is increasingly

recognised.

Several mechanisms by which SARS‐CoV‐2 might trigger islet

autoimmunity have been suggested, including molecular mimicry and

prolonged presentation of β‐cell epitopes secondary to over-

expression of HLA Class I.24 At present, less attention has been paid

as to how viral infections might trigger T1DM by driving increased

activity in pathways enhancing post‐translational modifications and

the production of neo‐epitopes. We suggest mechanisms by which

viral infections generally, and SARS‐CoV‐2 in particular, may enhance

the formation of neoepitopes and, in doing so, trigger islet autoim-

munity in genetically susceptible individuals. These mechanisms

relate to (a) islet inflammation and oxidative stress (b) initiation of

endoplasmic reticulum (ER) stress and (c) aberrant NETosis (see

Figure 1 for a summary of potential mechanisms discussed). It is

worth noting that ex vivo evidence of transcriptional changes within

β‐cells in response to SAR‐CoV‐2 infection25 suggests post‐
transcriptional protein modifications, such as defective ribosomal

gene products, may also be a source of neoepitopes generated by

COVID‐19.
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2.1 | Islet inflammation and oxidative stress

It is now thought that severe disease in COVID‐19 is the conse-

quence of the body's own hyper‐inflammatory response to the

virus, which involves the secretion of a plethora of cytokines ‐ the
‘cytokine storm’. Whether SARS‐CoV‐2 can directly infect islet

cells to induce inflammation is currently unresolved. Whilst cellular

entry of SARS‐CoV‐2 is thought to be dependent upon ACE‐II

receptors26 and expression of this receptor has been identified

in pancreatic β‐cells,27 other studies suggest that β‐cell expression
may be of insufficient levels to enable viral entry and resulting β‐
cell damage.28 Receptors such as Neuropilin‐1, which are

expressed at high levels by β‐cells may, however, provide alter-

native means of facilitating SARS‐CoV‐2 entry.29 In vivo evidence

of SARS‐CoV‐2 infecting β‐cells is still relatively limited, although a

new study has identified SARs‐CoV‐2 antigens within NKX6.1‐

TAB L E 1 Neoepitopes identified in autoimmune diabetes

Type of PTM Modification Antigen Reference

Enzymatic Citrullination GAD65 McGinty et al. (2014)15

GRP8 Rondas et al. (2015)16; Buitinga et al. (2018)17

IAPP Marre et al. (2018)18

Deamidation IA‐2 McLaughlin et al. (2016)19; Acevedo‐Calado et al. (2017)20; Marre et al. (2018)18

Proinsulin Van Lummel et al. (2014)21

GAD65 McGinty et al. (2014)15

Nonenzymatic Oxidation Insulin Mannering et al. (2005)22; Strollo et al. (2015)13; Strollo et al. (2017)

Carbonylation P4Hb Yang et al. (2016)23

Abbreviation: PTM, post‐translational protein modifications.

F I GUR E 1 Potential pathways of neoepitope generation and autoantibody formation following SARS‐CoV‐2 infection. Figure produced by
C. Chaplin and P. Pozzilli
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positive β‐cells from analysing pancreatic material of deceased

COVID‐19 patients.25 However, even if SARS‐CoV‐2 is unable to

enter β‐cells directly, high expression of ACE‐II receptors within

pancreatic duct cells and the microvasculature27,28 may still

generate an inflammatory pancreatic environment in response to

SARS‐CoV‐2 infection which, through the generation of a hypoxic

environment, may indirectly stimulate inflammation within the

endocrine pancreas. Reactive oxygen species (ROS) produced in

response to cytokine stress can exacerbate protein modifications

including oxidation, carbonylation, methylation and citrullination.30

This oxidative stress may modify proteins directly or, indirectly,

through the effect of ROS on downstream cellular pathways.30

There is evidence that pancreatic inflammation can induce both

enzymatic and non‐enzymatic PTMs. Experiments exposing human

islets to inflammatory cytokines (IL‐1β, IFN‐γ and TNF‐alpha)
found them to contain deamidated C‐peptides19 and citrullinated

GRP78, a T1DM autoantigen.16 Pancreatic inflammation can also

generate oxidative modifications; human islets cultured with INF‐γ,
IL‐1β and TNF‐α have been found to contain elevated levels of

carbonyl‐modified P4Hb,23 also a known T1DM autoantigen.30

Given P4Hb's role in insulin folding, such a modification may lead

to abnormal insulin production, hyperglycaemia and the generation

of ER stress which, as described below, may also enhance PTMs.

Raised levels of INF‐γ, IL‐1β and TNF‐α, cytokines shown to

induce PTMs in human islets, have all been found in SARS‐CoV‐2
positive individuals.31 Additionally, as high glucose levels can

stimulate the production of ROS via the action of NADPH oxi-

dase,32 the hyperglycaemic state induced by SARS‐CoV‐2 may

serve as an additional source of oxidative stress and further

amplify the formation of neoepitopes.

2.2 | Endoplasmic reticulum stress increases the
activity of PTM enzymes

Endoplasmic Reticulum (ER) stress describes a state of increased

pressureon theER's role for protein folding. Thebody's need for insulin

means that, physiologically, β‐cells experience relatively elevated ER

stress levels.33 Evidence suggests excess ER stress could play a role in

the development of diabetes: administering chaperone medications to

counter ER stress can delay the onset of diabetes inNODmice.34 It has

also been shown that excess ER stress can enhance neoepitope for-

mation and precipitate immunogenicity.35 The mechanism via which

this occurs results from a cytosolic Ca2+ influx in response to ER stress,

which leads to activation of calcium‐dependent PTM enzymes

including tissue‐transglutaminase (tTG) and Peptidyl Arginine Deimi-

nases (PAD).35 Viral infectionsmay exacerbate PTMs directly, through

disrupting ER membranes which then leak calcium ions, or indirectly,

through triggering inflammatory processes which generate ER stress.

With regards to SARS‐CoV‐2, in the knowledge that hyperglycaemia

and glucotoxicity may also generate ER stress,35 it is possible that a

SARS‐CoV‐2 associated dysglycaemia could contribute to increased

ER stress, activation of tTG and PAD enzymes and the production of

neoepitopes. Indeed, SARS‐CoV2‐2 has already been noted to influ-

ence the activity of PAD enzymes; a study analysing the transcriptome

of human lung biopsy samples from SARS‐CoV‐2 positive individuals

found altered expression of PAD4 and PAD2 enzymes.36 Furthermore,

a study mapping the interactions between SARS‐CoV‐2 and human

proteins identified several interacting proteins associated with ER

protein quality control, morphology and the ER stress response.37

2.3 | Aberrant NETosis and autoimmunity

NETosis is a feature of the innate immune system involving the

production and release of Neutrophil extracellular traps (NETs) ‐
web‐like structures comprising histones and degenerative enzymes

that act to bind pathogens. Enhanced NET formation has been

implicated in the pathogenesis of several autoimmune conditions

including RA38 and, more recently, T1DM.39 PAD4 enzymes are

important in NET formation through catalysing histone citrullination

and the induction of chromatin decondensation. It is thought that, in

RA, enhanced NETosis may induce autoimmunity through external-

ising citrullinated proteins38 and active PAD enzymes, the latter of

which can then trigger citrullination of extracellular proteins.40

Similar mechanisms might also explain the observed association be-

tween exaggerated NETosis and T1DM. However, unlike in RA, we

are not aware of any identified autoantibodies in T1DM specific to

citrullinated NET proteins.

There is some evidence of exaggerated NETosis in SARS‐CoV‐
2 positive individuals.9 In light of current evidence supporting

links between enhanced NETosis, the generation of SARS‐CoV‐2
induced post‐translational protein SARS‐CoV‐2 could play a role

in initiating autoimmunity should not be dismissed. Furthermore,

SARS‐CoV‐2 infection of the pancreatic islets could mediate sig-

nificant cellular damage and β‐cell apoptosis, resulting in a release

of sequestered islet antigens. With concomitant NETosis, this

could provide an opportunity for enhanced citrullination of β‐cell
antigens. It is also interesting to note that NETosis is increased

under conditions of hyperglycaemia39 providing another amplifying

effect as to how COVID‐19 induced dysglycaemia may lead to

cellular conditions favourable to PTMs and the generation of

neoepitopes.

3 | CONCLUSION

There is still much to be understood about the pathogenesis of both

SARS‐CoV‐2 and T1DM in isolation. Nevertheless, current evidence

suggesting SARS‐CoV‐2 may have the capacity to induce autoimmu-

nity, and the observed bi‐directional link between the virus and dia-

betes, suggest further research exploring a pathogenic link is

warranted. This viewpoint hopes to highlight currently available evi-

dence supporting a mechanistic link between viral infections, post‐
translational modifications and the initiation of an autoimmune

diabetes.
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