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Abstract
Background:  Carbapenemase-producing Gram-negative (CPGN) bacteria impose life-threatening infections with limited 
treatment options. Rigor and rapid detection of CPGN-associated infections is usually associated with proper treatment and 
better disease prognosis. Accordingly, this study aimed at evaluating the phenotypic methods versus genotypic methods 
used for the detection of such pathogens and determining their sensitivity/specificity values.

Methods:  A total of 71 CPGN bacilli (30 Enterobacterales and 41 non-glucose-fermenting bacilli) were tested for the 
carbapenemase production by the major phenotypic approaches including, the modified Hodge test (MHT), modified 
carbapenem inactivation method (mCIM), combined disk test by EDTA (CDT) and blue-carba test (BCT). The obtained 
results were statistically analyzed and correlated to the obtained resistant genotypes that were determined by using 
polymerase chain reactions (PCR) for the detection of the major carbapenemase-encoding genes covering the three classes 
(Class A, B, and D) of carbapenemases.

Results:  In comparison to PCR, the overall sensitivity/specificity values for detection of carbapenemase-producing 
organism were 65.62%/100% for MHT, 68.65%/100% for mCIM, 55.22%/100% for CDT and 89.55%/75% for BCT. The 
sensitivity/specificity values for carbapenemase-producing Enterobacterales were, 74%100% for MHT, 51.72%/ 100% for 
mCIM, 62.07%/100% for CDT and 82.75%/100% for BCT. The sensitivity/specificity values for carbapenemase-producing 
non-glucose fermenting bacilli were, 62.16%/100% for MHT, 81.57%/100% for mCIM, 50/100% for CDT and 94.74%/66.66% 
for BCT. Considering these findings, BCT possess a relatively high performance for the efficient and rapid detection of 
carbapenemase producing isolates. Statistical analysis showed significant association (p < 0.05) between blaNDM and/or 
blaVIM genotypes with MHT/CDT; blaKPC/blaGIM genotypes with CDT and blaGIM genotype with BCT.
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Background
Carbapenemases are β-lactamases produced by carbape-
nem-resistant (CR) bacteria as their major antimicro-
bial-resistance mechanisms [1, 2]. Owing to their broad 
spectrum of activity and stability towards the majority 
of β-lactamases, carbapenems are considered one of the 
last lines of therapy to treat severe infections caused by 
multi-drug resistant (MDR) bacteria [2]. However, the 
emergence of CR among clinically relevant Gram-nega-
tive bacilli (GNB) as Enterobacterales (such as E. coli, K. 
pneumoniae) and non-glucose fermenting bacilli (such 
as A. baumannii, Pseudomonas aeruginosa) has become 
globally recognized as one of the most serious challenges 
to clinicians in dealing with community-acquired and 
health-care-associated infections [3, 4].

Generally, mechanisms contributing to CR could be 
through overexpression of efflux pump, decrease in outer 
membrane permeability coupled with hyper-production 
of AmpC β-lactamases, and finally through the produc-
tion of carbapenemase enzymes as the most predomi-
nant resistance mechanism [1, 5]. Carbapenemases are 
β-lactamases that belong to different Ambler classes (A, 
B, and D). Class A (KPC) and class D (OXA) are serine 
carbapenemases that depends on serine as an enzyme 
active center while, class B (NDM, IMP, GIM, VIM) are 
metallo-β-lactamase enzymes that require Zinc for their 
activity [6–8]. By far infections caused by carbapene-
mase-producing organisms (CPOs) either Enterobactera-
les (CPE) or non-glucose fermenting bacilli (CP-NF) are 
associated with higher mortality rates ranging from 40 
to 50% [9] and widespread dissemination as the major-
ity of carbapenemase genes are carried on mobile genetic 
elements [10], compared to non-CPOs. The CPOs are 
also resistant to commonly used antibiotics such as ami-
noglycosides, fluoroquinolones and tetracyclines that 
will consequently reduce therapeutic options and pro-
long hospitalization [11, 12]. Accordingly, a variety of 
laboratory methods is urgently required to allow prompt 
screening, identification, and implantation of appropriate 
infection control measures to limit spread of these diffi-
cult to treat CPOs.

Despite of being the gold standard in identification of 
well-known carbapenemase encoding genes, molecular 
tests are often expensive and require specialized staff, 

rendering these techniques unavailable for routine clini-
cal practice especially in resource limited settings [13]. 
To overcome these challenges, several simple and afford-
able phenotypic tests were recommended by clinical and 
laboratory standard institute (CLSI) that allow effective 
detection of CPOs particularly, CPGN pathogens. Cur-
rently, growth-based assays and colorimetric hydrolysis 
methods (blue carba test: BCT, Carba Nordmann/ Poirel: 
Carb NP) that depends on the growth of the organism in 
presence of carbapenem antibiotics and degradation of 
carbapenem products, respectively are commonly used 
in clinical practice [1, 7, 14]. Of note, CLSI had archived 
MHT, while other methods as mCIM and Carba NP were 
endorsed.

Unsuccessful and slow in the diagnosis of CPGN-asso-
ciated infections is complicated by the treatment failure 
and patient death. These urges evaluating and regular 
updates on the sensitivity/specificity values of the existed 
phenotypic and genotypic diagnostic methods of the 
most common circulating CPGN pathogens. Although, 
the phenotypic detection and molecular characterization 
of CPGN pathogens had been previously reported in lit-
erature [13–16], still more studies are urgently required 
to validate the laboratory performance (sensitivity/speci-
ficity/positive predictive value/negative predictive value) 
of the respective phenotypic methods and to correlate 
them with the different types of carbapenemase enzymes 
[1, 14]. Therefore, in this study we aimed to evaluate 
the performance of four major phenotypic approaches 
namely MHT, mCIM, BCT, combined disk test by EDTA 
(CDT) for detecting CPGN pathogens. This was fol-
lowed by PCR detection of the mostly abundant car-
bapenemases for exploring the correlation between the 
associated genotypes and phenotypic tests. The obtained 
findings of this research will be of a particular impor-
tance for determining the most convenient method(s) for 
rapid and accurate detection of CPGN pathogens partic-
ularly, for laboratories with resource-limited settings.

Materials and methods
Bacterial isolates and identification
Over a period of 12 months (January 2021-Decem-
ber 2021), a total of 71 GNB isolates with reduced sus-
ceptibility to carbapenem (ertapenem, imipenem and 

Conclusion:  The current study provides an update on the performance of the phenotypic tests which are varied 
depending on the tested bacterial genera and the type of the carbapenemase. The overall sensitivity/specificity values 
for detection of CPO were 65.62%/100% for MHT, 68.65%/100% for mCIM, 55.22%/100% for CDT and 89.55%/75% for 
BCT. Based on its respective diagnostic efficiency and rapid turnaround time, BCT is more likely to be recommended in a 
resource-limited settings particularly, when molecular tests are not available.
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meropenem) by disk diffusion method were collected 
from the microbiology laboratories of El-Demerdash a 
tertiary care hospital with 3200 beds, Cairo, Egypt [17]. 
This study was conducted in accordance with the Decla-
ration of Helsinki, reviewed and approved by the Faculty 
of Pharmacy, Ain Shams University Research ethics com-
mittee, (ACUC-FP-ASU RHDIRB2020110301 REC #72).

The respective isolates were recovered from uniden-
tified clinical specimens including urine (a midstream 
urine specimen was collected from patients suffered 
from urinary tract infection), blood (In case of blood 
stream infections) and sputum (In case of pneumonia) as 
a routine care of patients admitted to the hospital. Based 
on the hospital guidelines, an informed consent was 
obtained from all patients and/or their legal guardian(s) 
after clarifying to them the objective of this study. For 
preliminary isolation of GNB, a set of nutrient agar, 
blood agar, chocolate agar and MacConkey agar were 
used. For subsequent studies, isolates were preserved 
at -80  °C. Identification of collected clinical isolates was 
checked based on microscopic, macroscopic and conven-
tional biochemical tests as mentioned in Bergey’s manual 
of determinative bacteriology [18]. Briefly, macroscopic 
evaluation involves description of size, shape, elevation, 
texture, margin and optical character of colonies. A set 
of biochemical tests including oxidase test, sugar fermen-
tation, triple sugar iron, indole production/ methyl red / 
Voges Proskauer and citrate utilization (IMVC test) were 
used to identify Gram negative bacteria. The identifica-
tion of the recovered isolates was confirmed using the 
automated microbial identification system, Vitek-2 sys-
tem (bioMérieux, Marcy L’Etoile, France).

Antimicrobial susceptibility tests
The antibiotic susceptibility testing was determined by 
Kirby-Bauer disk diffusion method and a panel of 19 
antibiotics disks including amoxicillin/clavulanic acid 
(AMC: 20  µg/10µg), ampicillin (AM:10  µg), amikacin 
(AK: 30 µg), aztreonam (AZM: 30 µg), cefotaxime (CTX: 
30  µg), ciprofloxacin (CIP: 5  µg), ceftriaxone (CRO: 
30 µg), ceftazidime (CAZ: 30 µg), cefepime (FEP: 30 µg), 
cefoxitin (FOX: 10  µg), colistin (CT: 10  µg), ertapenem 
(ETP: 10  µg), gentamicin (CN: 10  µg), imipenem (IPM: 
10  µg), levofloxacin (LEV: 10  µg), meropenem (MEM: 
10  µg), ampicillin/ sulbactam (SAM: 10/10 µg), trime-
thoprim/sulfamethoxazole (SXT: 1.25/23.75ug) and tige-
cycline (TGC: 15 µg) obtained from Oxoid, Basingstoke, 
United Kingdom were tested. According to the CLSI 
guidelines [17], isolates that showed resistance to at least 
one of the above-mentioned carbapenems were consid-
ered CR- GNB while, isolates that were not susceptible to 
at least one agent in three or more antimicrobial catego-
ries were recorded as MDR- GNB [19]. To confirm CR, 
minimum inhibitory concentration (MIC) of meropenem 

was determined by broth microdilution method. Isolates 
that tested intermediate or resistant to current CLSI 
breakpoints of meropenem (MIC ≥ 2–4  µg/ml for CPE 
and ≥ 4–8 µg/ml for CP-NF) were considered as potential 
carbapenemase producers [16]. A flow chart for detec-
tion of CPO was shown in supplementary file Fig S1.

Phenotypic tests for detection of carbapenemase 
producing organisms (CPO)
-Modified Hodge test (MHT)
An overnight culture of E. coli ATCC 25,922 (quality 
control/indicator strain) equivalent to 0.5 McFarland 
was diluted 1:10 using sterile saline solution and there-
after was streaked as a lawn on a Mueller Hinton agar 
plate. After placing meropenem or ertapenem disk at 
center of plate, 3 ± 5 colonies of overnight tested isolates 
were streaked from edge to the central disk using ster-
ile swabs and thereafter plates were incubated at 37  °C 
for 24 h in ambient of air. The production of carbapen-
emase enzymes were indicated by the appearance of 
clover leaf like indentation and enhanced growth of indi-
cator E. coli strains [20]. Phenotypic tests namely MHT, 
mCIM, BCT and CDT were done in duplicate to ensure 
reproducibility.

-Modified carbapenem inactivation method (mCIM)
An overnight culture of tested bacteria (1 µl loopful for 
Enterobacterales and 10  µl for non-glucose fermenting 
GNB including, P. aeruginosa, A. baumannii and Steno-
trophomonas maltophilia) was suspended in 2ml tryp-
ticase soy broth (TSB). Meropenem disk was added to 
the vortexed suspension and broth was incubated for 4 h 
at 37  °C. Just prior to completion of 4  h incubation, an 
overnight culture of E. coli ATCC 25,922 (adjusted to 0.5 
McFarland), was streaked over the surface of Mueller-
Hinton agar plate and meropenem disk was introduced 
to center of plate. Plates were incubated in ambient air at 
37 °C for 18 to 24 h. Tested isolates that showed an inhi-
bition zone between 6 and 15 mm or presence of pinpoint 
colonies within 16–18  mm zone were considered CPO. 
Tested isolates that showed an inhibition zone ≥ 19  mm 
were considered carbapenemase negative [20].

-Blue-carba test (BCT)
The BCT is a rapid biochemical test that depends on 
in vitro hydrolysis of imipenem and release of an acid 
that can be detected by bromothymol blue indicator. In 
a microtiter plate, a loopful of tested bacterial culture 
was added to both tested solution (0.04% bromothymol 
blue, 0.1mmol/liter ZnSO4 and 3  mg/ml of imipenem 
with a final pH adjusted to 7) and negative control solu-
tion (0.04% bromothymol blue adjusted to pH = 7). After 
about 2 h, the presence of CPO caused a shift in the pH 
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and turned the tested solution into either yellow or green 
color, while non-CPO remained blue in color [21–23].

-Combined disk test (CDT)
A Mueller-Hinton agar was over-streaked by an overnight 
culture of the tested bacterium adjusted to 0.5 McFar-
land. Imipenem and imipenem/ EDTA disks (Oxoid, Bas-
ingstoke, United Kingdom) were placed on the surface of 
the agar and thereafter plates were incubated at 37 °C for 
24 h. Production of class B carbapenemase was indicated 
by enhancement of inhibition zone ≥ 5 mm for latter disk 
when compared to former disk [24].

Molecular characterization of carbapenemase producing 
GNB
Overnight cultures of tested isolates were grown in 
Luria Bertani (LB) broth containing 25  µg/mL merope-
nem. PCR detection and conditions of carbapenemase-
encoding genes was carried out using PCR as previously 
described [25]. The set of 5 primers with the correspond-
ing annealing temperatures and expected amplicon 
sizes was shown in supplementary file (Table S1). The 
molecular characterization tests were performed from 
the colonies of the same plate where phenotypic tests 
were performed whenever possible to ensure uniformity, 
reproducibility and effective comparison of the results.

Phenotypic analysis using heatmap signature
Morpheus online software (https://software.broadin-
stitute.org/morpheus/ accessed on 25 March 2022) was 
used to generate a dendrogram showing heatmap sig-
natures of the isolates, to determine their phenotypic 
relatedness based on the antimicrobial resistance pattern 
and the production of carbapenemase enzymes as deter-
mined by MHT, mCIM, BCT, CDT by EDTA and PCR. 
An excel file of required data including isolate code, anti-
biotic sensitivity, results of 4 phenotypic tests and car-
bapenemase genes was uploaded and then the interactive 
tools of Morpheus was used to create hierarchical clus-
tering, annotations and display chart.

Statistical analysis
The sensitivity, specificity, positive predictive value (PPV) 
and negative predictive value (NPV) of each phenotypic 
test along with their 95% confidence interval (CI) were 
calculated using the free software VassarStats (http://
vassarstats.net/; accessed on 1 February 2022). The clini-
cal research calculator namely calculator 1 was used to 
determine the previously mentioned values along with 
95% CI. Pearson’s chi-square test was used to analyze the 
association of different types of carbapenemase enzymes 
with each phenotypic test. Spearman’s correlation was 
performed to determine the strength between all possible 
phenotypes and genotypes combinations. The strength of 

Spearman’s correlation coefficient varies between + 1 and 
− 1 value. Values between 0 ± 0.3, 0.4 ± 0.6 and 0.7 ± 1 indi-
cates a weak, moderate strength and strong relationship, 
respectively. Minitab version 19 was used for statistical 
analysis, P-value < 0.05 were considered statistically sig-
nificant results.

Results
Overview on the carbapenem-resistance Gram-negative 
bacilli (CR-GNB) isolates and antimicrobial susceptibility 
testing
Of 71 CR-GNB included in the study, 32 (45%), 22 
(30.9%), and 17 (23.9%) were derived from sputum, 
blood, and urine specimens, respectively.

The antibiogram analysis of CR-GNB against vari-
ous classes of antimicrobial agents including β-lactam 
group (AMC, AM, AZM, CTX, CRO, CAZ, FEP, FOX, 
IPM, MEM, SAM, ETP), aminoglycosides (AK, CN), 
quinolones (CIP, LEV), polymyxins (CT), glycylcyclines 
(TGC) and sulfonamides/diaminopyrimidines (SXT) was 
depicted in Fig.  1. The results revealed that the antimi-
crobial resistance profile of the tested CRE and CR-NF 
had exceeded 80% for all β-lactam group, aminoglyco-
sides, quinolones and sulfonamides/diaminopyrimidines. 
On the other hand, the highest susceptibility profile was 
recorded towards CT ranging from 90.3 to 93.4% and fol-
lowed by TGC ranging from 39.1 to 46.7%. About 98.6% 
(70/71) of the tested isolates had shown acquired resis-
tance to at least one agent in three or more antimicro-
bial classes and were considered MDR. Overall, 95.77% 
(68/71) of the tested CR-GNB isolates were not suscep-
tible to meropenem MIC and were defined as potential 
CPO.

Out of 71 CR-GNB isolates, 67 (94.36%) were CPO. 
Of these carbapenemases, blaKPC was the most frequent 
(49, 73.13%), followed by blaOXA−48 (35, 52.23%), blaVIM 
(23, 34.32%), blaNDM (10, 14.92%) and blaGIM (4, 5.97%) 
as depicted in Fig. 2. Out of 67 CPO isolates, 44 (65.67%) 
produced more than one carbapenemase genes. Co-
existence of blaKPC and blaOXA−48 was the most domi-
nant (34%), followed by co-detection of class A and class 
B (27.2%), then class B and class D (20.4%) and finally 3 
classes (18.1%). The 4 non-CPO isolates comprised 2 iso-
lates of A. baumannii and 1 isolate of K. pneumoniae and 
P. aeruginosa.

Performance of phenotypic tests for detection of CPO
The performance of various phenotypic assays (MHT, 
mCIM, BCT and CDT by EDTA) for detection of CPO 
were shown in Table  1. Growth based method as MHT 
and mCIM had shown a sensitivity of 65.62% and 68.65%, 
respectively for detection of CPO while, both tests had 
shown 100% specificity. The BCT had a sensitivity of 
89.55% and specificity of 75% while; CDT by EDTA had 

https://software.broadinstitute.org/morpheus/
https://software.broadinstitute.org/morpheus/
http://vassarstats.net/
http://vassarstats.net/
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a sensitivity of 55.22% and specificity of 100%. For CPE, 
the sensitivity, specificity, PPV and NPV of four pheno-
typic tests was 51-82.75%, 100%, 100% and 6.66%-16.66%, 
respectively. For CP-NF, the sensitivity, specificity, PPV 
and NPV of four phenotypic tests had ranged from 
50 to 94.74%, 66-100%, 97.29-100% and 13.63-50%, 
respectively.

Heat-map showing different antimicrobial resistance 
patterns and carbapenemase enzymes (BCT, CDT, 
mCIM, MHT, PCR) among 71 CR-GNB (Fig. 3). The heat 
map analysis of the 71 CR-GNB isolates showed that they 
were not clonal (Fig. 3).

The statistical association between carbapenemase 
enzyme and phenotypic tests with their respective p 

values was shown in Table  2. The results had indicated 
that CPO having blaKPC or blaGIM genotypes had shown 
a statistical significance with CDT by EDTA at p value 
0.02 and 0.04, respectively. The CPO having blaNDM 
and blaVIM had also shown statistically significant rela-
tion with CDT by EDTA and MHT. Isolates producing 
blaOXA−48 did not show statistical correlation with any 
of the tested phenotypic tests. Strength of Spearman’s 
correlation coefficient among all possible genotypes 
and phenotypes combinations was shown in Table  3. 
The results revealed a significant Spearman’s correlation 
coefficient (0.515–0.774) between blaNDM and/or blaVIM 
genotypes with isolates giving positive results with MHT 
and/or CDT by EDTA (supplementary file, Table S2-S8).

Table 1  Evaluation of sensitivity, specificity, positive predictive value and negative predictive value of phenotypic tests
Test GNB TPa FPb FNc TNd Sensitivity Specificity PPV NPV
95% confidence interval [95% CI]

MHT Enterobacterales 
(n = 28)

20 0 7 1 74%  [53.40-88.12] 100% [5.46–100] 100% [79.95–100] 12.50%  [0-53.32]

Non glucose 
fermenting bacilli 
(n = 40)
A. baumannii
P. aeruginosa

23
16
6

0
0
0

14
8
0

3
2
1

62.16% [44.78–77.06]
66.66%
[44.69–83.57]
50%
[22.28–77.71]

100%
[31–100]
100%
[19.78–100]
100%
[5.46–100]

100% [82.19–100]
100%
[75.92–100]
100%
[51.68–100]

17.64% [4.67–44.19]
20%
[3.54–55.78]
14.28%
[0.78-58]

total tested = 68 43 0 21 4 65.62% [52.61–76.75] 100% [39.57–100] 100% [89.56–100] 15.38% [5.04–35.72]

m-CIM Enterobacterales 
(n = 30)

15 0 14 1 51.72%
[32.89–70.10]

100%
[5.46–100]

100% [74.65–100] 6.66%
[3.49–33.96]

Non glucose 
fermenting bacilli 
(n = 41)
A. baumannii
P. aeruginosa

31
19
11

0
0
0

7
6
1

3
2
1

81.57%
[65.10-91.67]
76%
[49.65–85.50]
91.66%
[62.08–99.60]

100%
[31–100]
100% [19.78–100]
100%
[5.46–100]

100%
[86.27–100]
100%
[79.07–100]
100%
[67.85–100]

30%
[8.09–64.63]
25%
[4.45–64.42]
50%
[2.66–97.33]

total tested = 71 46 0 21 4 68.65%, [56.02–79.13] 100%, [39.57–100] 100%, [90.39–100] 16%, [5.25–36.91]

BCT Enterobacterales 
(n = 30)

24 0 5 1 82.75% [63.51–93.47] 100%
[5.46–100]

100%
[82.82–100]

16.66%
[1.05–70.12]

Non glucose 
fermenting bacilli 
(n = 41)
A. baumannii
P. aeruginosa

36
23
12

1
0
1

2
2
0

2
2
0

94.74% [80.93–99.08]
92.56%
[72.49–98.60]
100%
[69.87–100]

66.66% [12.53–98.23]
100%
[19.78–100]
0%
[0-94.53]

97.29%
[84.19–99.85]
100%
[82.19–100]
92.30%
[62.08–99.59]

50%
[9.18–90.81]
50%
[9.18–90.81]
NA

total tested = 71 60 1 7 3 89.55%
[79.06–95.34]

75%
[21.94–98.68]

98.36% 
[90.01–99.91]

30%
[8.09–64.63]

CDT Enterobacterales 
(n = 30)

18 0 11 1 62.07
[42.36–78.69]

100%
[5.46–100]

100% [78.12–100] 8.33%
[0-40.24]

Non glucose 
fermenting bacilli 
(n = 41)
A. baumannii
P. aeruginosa

19
15
4

0
0
0

19
10
8

3
2
1

50%
[33.65–66.34]
60%
[38.89–78.18]
33.33%
[11.27–64.56]

100%
[31–100]
100%
[19.78–100]
100%
[5.46–100]

100% [79.07–100]
100%
[74.65–100]
100%
[39.57–100]

13.63% [3.58–35.96]
16.66%
[2.94–49.11]
11.11%
[0.58–49.32]

total tested = 71 37 0 30 4 55.22%, [42.63–67.21] 100%, [39.57–100] 100%, [88.28–100] 11.76% [3.83–28.39]
TPa, true positive, FPb, False positive, FNc, False negative, TNd, true negative; Sensitivity = a/(a + c), Specificity = d/(b + d), PPV (Positive predictive value) = a/(a + b), NPV 
(Negative predictive value) = d/ (c + d); MHT, modified Hodge test, mCIM, modified carbapenem inactivation method, CDT, combined disk test by EDTA ; BCT, blue-
carba test

* Non glucose fermenting included A. baumannii, P. aeruginosa and Stenotrophomonas maltophilia isolates
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Discussion
Given their alarming prevalence across the globe includ-
ing Egypt, infections caused by CR-GNB especially CPO 
poses an ongoing public health threat that is associated 
with higher mortality rates, longer hospitalization and 
increased healthcare costs [26]. Of note, World Health 
Organization (WHO) had listed CR-NF namely A. bau-
mannii complex and P. aeruginosa along with CRE as 
critical pathogens with the most tenacious resistant prob-
lem for which innovative new treatments are urgently 
required [27]. Therefore, this study was conducted to 
determine the significant association of the molecu-
lar and phenotypic tests to determine the most reliable 
phenotypic test to guide the physician in selecting the 
appropriate empirical antibiotic therapy, particularly in 
life-threatening infections such as meningitis and pneu-
monia or bloodstream infections caused by this night-
mare pathogens.

In this study, we aimed to detect the prevalence of CPO 
across 71 CR-GNB, after checking their resistance pro-
files by disk diffusion method and determining potential 
CPO by broth microdilution assay against meropenem 
antibiotic. Our results revealed that the previously men-
tioned CR-NF along with K. pneumoniae were the most 
frequently isolated, reflecting their bioburden and ensur-
ing their importance as life threating human pathogens. 
The antibiogram analysis of CR-GNB clinical isolates 

revealed high resistance pattern to β-lactam group, ami-
noglycosides, quinolones and sulfonamides/diamino-
pyrimidines while, colistin and tigecycline had shown 
improved susceptibility pattern. Additionally, 98.6% of 
tested CR-GNB expressed MDR phenotypes, which was 
in accordance with other recently published national 
studies that underscore the considerable resistant of CPO 
[28, 29]. Our analysis of the meropenem MIC profile 
among distinct bacterial genera revealed that majority 
of CRE (29/30, 96.66%) and CR-NF (39/41, 95.12%) iso-
lates displayed MIC values of ≥ 2–4 µg/ml and ≥ 4–8 µg/
ml, respectively and were considered as potential CPO as 
recommended by CLSI. Despite of meropenem enhanced 
performance as an initial screening test, still carbapen-
emase enzymes as blaOXA−48 and variants of blaKPC with 
weak activity against carbapenems can be underesti-
mated [30–32].

Of concern, the dissemination of these perturbing 
enzymes including OXA−48, KPC and class B metallo 
β-lactamases within our hospital settings had called for 
prompt detection of CPO to allow implementing effec-
tive infection control measures and prescribing of appro-
priate antimicrobial regimen [33, 34]. In context of this, 
a series of phenotypic tests including MHT, mCIM, BCT 
and CDT was proposed to evaluate their performance, in 
comparison to gold standard PCR. Our study revealed 
that MHT had shown relatively reduced sensitivity and 

Fig. 1  The antibiogram analysis of Carbapenemase-producing Gram-negative (CPGN) pathogens (n = 71) including, Enterobacterales and non-glucose-
fermenting Gram-negative bacilli (GNB) against various classes of antimicrobial agents
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low NPV in detecting CPE (74%, 12.50%) and CP-NF 
(62.16%, 17.64%), respectively. Such finding could be 
attributed to failure of MHT to detect 21 CPO isolates 
(7 CPE and 14 CP-NFB) that carry blaKPC either alone 
or in combination with blaOXA−48 [1, 14]. However, Yan 
et al. had improved the efficiency of the MHT in detect-
ing KPC-producing K. pneumoniae mucoid colonies by 
using EDTA that primarily lyses bacterial cells to release 
β-lactamases [35].

To overcome pitfalls of MHT in terms of its subjec-
tive interpretation and validity, CLSI had endorsed a 
more reliable growth based carbapenemase detection 
test, mCIM. In comparison to MHT, mCIM had shown 
improved sensitivity in the detection of total CPO 
(68.65%) and CP-NF (81.75%). Our findings were in tune 
with Kuchibiro et al., who reported on improved sensitiv-
ity of mCIM in detecting CP-A. baumannii and CP-Pseu-
domonas spp. at 76.5% and 90%, respectively [36]. In this 
study, the decreased sensitivity and NPV of mCIM could 
be related to high number of false negative results (14 
CPE and 7 CP-NF), whereas 16 of these strains (10 CPE 
and 6 CP-NF) produced blaKPC, accounting for 76.19%. 
Of note, such isolates produced either blaOXA−48 or class 
B carbapenemase along with blaKPC. This data suggest 
that further studies could be required to estimate effect 

of longer incubation period between tested isolate and 
meropenem disk (> 4 h) to ensure detection of carbapen-
emases with either low level of expression, weak hydro-
lytic activities, or class B carbapenemase that requires 
divalent cations for their action.

Metallo-β-lactamases of subclass B1 as blaVIM and 
blaNDM are resistance determinant of increased clini-
cal relevance within our hospital settings. The CDT an 
inhibitor-based approach that depends on suppressing 
the enzymatic activity by a chelating agent namely EDTA 
was tested, prior to PCR. In comparison to MHT and 
mCIM, CDT by EDTA had shown a reduced sensitivity 
rate for detection of CPE, CP-NF and CPO at 62.07%, 
50% and 55.22%, respectively. Out of 30 false negative 
results, 27 (90%) carry blaKPC alone or in combination 
with blaOXA−48, that were not inhibited by EDTA. Of 
particular concern that the other 3 false negative results 
belong to CP-NF (A. baumannii, P. aeruginosa, Stenotro-
phomonas maltophilia) that co-produce blaKPC + blaVIM 
+ blaOXA−48. Failure to detect blaVIM in such isolates 
could be attributed to inability of EDTA to reach metallo 
β-lactamase active site that is characterized by being a 
shallow groove with few contact points [37] or it could be 
related to inadequate expression of blaVIM.

Fig. 2  Prevalence of different carbapenemase genotypes among the recovered carbapenem-resistance Gram-negative bacilli (CR-GNB; n = 71).). BlaKPC, 
gene coded for Klebsiella pneumoniae carbapenemases (KPC); blaNDM, a gene coded for New Delhi metallo-β-lactamase (NDM); imipenem-resistant Pseu-
domonas-type carbapenemases (IMP); blaVIM, a gene coded for Verona integron-encoded metallo-β-lactamase (VIM); blaGIM, a gene coded for German 
imipenemase and blaOXA−48, oxacillinase (OXA-48-like) types
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Lately, a variety of colorimetric methods that explore 

hydrolytic activity of carbapenemase enzymes within 
a short turnaround time as Carba-NP and its variant 
BCT had been proposed. In comparison to PCR, the 
colorimetric assays always-broader detection of car-
bapenemase activity and it is a reliable method for rapid 
detection of CPO directly from solid media or blood cul-
tures [38].

Among the other three evaluated phenotypic tests 
in this study, BCT had presented the highest sensitiv-
ity for detection of CPE, CP-NF, and CPO at 82.75%, 
94.74% and 89.55%, respectively. Our results were nearly 
in agreement with other studies that reported on higher 
sensitivity of BCT for detection of CPE ranging from 
95.3 to 98% [39, 40]. However, a relatively lower specific-
ity (66.66%) and PPV (97.29%) were recorded for BCT 
among CR- NG in our study. This could be attributed to 
false positive result exhibited by an A. baumannii isolate 
that carry either blaOXA−48 variants or rare carbapen-
emase not detected by PCR. On the contrary, no false 
positive results were recorded with the other three phe-
notypic tests, rendering perfect specificity and PPV.

Another important aim of our study was to evaluate the 
correlation between CR genes and different phenotypic 
tests. Our results recorded a statistically significant dif-
ference between CPO isolates having class B carbapen-
emases and/or blaKPC with CDT by EDTA. Although 
previous studies had reported on effectiveness of EDTA 
to inhibit metallo β-lactamase enzymes [41, 42], still 
there is paucity of data on its capability to interact with 
blaKPC. However, we should put in consideration that 
EDTA itself effect membrane permeabilization particu-
larly in non-fermenting bacilli and restore activity of car-
bapenem leading to false interpretation of CDT [43, 44]. 
Additionally, CPO having blaVIM or blaNDM had shown 
statistically significant difference with MHT. This results 
were comparable to Sultan et al., who reported on effec-
tiveness of MHT to determine blaNDM in clinical labora-
tories of Pakistan [45]. Finally, Enterobacterales isolates 
producing blaGIM had shown significant statistical associ-
ation with BCT. In summary, each phenotypic test has its 
own pros and cons. However, limitation of study includes 
the inability to evaluate performance of Carba NP and 
presence of isolates harboring more than one type of car-
bapenemase enzymes that may impede performance of 
CDT with EDTA. Another limitation is evaluating per-
formance of MHT that is not currently recommended by 
CLSI.

Conclusion
The performance of phenotypic tests (sensitivity/speci-
ficity/PPV/NPV) varied depending on bacterial gen-
era, genotype, and coexistence of more than one type of 
carbapenemase. Statistical analysis showed significant 
association (p < 0.05) between blaNDM/blaVIM genotypes 

Fig. 3  The heat-map clonal analysis of the among the recovered carbape-
nem-resistance Gram-negative bacilli (CR-GNB) phenotypes. AMC (amoxi-
cillin/clavulanic acid), AM (ampicillin), AK (amikacin), AZM (aztreonam), 
CTX (cefotaxime), CIP (ciprofloxacin), CRO (ceftriaxone), CAZ (ceftazidime), 
FEP (cefepime), FOX (cefoxitin), (CT) colistin, ETP (ertapenem), CN (gen-
tamicin), IPM (imipenem), LEV (levofloxacin), (MEM) meropenem), (SAM) 
ampicillin/ sulbactam, SXT (trimethoprim / sulfamethoxazole, TGC (tigecy-
cline). MHT (modified Hodge test), mCIM (modified carbapenem inactiva-
tion method), CDT, (combined disk test by EDTA), BCT (blue-carba test)
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with MHT/CDT; blaKPC/blaGIM genotypes with CDT 
and blaGIM genotype with BCT. BCT possess a relatively 
high performance for the efficient and rapid detection of 
CPO. The overall sensitivity/specificity values for detec-
tion of CPO were 65.62%/100% for MHT, 68.65%/100% 
for mCIM, 55.22%/100% for CDT and 89.55%/75% for 
BCT. Based on its respective diagnostic efficiency and 
rapid turnaround time, BCT is more likely to be recom-
mended in our resource limited settings when PCR is not 
available.

Table 2  Statistical association between carbapenemase enzyme and phenotypic tests with their respective p values
Pearson Chi-Square (two-tailed P value)
Carbapenamase enzyme Pheno-

typic 
Tests

Enterobacterales A. baumannii P. aeruginosa Non-
glucose 
fermenting 
GNB

Total 
tested 
isolates

blaKPC MHT P = 0.334 P = 0.126 P = 0.428 P = 0.116 P = 0.096

mCIM P = 0.525 P = 0.573 P = 0.715 P = 0.475 P = 0.500

BCT P = 0.084 P = 0.693 P = 0.188 P = 0.261 P = 0.088

CDT P = 0.192 P = 0.136 P = 0.071 P = 0.021* P = 0.020*

blaNDM MHT P = 0.053 P = 0.145 NA P = 0.121 P = 0.009*

mCIM P = 0.159 P = 0.881 NA P = 0.707 P = 0.684

BCT P = 0.631 P = 0.193 NA P = 0.072 P = 0.464

CDT P = 0.017* P = 0.100 NA P = 0.052 P = 0.001*

blaVIM MHT P = 0.039* P = 0.005* P = 0.014* P = 0.006* P = 0.000*

mCIM P = 0.056 P = 0.738 P = 0.273 P = 0.526 P = 0.350

BCT P = 0.732 P = 0.136 NA P = 0.159 P = 0.943

CDT P = 0.033* P = 0.001* P = 0.030* P = 0.004* P = 0.000*

blaGIM MHT P = 0.519 P = 0.727 P = 0.260 P = 0.738 P = 0.615

mCIM P = 0.309 P = 0.512 P = 0.657 P = 0.707 P = 0.523

BCT P = 0.041* P = 0.603 NA P = 0.613 P = 0.446

CDT P = 0.406 P = 0.188 P = 0.118 P = 0.052 P = 0.048*

blaOXA−48 MHT P = 0.717 P = 0.003* P = 0.428 P = 0.061 P = 0.115

mCIM P = 0.269 P = 0.472 P = 0.715 P = 0.319 P = 0.099

BCT P = 0.140 P = 0.495 NA P = 0.63 P = 0.305

CDT P = 0.313 P = 0.816 P = 0.071 P = 0.277 P = 0.287
* Statistically significant, MHT, modified Hodge test, mCIM, modified carbapenem inactivation method, CDT, combined disk test by EDTA ; BCT, blue-carba test. Non 
glucose fermenting bacilli included A. baumannii, P. aeruginosa and Stenotrophomonas maltophilia isolates. NA: not applicable
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List of abbreviations
BlaKPC	� the gene coded for Klebsiella pneumoniae carbapenemases (KPC).
blaNDM	� the gene coded for New Delhi metallo-β-lactamase (NDM).
BlaIMP	� the gene coded for the imipenem-resistant Pseudomonas-type 

carbapenemases (IMP).
blaVIM	� a gene coded for Verona integron-encoded metallo-β-lactamase 

(VIM).
blaGIM	� the gene coded for German imipenemase
blaOXA−48	� the gene coded oxacillinase (OXA-48-like) types
BCT	� blue-carba test
CLSI	� clinical and laboratory standard institute
CDT	� combined disk test by EDTA
CPGN	� Carbapenemase-producing Gram-negative (CPGN)
CPO	� Carbapenemase-producing organisms
EDTA	� ethylene diamine tetra acetic acid
GNB	� Gram-negative bacilli
MDR	� mlti-drug resistant
MHT	� modified Hodge test

mCIM	� modified carbapenem inactivation method
FP	� False positive
FN	� False negative
TP	� true positive
TN	� true negative
PPV	� Positive predictive value
NPV	� Negative predictive value
PCR	� polymerase chain reaction
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Table 3  Spearman correlation coefficient among all possible genotypes and phenotypes combinations
Sample 1 Sample 2 Correlation 95% CI for ρ P-Val-

ue
blaVIM + blaGIM + blaNDM MHT + BCT + EDTA 0.774 [64.0- 86.2] 0

blaVIM + blaNDM MHT + EDTA 0.763 [62.5–85.5] 0

blaVIM + blaGIM + blaNDM EDTA + mCIM + MHT 0.736 [58.7–83.6] 0

blaVIM + blaNDM EDTA 0.724 [0.57.1–82.8] 0

blaVIM + blaNDM MHT + BCT + EDTA 0.718 [0.56.3–82.4] 0

blaVIM + blaGIM + blaNDM MHT 0.711 [54.8–0.82.1] 0

blaVIM + blaNDM EDTA + mCIM + MHT 0.683 [51.6–0.80.0] 0

blaVIM + blaNDM MHT 0.679 [50.7–80.0] 0

blaVIM + blaGIM + blaNDM BCT + EDTA 0.678 [50.9–79.7] 0

blaVIM + blaGIM + blaNDM MHT + BCT + EDTA + mCIM 0.653 [47.7–77.9] 0

blaVIM + blaGIM + blaNDM + blaOXA−48 MHT 0.653 [47.3–78.1] 0

blaVIM + blaNDM MHT + BCT + EDTA + mCIM 0.623 [43.8–75.7] 0

blaVIM + blaGIM + blaNDM + blaOXA−48 MHT + EDTA 0.617 [43.1–75.3] 0

blaVIM + blaGIM + blaNDM + blaOXA−48 EDTA + mCIM + MHT 0.61 [42.1–74.7] 0

blaVIM + blaNDM Blue Carba + EDTA 0.607 [41.8–74.6] 0

blaVIM + blaNDM + blaOXA−48 MHT 0.6 [40.4–74.3] 0

blaVIM + blaGIM + blaNDM + blaOXA−48 MHT + BCT + EDTA 0.593 [40.1–73.5] 0

blaVIM + blaGIM MHT + EDTA 0.581 [38.6–72.6] 0

blaVIM + blaGIM + blaNDM mCIM + EDTA 0.581 [38.6–72.6] 0

blaVIM + blaGIM EDTA 0.577 [38.1–72.3] 0

blaVIM + blaNDM MHT + BCT 0.559 [35.9–71.0] 0

blaVIM + blaGIM + blaNDM MHT + BCT 0.558 [35.8–70.9] 0

blaVIM + blaGIM + blaNDM + blaOXA−48 MHT + BCT + EDTA + mCIM 0.558 [35.8–70.9] 0

blaVIM + blaGIM MHT + BCT + EDTA 0.548 34.6–70.2] 0

blaVIM + blaGIM + blaNDM + blaOXA−48 MHT + BCT 0.544 [34.1–69.8] 0

blaVIM + blaNDM + blaOXA−48 EDTA + mCIM + MHT 0.541 [33.8–69.7] 0

blaVIM + blaNDM + blaOXA−48 MHT + EDTA 0.533 [32.8–69.0] 0

blaVIM + blaNDM + blaOXA−48 MHT + BCT + EDTA 0.524 [31.7–68.3] 0

blaVIM + blaNDM mCIM + EDTA 0.523 [31.6–68.2] 0

blaVIM + blaNDM + blaOXA−48 MHT + BCT 0.518 [31.0- 67.9) 0

blaVIM MHT + EDTA 0.517 [30.7–67.9] 0

blaVIM + blaGIM + blaNDM + blaOXA−48 mCIM + MHT 0.515 [30.6–67.6] 0

blaVIM + blaGIM + blaNDM + blaOXA−48 EDTA 0.515 [30.7–67.7] 0

blaVIM + blaNDM + blaOXA−48 MHT + BCT + EDTA + mCIM 0.509 [29.9–67.2] 0

blaVIM MHT + BCT + EDTA 0.502 [29.0- 66.8] 0
BlaKPC, gene coded for Klebsiella pneumoniae carbapenemases (KPC); blaNDM, a gene coded for New Delhi metallo-β-lactamase (NDM); imipenem-resistant Pseudomonas-
type carbapenemases (IMP); blaVIM, a gene coded for Verona integron-encoded metallo-β-lactamase (VIM); blaGIM, a gene coded for German imipenemase and 
blaOXA−48, oxacillinase (OXA-48-like) types. MHT, modified Hodge test, mCIM, modified carbapenem inactivation method, CDT, combined disk test by EDTA; BCT, 
blue-carba test
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