
REVIEW
published: 19 September 2018
doi: 10.3389/fendo.2018.00509

Frontiers in Endocrinology | www.frontiersin.org 1 September 2018 | Volume 9 | Article 509

Edited by:

Michihisa Umetani,

University of Houston, United States

Reviewed by:

Alan Remaley,

National Heart, Lung, and Blood

Institute (NHLBI), United States

Verena M. Dirsch,

Universität Wien, Austria

Verena Hiebl,

Universität Wien, Austria,

in collaboration with reviewer VD

*Correspondence:

Yoshio Yamauchi

a-yoshio@mail.ecc.u-tokyo.ac.jp

Specialty section:

This article was submitted to

Cancer Endocrinology,

a section of the journal

Frontiers in Endocrinology

Received: 23 May 2018

Accepted: 14 August 2018

Published: 19 September 2018

Citation:

Yamauchi Y and Rogers MA (2018)

Sterol Metabolism and Transport in

Atherosclerosis and Cancer.

Front. Endocrinol. 9:509.

doi: 10.3389/fendo.2018.00509

Sterol Metabolism and Transport in
Atherosclerosis and Cancer
Yoshio Yamauchi 1,2* and Maximillian A. Rogers 3

1Nutri-Life Science Laboratory, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life

Sciences, University of Tokyo, Tokyo, Japan, 2 AMED-CREST, Japan Agency for Medical Research and Development, Tokyo,

Japan, 3Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s

Hospital, Harvard Medical School, Boston, MA, United States

Cholesterol is a vital lipid molecule for mammalian cells, regulating fluidity of biological

membranes, and serving as an essential constituent of lipid rafts. Mammalian

cells acquire cholesterol from extracellular lipoproteins and from de novo synthesis.

Cholesterol biosynthesis generates various precursor sterols. Cholesterol undergoes

metabolic conversion into oxygenated sterols (oxysterols), bile acids, and steroid

hormones. Cholesterol intermediates andmetabolites have diverse and important cellular

functions. A network of molecular machineries including transcription factors, protein

modifiers, sterol transporters/carriers, and sterol sensors regulate sterol homeostasis in

mammalian cells and tissues. Dysfunction in metabolism and transport of cholesterol,

sterol intermediates, and oxysterols occurs in various pathophysiological settings such

as atherosclerosis, cancers, and neurodegenerative diseases. Here we review the

cholesterol, intermediate sterol, and oxysterol regulatory mechanisms and intracellular

transport machineries, and discuss the roles of sterols and sterol metabolism in human

diseases.

Keywords: ABC transporters, cholesterol, lanosterol, oxysterols, cholesterol efflux, intracellular cholesterol

transport, atherosclerosis, cancer

INTRODUCTION

Sterol biosynthesis is thought to have evolved 2.31 billion years ago (1). In eukaryotes, various
complex sterols exist among plants, yeast, and mammals, and a few bacteria are also capable of
synthesizing simpler sterols. Cholesterol is a vital lipid molecule for all mammals, and plays diverse
and important roles in a number of biological processes, physiology, and disease (2). Mammalian
cells can acquire cholesterol from two sources; uptake from extracellular milieu (exogenous source)
and de novo synthesis (endogenous source). In addition to cholesterol, cells produce a variety of
sterols. In the process of cholesterol synthesis, a series of intermediate sterols are generated as
cholesterol precursors. Cholesterol is metabolized to cholesteryl ester (CE), oxysterols, bile acids,
and steroid hormones. All these non-cholesterol sterols have important physiological functions in
cells and in tissues.

Cholesterol is an important constituent of cellular membranes, regulating membrane fluidity
and functionality. Cellular cholesterol distribution is highly heterogeneous among organelles
[reviewed in (3–5)]. The plasma membrane (PM) contains 60–90% of total cellular cholesterol,
which accounts for 25–40 mol% of PM lipids. The endocytic compartments and trans-Golgi
network (TGN) are also cholesterol-rich organelles; whereas, the endoplasmic reticulum (ER) and
the mitochondria contain only ∼1% of total cellular cholesterol, which accounts for ∼5 mol%
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of ER lipids. Cholesterol is an essential constituent of membrane
domains known as lipid rafts, which are small domains enriched
in cholesterol and sphingolipids [both sphingomyelin (SM) and
glycosphingolipids] [reviewed in (6)]. Lipid rafts are involved in
key cellular functions like endocytosis, cellular signaling, and cell
motility (6). In cells, cholesterol and other sterol molecules move
dynamically among organelles to maintain proper distribution.

Aberrant accumulation of unesterified cholesterol in
membranes is toxic to cells; therefore, various intrinsic
and elaborate systems cooperatively regulate cellular sterol
homeostasis. Cellular cholesterol content is tightly controlled
by regulating de novo synthesis, extracellular uptake, export
to extracellular milieu, and metabolic conversion (7, 8).
Impairments in sterol homeostasis can cause various congenital
and acquired diseases in humans, and pathophysiological
conditions can also affect sterol homeostasis (2).

In this review, we provide an up-to-date assessment of the cell-
intrinsic regulatory mechanisms for biosynthesis, intracellular
transport, and efflux of cholesterol, intermediate sterols, and
oxysterols. Additionally, we describe the roles of these sterol
molecules in human diseases. This review contains four broad
topics; (1) sterol biosynthesis and regulation, (2) intracellular
sterol transport, (3) cellular sterol export, and (4) the roles of
sterols in human diseases. Finally, we highlight several areas
of research where mechanistic clarification is needed for sterol-
related disease therapeutic development.

ROLES OF STEROLS

Cholesterol, intermediate sterols, and oxysterols have various
important functions; Table 1 summarizes some of the functions
further described in this review.

Role of Cholesterol
Cholesterol is a membrane lipid that is indispensable for
integrity of biological membranes. It is vital for forming
lipid rafts, membrane nano-domains enriched in cholesterol,

TABLE 1 | Roles of intermediate sterols, cholesterol, and oxysterols.

Sterols Biological activities References

Lanosterol Inhibition of lens protein aggregation (9)

Dihydrolanosterol Stimulation of HMGCR ubiquitination (10, 11)

FF-MAS Meiosis activation (12)

T-MAS Meiosis activation (12)

Desmosterol Binding and regulation of SCAP, LXR ligand (13, 14)

Cholesterol Lipid raft formation (6)

Binding and regulation of SCAP (13)

Modification of Hedgehogs and Smoothend (15, 16)

7α-OHC Major bile acid precursor (17)

24(S)-OHC INSIG ligand, LXR ligand (18, 19)

25-OHC INSIG ligand, LXR ligand, anti-viral effect (18–20)

27-OHC INSIG ligand, LXR ligand, SERM (18, 19, 21)

7α,25-di-OHC EBI2 ligand (22, 23)

and sphingolipids, which play a variety of important roles
in mammalian cells (6). Cholesterol can regulate functions
of biological membranes including endocytosis, membrane
trafficking, and signaling. Cholesterol is the precursor of steroid
hormones, bile acids, and oxysterols. In addition, cholesterol
modifies select proteins: it is covalently attached to Hedgehog
proteins (15) and to smoothened (16), both of which work
in concert in Hedgehog singling, a signaling pathway playing
a critical role in embryonic development and tumorigenesis.
As described in more detail below, cholesterol partly regulates
cholesterol biosynthesis.

Role of Intermediate Sterols
Sterol intermediates are not just precursors of cholesterol but
can also act as biologically active agents. Lanosterol, the first
biosynthesized sterol in the cholesterol biosynthetic pathway, can
prevent lens protein aggregation and cataracts (9). Lanosterol
treatment partially corrects cataracts in animal models. Zhao
et al. (9) demonstrated that missense mutations in the lanosterol
synthase LSS gene cause congenital cataracts. Dihydrolanosterol
promotes ubiquitination and degradation of 3-hydroxy-3-
methylglutaryl (HMG)-CoA reductase (HMGCR), inactivating
cholesterol biosynthesis rapidly (10, 11). 4,4-dimethylcholesta-
8,14,24-trien-3β-ol (follicular fluid meiosis-activating sterol, FF-
MAS) and 4,4-dimethylcholesta-8,24-dien-3β-ol (testis-MAS, T-
MAS) are implicated as meiosis-activating substances in oocyte
maturation (12). In addition to cholesterol as described in the
following section, desmosterol binds to sterol regulatory element
binding protein (SREBP) cleavage activating protein (SCAP),
and blocks SREBP activation to regulate cholesterol homeostasis
(13). Desmosterol is also known to act as an endogenous ligand
for the nuclear receptor liver X receptor (LXR) (14). Defects in
enzymes involved in conversion of lanosterol to cholesterol cause
severe malformation observed in Smith-Lemli-Optiz syndrome,
desmosterolosis, X-linked dominant chondrodysplasia punctate
type 2 (CDPX2), CHILD syndrome, Greenberg dysplasia, and
Antley-Bixler syndrome (24, 25). In these patients, intermediate
sterols accumulate in tissues and plasma.

Role of Oxysterols
Oxysterols are one of the most potent negative regulators of
cholesterol biosynthesis. Side-chain oxysterols including 25-
hydroxycholesterol (25-OHC), 27-OHC, and 24(S)-OHC bind
INSIG proteins (18), which are ER-resident proteins involved
in negative feedback regulation of cholesterol homeostasis.
Recent work established virus infection activates conversion
of cholesterol to 25-OHC, which inhibits the SREBP pathway
and down-regulates cholesterol biosynthesis (20). 25-OHC
formation-dependent suppression of cholesterol synthesis plays
an important role in viral infection and replication inhibition.
In addition, oxysterols act as LXR ligands (19) that induce
expression of genes involved in cholesterol efflux, including
ATP-binding cassette (ABC) transporters ABCA1 and ABCG1,
and apolipoprotein E (apoE) [reviewed in (26)]. Furthermore,
recent studies demonstrated that 27-OHC can bind to estrogen
receptors and act as an endogenous selective estrogen receptor
modulator (SERM) (21). Side-chain oxysterols, but not sterol
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ring modified oxysterols, show membrane-disordering effects
that result in alternations in membrane functions (27).

STEROL SYNTHESIS AND ITS
REGULATION

Biosynthesis of Intermediate Sterols and
Cholesterol
In mammals, virtually all cells are capable of synthesizing
cholesterol de novo. In humans, the liver is the most
active organ in cholesterol synthesis, synthesizing as much
as 1 g of cholesterol per day. Biosynthesis of cholesterol
from the simple, two-carbon acetyl-CoA is a complex, multi-
step process involving over 30 enzymes, and consumes 18
ATP a cholesterol molecule. Cholesterol biosynthesis begins
with condensation of acetyl-CoA and acetoacetyl-CoA, which
results in formation of HMG-CoA (28). A key rate-limiting
enzyme in cholesterol biosynthesis is the ER membrane-bound
enzyme HMGCR, which catalyzes reduction of HMG-CoA to
mevalonate. This reaction uses NADPH as the reducing agent.
Mevalonate is then phosphorylated by mevalonate kinase and
phosphomevalonate kinase to yield 5-pyrophosphomevalonate.
Subsequent isopentenyl pyrophosphate (IPP) production, a five-
carbon (C5) isoprene unit, serves as precursor for all isoprenoids.
IPP undergoes isomerization to 3,3-dimethylallyl pyrophosphate
(DPP). DPP then condenses with IPP, yielding C10 geranyl
pyrophosphate (GPP). Condensation of GPP and IPP produces
C15 farnesyl pyrophosphate (FPP). Two molecules of FPP
are then condensed and reduced to yield C30 squalene, the
final non-sterol precursor of cholesterol. Squalene synthase
catalyzes this reacting using NADPH as the reducing agent.
Oxidation and cyclization of squalene yield C30 lanosterol, the
first sterol in the biosynthetic pathway, via 2,3-epoxysqualene;
squalene monooxygenase (also known as squalene epoxidase)
that converts squalene to 2,3-epoxysqualene using NADPH and
molecular oxygen, and lanosterol synthase then catalyzes the
cyclization of 2,3-epoxysqualene to lanosterol.

Lanosterol undergoes extensive modifications en route to the
final product, cholesterol (Figure 1). Conversion of lanosterol to
C27 cholesterol involves at least 18 different enzymatic reactions
including removal of the three methyl groups, reduction of
the side chain, and rearrangement of the double bonds within
sterol rings by consuming NADPH and O2. All of the enzymes
responsible for converting squalene to cholesterol localize in the
ER membrane. Conversion of lanosterol to cholesterol proceeds
through either one of two pathways known as Bloch pathway
and Kandutsch-Russell pathway (Figure 1). Desmosterol and
7-dehydrocholesterol are the final precursors in the Bloch
pathway and the Kandutsch-Russell pathway, respectively. The
sterol 124-reductase, DHCR24, which catalyzes reduction of
the side chain at position 24 using NADPH as the reducing
agent, is a key branching enzyme for the two pathways.
14α-methyl group of lanosterol and dihydrolanosterol is first
removed by lanosterol 14α-demethylase (CYP51A1), yielding
C29 sterols with two methyl groups at C4 position. The
two methyl groups are then sequentially trimmed by a series

of complex reactions involving three enzymes, methylsterol
monooxygenase 1 (encoded by MSMO1/SC4MOL), sterol-
4α-carboxylate 3-dehydrogenase (NSDHL), and 3-keto-steroid
reductase (HSD17B7), producing C27 zymosterol or zymostenol.
Conversion of zymosterol or zymostenol to cholesterol involves
rearrangements of the double bonds within the sterol rings. A
detailed review describing cholesterol biosynthetic reactions is
available (30).

Recent work by Mitsche et al. shows that utilization of
the Bloch pathway or Kandutsch-Russell pathway is cell and
tissue type-dependent (29). No tissues use canonical Kandutsch-
Russell pathway, but instead may use a proposed “modified”
Kandutsch-Russell pathway, in which DHCR24 mediates the
entry of zymosterol into Kandutsch-Russell pathway (Figure 1).
In mice, the Bloch pathway mediates 90% or more cholesterol
biosynthesis in the testis, spleen, and adrenal, and the modified
Kandutsch-Russell pathway is used for more than 70% of
cholesterol biosynthesis in the brain, skin, and preputial
(29).

Regulation of Sterol Synthesis
Mammalian cells acquire cholesterol from two sources:
endogenous synthesis and uptake from exogenous sources.
These two processes are tightly controlled for cellular cholesterol
content maintenance by multiple modes of regulation at
transcriptional and post-transcriptional levels.

SREBP transcription factors serve as master regulators of
cholesterol synthesis [reviewed in (31)]. There are two SREBP
genes (SREBF1 and SREBF2) and three SREBP proteins,
SREBP-1a, SREBP-1c, and SREBP-2. SREBF1 encodes SREBP-
1a and SREBP-1c through alternative splicing, and SREBF2
encodes SREBP-2 protein [reviewed in (32)]. SREBP-2 regulates
expression of virtually all genes involved in cholesterol synthesis.
SREBP-1a regulates both cholesterol and fatty acid synthesis,
whereas SREBP-1c participates in the regulation of fatty acid
synthesis [reviewed in (32)]. SREBPs are unique, membrane-
bound transcription factors. When cellular cholesterol is at
sufficient levels, SREBPs locate at the ER as inactive forms by
forming a complex with SCAP and INSIG. INSIG1 and INSIG2
are ER resident proteins, and act as retention factors of the SCAP-
SREBP complex in the ER. INSIG proteins are stabilized by side-
chain oxysterols including 25-OHC and 27-OHC through direct
interaction with the oxysterols (18). Upon cellular cholesterol
reduction, the SCAP-SREBP complex is transported to the
Golgi via the COP-II pathway, and SREBPs are sequentially
cleaved by two proteases, Site-1 protease (S1P) and Site-2
protease (S2P), to liberate the transcriptionally active domain
frommembranes. SCAP possesses a sterol-sensing domain (SSD)
and can bind cholesterol. Cholesterol binding to SCAP leads
to a conformational change, which prevents the SCAP-SREBP
complex from its incorporation into the COP-II vesicles (13, 33).
Moreover, small changes in ER cholesterol levels regulate this
translocation: SCAP-SREBP-2 complex leaves the ER for the
Golgi when the ER cholesterol concentration is below 5% of total
ER lipids (34). In addition, polyunsaturated fatty acids regulate
proteolytic processing of SREBP-1, but not SREBP-2 (35).
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FIGURE 1 | Cholesterol biosynthetic pathway.The conversion of lanosterol to cholesterol proceeds through either Bloch pathway (red line) or Kandutsch-Russell

pathway. Recently, modified Kandutsch-Russell pathway (blue line) has been proposed (29). See text for more details. The number of carbons in each sterol is

presented on the left of the pathway.

In addition to transcriptional regulation, several important
enzymes are post-transcriptionally regulated to control
cholesterol synthesis. The best-characterized enzyme is
HMGCR, an ER-bound protein with eight transmembrane
domains and a catalytic domain that projects into the cytosol.

As the rate-limiting cholesterol synthesis enzyme, HMGCR
has multiple modes of regulation. In addition to SREBP-
dependent transcriptional control, HMGCR is regulated
post-transcriptionally. HMGCR is a short-lived protein with a
half-life of 1 h when cellular cholesterol is at sufficient levels (36).
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HMGCR is degraded by the ubiquitin-proteasome pathway;
ubiquitination of HMGCR requires INSIG-1 or-2 (37). INSIG
proteins bind not only SCAP but also HMGCR via their SSD
(38). INSIG binding to HMGCR facilitates the ubiquitination
and degradation. HMGCR ubiquitination is promoted by
the intermediate sterol dihydrolanosterol, and the side-chain
oxysterols 25-OHC and 27-OHC, but not by cholesterol itself
(10, 11, 39). Geranylgeraniol further accelerates degradation of
HMGCR in the presence of sterols, but has little effect on the
degradation by itself, showing a synergistical effect with sterols
(39). Side-chain oxysterols stabilize INSIG proteins that promote
HMGCR degradation. Three membrane-bound E3 ligases for
HMGCR, gp78 (40), TRC8 (41), and RNF145 (42) have been
identified. Importantly, all of these E3 ligases can interact with
INSIG-1 and/or INSIG-2 (gp78 binds only INSIG-1), which
stimulate HMGCR ubiquitination and degradation. However,
involvement of gp78 and TRC8 in sterol-dependent HMGCR
degradation may need further clarification since conflicting
results have been reported (43). Additionally, another E3 ligase
MARCH6 may also be involved in the regulation of HMGCR
protein abundance (44).

In addition, phosphorylation regulates enzymatic activity
of HMGCR. Serine-872 in human HMGCR (or serine-871 in
mouse and hamster HMGCRs) is phosphorylated by AMP
kinase (AMPK), a protein serine/threonine kinase regulated by
cellular AMP levels (45). This phosphorylation inactivates the
enzyme activity. Phosphorylation-dependent inactivation and
sterol-dependent degradation are independently regulated to
meet cellular demands (46).

In addition to HMGCR, recent studies identified squalene
monooxygenase (47) and 7-dehydrocholesterol reductase (48)
as enzymes highly regulated at post-transcriptional levels. Both
enzymes are rapidly degraded by the ubiquitin-proteasome
pathway in response to cholesterol loading (47, 48). The E3 ligase
MARCH6 mediates the degradation of squalene monooxygenase
(44).

Esterification and Hydroxylation of
Cholesterol
Because cholesterol cannot simply be degraded, excess
cholesterol undergoes enzymatic esterification and hydroxylation
within cells (Figure 2). To prevent toxic accumulation of
free cholesterol, excess cholesterol is esterified, and stored
in lipid droplets [reviewed in (49)]. This esterification is
catalyzed by the ER-resident enzyme acyl-CoA:cholesterol
acyltransferase 1 (ACAT1, also known as sterol O-acyltransferase
1, SOAT1), which transfers various long chain fatty acids such
as oleic acid to the 3β-position of cholesterol (49). ACAT1 is
ubiquitously expressed, while ACAT2, another form of ACAT,
is mainly expressed in the intestine (enterocytes) and the liver
(hepatocytes). In plasma, lecithin:cholesterol acyltransferase
(LCAT) esterifies cholesterol in high-density lipoprotein (HDL).
Cholesterol esterification is reversible; cholesteryl ester hydrolase
located in the ER converts CE to cholesterol (8, 50), while acid
lipase mediates hydrolysis of lysosomal CE derived from low-
density lipoprotein (LDL). In addition to cholesterol, oxysterols

(such as 24(S)-OHC, 25-OHC, and 27-OHC), pregnenolone,
and phytosterols are substrates of ACAT1 [reviewed in (51)].
Intermediate sterols containing gem-dimethyl moieties at C4
position cannot act as ACAT substrates because the dimethyl
moieties sterically hinder the 3β-OH group (52).

Enzymatic and non-enzymatic processes oxidize cholesterol
[reviewed in (53)]. It is converted to oxysterols by the addition
of one or more hydroxyl groups, keto groups, or epoxy groups.
Side-chain oxysterols act as a potent negative regulator of
cholesterol biosynthesis. Recent studies showed that cholesterol
can also be glucosylated by β-glucocerebrosidase (GBA1 and
GBA2), forming β-cholesteryl glucoside (Figure 2) in response
to heat shock [reviewed in (54)]. In this review, we focus on the
enzymatic production of the cholesterol metabolites, oxysterols,
and discuss the roles of several major oxysterols and related
enzymes. In mammals, many enzymes mediate cholesterol
hydroxylation [reviewed in (53)].With one exception, cholesterol
25-hydroxylase CH25H, cholesterol hydroxylases belong to the
cytochrome P450 family. CH25H is a member of proteins that
use diiron-oxygen as a cofactor (55). Hydroxylation of cholesterol
occurs on its side-chain and/or on its steroid B ring. Here we
review several major oxysterols that play important roles in
human health and diseases.

25-OHC is biosynthesized from cholesterol via CH25H, a
membrane-bound enzyme localized to the ER orienting the
catalytic domain to the ER lumen. 25-OHC is also enzymatically
synthesized by cholesterol 27-hydroxylase (CYP27A1) and
cytochrome P450 3A4 (CYP3A4) and can be generated by free
radical oxidation (53). 25-OHC can be metabolized by CYP7B1
(25-hydroxycholesterol 7α-hydroxylase), an enzyme that adds
an OH-group to the steroid ring (at C7 position) in the ER,
generating 7α, 25-dihydroxycholesterol (7α,25-di-OHC), a bile
acid precursor (17) as well as a ligand for the G-protein-coupled
receptor EBI2 (22, 23).

27-OHC is generated via cholesterol 27-hydroxylase
(CYP27A1), which resides in the mitochondria. CYP27A1
can also convert cholesterol to 25-OHC. PM cholesterol
is transported to the mitochondria where it serves as a major
substrate for this hydroxylase (56). 27-OHC is the most abundant
oxysterol in the plasma. CYP27A1 is expressed in many tissues
including the liver, lung, and small intestine. Like 25-OHC,
27-OHC is further hydroxylated by CYP7B1 at the C7 position
in the ER, forming 7α, 27-di-OHC that serves as a bile acid
precursor (17).

Cholesterol 24-hydroxylase (CYP46A1) catalyzes biosynthesis
of 24(S)-OHC [reviewed in (57)]. This enzyme is highly
expressed in the brain, particularly in neurons. In the human
brain, 24(S)-OHC is present at high concentration (up to
15 ng/mg wet weight) (58). Excess cholesterol in the brain
is converted to 24(S)-OHC, which is then released into the
plasma across the blood-brain barrier. Thus the conversion of
cholesterol to 24(S)-OHC is an important step for eliminating
excess cholesterol from the brain [reviewed in (57, 59)].

Hydroxylation of the cholesterol C7 position is catalyzed
by CYP7A1 (cholesterol 7α-monooxygenase or cholesterol 7α-
hydroxylase), which is almost exclusively expressed in the liver.
CYP7A1 produces 7α-OHC, the major precursor of bile acids,
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FIGURE 2 | Metabolic conversion of cholesterol. Enzymatic conversion of cholesterol into oxysterols, cholesteryl ester, and cholesteryl glucoside is shown. Enzymes

responsible for the conversion and their localization are also indicated. See text for more details. ER, endoplasmic reticulum; LE, late endosome; LYS, lysosome; Mito,

mitochondria.

and is a rate-limiting enzyme for synthesizing bile acids [reviewed
in (17)].

Regulation of Oxysterol Synthesis
Although much less is known about regulation of oxysterol
synthesis, a growing body of evidence has shown that enzymes
involved in hydroxylation of cholesterol is also subjected to
tight regulation. Expression of CH25H is highly transcriptionally
regulated. In macrophages and hepatocytes, virus infection
leads to upregulation of CH25H mRNA levels and to marked
increases in 25-OHC (60–63). Furthermore, lipopolysaccharide
(component of gram-negative bacteria) induces its expression
through toll-like receptor 4 in macrophages (64, 65). Signal
transducer and activator of transcription factor 1 (STAT1), a
transcription factor activated by type I interferon signaling,
induces Ch25hmRNA expression (61). The resultant product 25-
OHC has an anti-viral role by suppressing virus infection and
replication.

CYP27A1 expression is not associated with cellular cholesterol
levels in macrophages, but its expression is transcriptionally
regulated by several nuclear hormone receptors. In human
macrophages, retinoid X receptor (RXR) and peroxisome
proliferator-activated receptor-γ (PPARγ) cooperatively induce
expression of CYP27A1 mRNA (66). In HepG2 or Huh7
human hepatoblastoma cells, CYP27A1 expression is increased
by glucocorticoids, growth hormone, and insulin-like growth
factor 1, and decreased by cholic acid and thyroid hormones (67,
68). In human intestinal Caco2 cells (a colon adenocarcinoma
cell line) but not in human hepatocytes, pregnane X receptor
(PXR) induces CYP27A1 expression (69). Collectively, CYP27A1
expression is differentially regulated in a cell type-dependent
manner.

Expression of CYP7A1, the rate-limiting enzyme of bile acid
synthesis, is positively regulated by cholesterol and negatively
by bile acids in the liver. Several nuclear receptors including
LXRα, farnesoid X receptor (FXR), small heterodimer protein
(SHP-1), and liver receptor homolog-1 (LRH-1) cooperatively
control CYP7A1 transcription (70, 71). Upon an increase in
intake of dietary cholesterol, LXRα activates CYP7A1 gene
expression and facilitates bile acid synthesis for excretion in

rodents (72). LXR does not activate CYP7A1 expression in
humans due to lack of an LXR response element in the human
CYP7A1 promoter (73, 74). For transcriptional repression, FXR
binds bile acids, inducing the expression of SHP-1, a nuclear
receptor with promoter-specific repressor activity that suppresses
CYP7A1 expression by inhibiting LRH-1, a nuclear receptor that
positively regulates CYP7A1 expression in humans and rodents
(70, 71).

INTRACELLULAR STEROL TRANSPORT
AND CHOLESTEROL HOMEOSTASIS

Cholesterol moves dynamically within a cell (Figure 3), with this
movement being essential to control cellular cholesterol
homeostasis and to regulate heterogeneous cholesterol
distribution among organelles (7, 8). The PM contains most
of the cellular cholesterol. Cholesterol is also abundant in the
endocytic compartments and the trans-Golgi network (TGN).
In contrast, the ER and the mitochondria contain only 1% (or
less) of total cellular cholesterol. How mammalian cells maintain
uneven cholesterol distribution among organelles remains
largely unknown. Differences in lipid compositions of each
organelle may affect cholesterol-lipid interaction in membranes,
allowing for organelle-specific cholesterol contents (4). As
sterol is a highly hydrophobic substance, its transport between
organelles, probably even within an organelle, requires transport
carriers. Both vesicular (membrane-based) and non-vesicular
(protein-based) transport are involved in intracellular transport
of sterols.

Sterol Transport Proteins With Sterol
Binding Ability
Several proteins directly interact with sterols and transport
them within cells. In patients with Niemann-Pick type
C (NPC) disease, a lysosomal storage disorder with fatal
neurodegeneration, either NPC1 or NPC2 protein is defective
(75). Defects in NPC1 or NPC2 cause the aberrant accumulation
of unesterified cholesterol and sphingolipids in the late endosome
(LE) and the lysosome (LYS) (75). NPC1 and NPC2 both locate
to the LE/LYS, but their localization within the organelles is
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FIGURE 3 | Model depicting intracellular sterol movement. Within cells, sterols dynamically move among organelles (red lines) to maintain cholesterol homeostasis.

See text for more details. 7KC, 7-ketocholesterol; 25OHC, 25-hydroxycholeterol; 27OHC, 27-hydroxycholeterol; AL, acid lipase; CE, cholesteryl ester; Chol,

cholesterol; Desm, desmosterol; DHL, dihydrolanosterol; EE, early endosome; ER, endoplasmic reticulum; Lano, lanosterol; LE, late endosome; LYS, lysosome; PL,

phospholipid; RE, recycling endosome; Ub, ubiquitin.

different: NPC1 has multiple transmembrane domains and

localizes to LE/LYS membranes, while NPC2 is a soluble protein
and localizes to the lumen. Both NPC1 and NPC2 can directly

bind cholesterol, and cooperatively contribute to exporting

cholesterol from the LE/LYS as described below.
Oxysterol-binding protein (OSBP) and OSBP-related proteins

(ORPs) constitute a family of proteins that have the ability
to bind sterol and other lipids [reviewed in (76, 77)]. In
humans, 12 members, OSBP and ORP1-11, belong to this family,
producing 16 different proteins through alternative splicing.
In yeast, there are seven OSBP/ORP proteins, Osh1-7. The
OSBP-related domain (ORD that consists of a hydrophobic
pocket) is conserved in all OSBP/ORP proteins. Only two
members, ORP5 and ORP8 contain transmembrane domain at
their C-terminal region. Other functionally important domains
found in most, but not all OSBP/ORPs include a pleckstrin
homology (PH) domain and a FFAT (diphenyl alanine in
an acidic tract) domain. OSBP was originally found as a
protein that has high affinity to 25-OHC, in 1980s (78).
Recent studies demonstrated that OSBP transports cholesterol
(79, 80). A growing body of evidence [reviewed in (77)] has
revealed that OSBP/ORPs transport not only sterols but also
other lipids including phosphatidylserine and phosptidylinositol
4-phosphate at membrane contact sites (MCSs), which are

proximal regions of two organelle membranes, through non-
vesicular process.

Other sterol transport proteins belong to steroidogenic acute
regulatory (StAR) protein-related lipid transfer (START) domain
family, which consists of 15 members, STARD1-15 [reviewed in
(81)]. The START domain forms a hydrophobic cavity that can
accommodate one lipid molecule. STARD proteins also mediate
non-vesicular lipid transport, and some of these proteins can
bind sterols.

Anterograde Transport of Cholesterol and
Intermediate Sterols
The enzymes responsible for converting squalene to cholesterol
are all located at the ER, indicating that intermediate sterols
and cholesterol are synthesized in this organelle. Upon synthesis,
cholesterol leaves the ER, and rapidly reaches the PM with a
half-time of 10–20min (82, 83). In addition to cholesterol, cells
contain small but significant amounts of intermediate sterols
as cholesterol precursors. A significant portion of intermediate
sterols including lanosterol (C30 sterol), dimethylsterols (C29
sterols), monomethysterols (C28 sterols), zymosterol (C27
sterol), and desmosterol (C27 sterol) is transported to the PM
immediately after synthesis but prior to conversion to cholesterol
(84–87). The ER-to-PM anterograde sterol transport is not
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impaired in NPC cells (87), indicating that an NPC1/NPC2-
independent pathway transports sterols from the ER to the PM.
Involvement of OSBP in the anterograde sterol transport has
been recently suggested (79). Upon binding to 25-OHC, OSBP
translocates to the Golgi apparatus from cytoplasm (88). Recent
findings show that OSBP counter-exchanges cholesterol in the ER
and phosphatidylinositol 4-phosphate (PI4P) in the Golgi (80).
On the other hand, an earlier study showed that there are Golgi-
dependent and Golgi-independent routes that transport newly
synthesized cholesterol from the ER to the PM, and that the
Golgi-independent route plays a major role in this anterograde
transport (83). Howmuch newly synthesized cholesterol relies on
OSBP for reaching the PM is unknown. Additionally unknown
and of interest is whether OSBP can transfer intermediate sterols
from the ER to the Golgi. In addition to OSBP, several other
proteins includingORP2 (89) and sterol carrier protein-2 (90) are
suggested to participate in the anterograde transport; however,
this involvement needs further investigation.

Active Cholesterol Hypothesis, Sterol
Sensing, and Sterol Homeostasis
At the PM, cholesterol forms stoichiometric complexes with
phospholipids, particularly with SM and glycerophospholipids
containing long saturated acyl chains (91). Cholesterol pools
that exceed the binding capacity of phospholipids could become
more chemically active and more mobile. This mobile cholesterol
is recognized as “active” cholesterol, and is expected to act
as regulatory cholesterol for cellular cholesterol homeostasis
(92). The ER contains a series of sterol sensing proteins. For
storage, excess cellular cholesterol is esterified by the ER resident
enzyme ACAT1 (49). ACAT1 enzymatic activity is stimulated by
cholesterol and oxysterols. As described above, SREBP activation
depends on the transport of SCAP-SREBP complex form the
ER to the Golgi via COPII pathway. This transport is sensitive
to ER cholesterol levels (34). A novel ER sterol sensing protein
was recently identified; nuclear factor erythroid 2 related factor-
1 (Nrf1, also known as Nfe2L1) is an ER-membrane bound
transcription factor, which is cleaved near its N-terminus to be
released from the ER. Through its ability to bind cholesterol,
cholesterol blocks the cleavage and translocation of Nrf1 to the
nucleus, and enhances LXR target gene expression including
Abca1 and Abcg1 as a means to respond to excess cellular
cholesterol (93). Thus, delivering active cholesterol to the ER
is considered an essential step to sense and respond to excess
cellular cholesterol (94, 95). Retrograde sterol transport from
the PM to the ER involves both vesicular and non-vesicular
transport. Here we describe the current understanding of these
two transport processes and the proteins involved.

Retrograde Sterol Transport
Cells can acquire exogenous cholesterol from lipoproteins. The
best-characterized, major lipoprotein uptake process is LDL
receptor (LDLR)-mediated internalization of LDL (Figure 3).
LDL contains a large amount of cholesterol in an esterified form.
LDL is first bound at the cell surface by LDLR, and internalized
by endocytosis (96). LDLR-mediated endocytosis is classified as
clathrin-mediated endocytosis (CME). CE in LDL is hydrolyzed

by acid lipase (Figure 2) in endocytic compartments, yielding
free cholesterol (97). Endogenously synthesized cholesterol and
a portion of intermediate sterols are also internalized from the
PM and reach the LE/LYS (87, 98). Egress of free cholesterol
from the LE/LYS requires the two cholesterol-binding proteins,
NPC1 and NPC2. NPC1 is a large membrane-bound protein
with 10 transmembrane domains (TMDs), whereas NPC2 is
relatively small, 154-amino acid protein localized to luminal
side of the LE/LYS. NPC1 has a cholesterol-binding pocket
in its N-terminal luminal side (99). NPC1 also contains a
SSD. Although whether the SSD is also able to directly bind
cholesterol is not known, mutations within this domain lose
cholesterol-transporting and cholesterol-binding activities (100).
A potential model by which NPC1 and NPC2 act in concert
to export cholesterol from the LE/LYS has been proposed (99,
101). In this “hand-off” model, at luminal side of the LE/LYS,
NPC2 binds cholesterol and transfers it to the N-terminal,
luminal cholesterol-binding domain of NPC1. Cholesterol is
then incorporated into late endosomal/lysosomal membranes,
and moves to various organelles including the ER, TGN (102),
PM, mitochondria (103), and peroxisome (104) in a manner
dependent of NPC1 and NPC2. In response to LDL uptake,
delays in SREBP inactivation and in cholesterol re-esterification
by ACAT1 both at the ER are observed in NPC cells. In addition,
deficiency in either NPC1 or NPC2 impairs the conversion of
LDL-derived cholesterol to 25-OHC at the ER and 27-OHC at
the mitochondria (103). LDL-derived cholesterol also reaches
the PM in a manner dependent on NPC1/NPC2 activity and
becomes available for ABCA1-dependent release (105). As such,
NPC1/NPC2 proteins play a crucial role in redistribution of
internalized cholesterol from the LE/LYS to other organelles.

Both vesicular and non-vesicular transport processes
participate in cholesterol transport from the LE/LYS to other
organelles. Vesicular cholesterol transport to the ER involves
several TGN-specific SNARE proteins including syntaxin
6, syntaxin 16, and VAMP4, indicating that LDL-derived
cholesterol is at least partially delivered to the TGN from the
LE/LYS before arriving at the ER (102). Transport of LDL-derived
cholesterol from the LE/LYS to the PM is mediated by Rab8-
dependent vesicular trafficking (106). Non-vesicular cholesterol
transport is at least partly mediated by MCS. At the LE/LYS-ER
MCS, ORP5 binds to NPC1, and transport cholesterol from
the LE/LYS to the ER (107). On the other hand, at the same
MCS, STARD3 mediates cholesterol transport from the ER to
the LE/LYS (108). Chu et al. found that significant amounts
of cholesterol in the LE/LYS are transported to peroxisomes
through LE/LYS-peroxisome MCS, which precedes its arrival
at the ER and PM (104). The LE/LYS physically interacts
with peroxisomes, and the MCS formation is mediated by
synaptotagmin VII at the LE/LYS and PI(4,5)P2 at peroxisomes
(104). Unknown cytosolic factors are suggested to facilitate
cholesterol movement from the LE/LYS to peroxisomes (104).

Retrograde sterol transport from the PM to the ER is an
important element of sterol sensing at the ER (95). Aside
from NPC1/NPC2-dependent pathway, recent works show that
mammalian cells utilize a PM-to-ER sterol trafficking route
that does not require NPC proteins (87, 109). The nature
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of this NPC1/NPC2-independent sterol transport is not well
understood, but it has been suggested that both vesicular and
non-vesicular mechanisms participate in it. ER membranes are
partly elongated to proximal regions of the PM and form
the MCSs where non-vesicular lipid transport can occur. The
ORP proteins ORP1S and ORP2 are implicated in the PM-
to-ER cholesterol transport through a non-vesicular pathway
(110). Other studies show that STARD4 mediates cholesterol
transport from the PM to the endocytic recycling compartments
and to the ER (111). In addition to a non-vesicular process,
involvement of endocytic sterol internalization is also proposed
as a mechanism for the delivery of PM sterol to the ER (87, 94).
Inhibition of clathrin-independent endocytosis (CIE), but not
CME, significantly impairs PM-to-ER transport of cholesterol
and intermediate sterols (87, 94). This CIE is suggested to
require dynamin, a GTPase that plays a key role in scission of
endocytic structure from the PM. Importantly, blocking dynamin
activity results in a marked increase in SREBP-2 processing and
in a reduction in esterification of PM cholesterol, indicating a
decrease in ER cholesterol levels (94).

ABCA1, which plays an essential role in HDL formation
(discussed in more detail in the following section), mediates
transport of phospholipids and sterols. Although ABCA1
transports lipids to apoA-I for formation of HDL, its activity is
independent of availability of lipid acceptors such as apoA-I (112,
113). In absence of a lipid acceptor, ABCA1 deficiency represses
retrograde cholesterol transport (94), causes accumulation of
cholesterol in the PM (94, 114), and impairs internalization of
cholera toxin B subunit, a marker of CIE (94). It is therefore
plausible that ABCA1 contributes to the regulation of PM lipid
composition and functionality of PM through its lipid transport
activity. How and whether lipid compositions of the PM are
modulated by ABCA1 and other lipid transporters, and whether
this affects PM functionality as well as non-vesicular sterol
transport are important issues yet to be determined.

Select tissues including the liver and steroidogenic tissues
also acquire cholesterol from plasma HDL for biliary secretion
and steroidogenesis, respectively (115). Scavenger receptor class
B type I (SR-BI) serves as a HDL receptor, and mediates
the selective uptake of HDL-cholesterol (both CE and free
cholesterol) (116). In contrast to the endocytic internalization
of LDL, SR-BI-mediated uptake does not involve lysosomal
degradation of HDL. How HDL-cholesterol is internalized and
transported into cell interior through SR-BI remain to be clarified
(117).

Intracellular Transport of Oxysterols
Oxysterols are synthesized in the ER and mitochondria
depending on hydroxylase localization. Oxysterols play various
roles in different organelles. Oxysterols bind LXR, and regulate
the transcription of LXR target genes in the nucleus. At the ER,
side-chain oxysterols bind INSIGs, leading to their stabilization
(18), and also become ACAT1 substrates (51). At the PM,
oxysterols can affect membrane organization (27). Oxysterols
are also released from cells (118). Furthermore, several proteins
with sterol transporting activity, including OSBP (78) and NPC1
(119) have the ability to bind oxysterols. Together these findings

strongly suggest that, like cholesterol, oxysterol distribution is
tightly regulated. However, little is known about intracellular
transport of oxysterols due to their extremely low cellular
contents (∼0.1% of cholesterol), in addition to difficulties in their
handling.

Recent work developed an intrinsically fluorescent oxysterol,
25-hydroxycholestatrienol (25-HCTL) that mimics 25-OHC
(120). 25-HCTL is a hydroxylated derivative of cholestatrienol
(CTL), a fluorescent cholesterol analog without fluorophore
that may affect the physical properties of cholesterol. Both 25-
HCTL and CTL contain two additional double bonds at the
steroid B and C rings, thereby exhibiting intrinsic fluorescence
with excitation max at 325 nm. When cells are incubated with
25-HCTL in the presence of LDL, 25-HCTL enters cells via
LDLR-mediated endocytosis, and is transported to the LE/LYS.
Like cholesterol, egress of 25-HCTL from the intracellular
compartments requires functional NPC1 protein (120), which is
consistent with 25-OHC-binding ability of NPC1 protein (119).
Furthermore, 25-HCTL can be transported to the ER, and is
also redistributed to the PM and the recycling endosome (120).
It remains to be determined how endogenously synthesized
oxysterols are transported from the sites where they are
synthesized: the ER and mitochondria.

STEROL EXPORT TO EXTRACELLULAR
MILIEU

Because mammalian cells cannot break down the sterol
backbone, and conversion of cholesterol into bile acids is
restricted to only the liver, efflux of excess cholesterol and other
sterols from cells is crucial for cellular cholesterol homeostasis.
Cholesterol can be removed from cells by two processes; active
export and passive diffusion. Passive diffusion largely depends on
a cholesterol gradient between the cell surface and cholesterol
acceptors such as HDL. Active export is energy-dependent and
involves several ABC transporter proteins that use ATP as driving
force.

ABC Transporters
The human genome encodes 48 ABC transporters, classified into
seven subfamilies, ABCA-G families (121). ABC transporters
bind and hydrolyze ATP for energy-dependent transport of
chemically diverse substrates across biological membranes. The
substrates vary greatly for the various ABC transporters. Studies
have revealed that several ABC transporters play a role in
exporting cellular sterols including cholesterol, intermediate
sterols, oxysterols, and phytosterols (122), as described in further
detail in this review.

ABCA1 and HDL Assembly
It was first reported in 1991 by Hara and Yokoyama (123) that
interaction of lipid-free apoA-I with macrophages resulted in
formation of HDL with cellular phospholipids and cholesterol.
It was subsequently demonstrated that fibroblasts isolated from
patients with Tangier disease, a severe HDL deficiency, lack the
apoA-I-mediated phospholipid and cholesterol release and HDL
formation (124). In 1999, ABCA1 was identified as the gene
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mutated in Tangier disease patients (125–127). These reports
and numerous other studies established that ABCA1 plays
an essential role in the release of cellular phospholipids and
cholesterol and in the assembly of nascent HDL [reviewed in
(128)]. Further studies with conditional Abca1 knockout mice
revealed that liver ABCA1 and intestinal ABCA1 contribute
to produce 70–80 and 30% of total plasma HDL, respectively
(129, 130). The physiological acceptor for phospholipids and
cholesterol is apoA-I, a major HDL apolipoprotein. HDL is a
key lipoprotein that transports excess cholesterol from peripheral
tissues to the liver where cholesterol is converted to bile acids for
excretion. This cholesterol transport system is often referred to as
“reverse cholesterol transport.” Because Tangier disease patients
largely lack serum HDL, they exhibit accumulation of cholesterol
(both unesterfied and esterified cholesterol) in peripheral tissues
and have increased risk of cardiovascular disease (131–133).

How does ABCA1 mediate HDL formation? ABCA1 localizes
to both the PM and the endocytic compartments. ABCA1
that resides in the PM mediates the assembly of nascent
HDL (134), while ABCA1 internalized into the endocytic
compartments is subjected to degradation or recycles back to
the PM (135). ABCA1 creates membrane deformation sites
at the PM, where apoA-I binds (136). This could be related
with the finding that overexpression of ABCA1 disrupts lipid
rafts (137). In contrast, ABCA1 deficiency increases lipid rafts
and cholesterol contents in the PM (94, 114, 138). ApoA-
I can directly bind to ABCA1, and this interaction plays a
role in ABCA1-dependent lipid release and HDL formation;
therefore, lipid compositions of nascent HDL may reflect
those of membrane domains where ABCA1 mediates HDL
assembly. A study using recombinant ABCA1 reconstituted in
liposomes shows that ABCA1 can export phosphatidylcholine
(PC), phosphatidylserine (PS), and SM (139). Cholesterol reduces
ATPase activity of ABCA1 (112, 139), suggesting that cholesterol
may not be a direct substrate of this transporter. These in vitro
observations are consistent with a cell-based study showing
that ABCA1 primarily mediates phospholipid release to apoA-
I. Recent work showed that ABCA1 also flops and releases
phosphatidylinositol (4,5) bis-phosphate (PIP2) (140). Increases
in cell surface PIP2 levels enhances apoA-I binding to cell
surface and ABCA1-dependent HDL biogenesis (140). In certain
cell models, ABCA1 primarily releases phospholipids and can
generate cholesterol-poor nascent HDL particles (141). ABCA1-
dependent cholesterol release can thus uncouple phospholipid
release and HDL formation. Although the mechanisms by which
ABCA1 mediates cholesterol incorporation into nascent HDL
remain obscure, cholesterol availability for ABCA1-dependent
HDL formation is dependent on cellular cholesterol pool sizes
regulated by ACAT1 (142). In cholesterol-loaded macrophages,
autophagy-dependent lysosomal degradation of lipid droplets,
called lipophagy, hydrolyzes lipid droplet-associated CE by
lysosomal acid lipase, generating free cholesterol available for
ABCA1-dependent HDL assembly (143).

Our recent work determined sterol specificity of ABCA1-
mediated sterol release (144). We showed that in addition
to cholesterol, ABCA1 preferentially releases intermediate
sterols with extra methyl groups including lanosterol, which

accounts for very minor quantity of cellular sterol (0.1% or
less of cellular total cholesterol) and its half-life is <1 h in
cells. Lanosterol and other methylated intermediate sterols
synthesized at the ER are immediately delivered to the PM
(87). Therefore it is postulated that these minor sterols
become constituents of certain PM domains where ABCA1
preferentially release these sterols along with cholesterol and
phospholipid for HDL formation (144). There are significant
structural differences between lanosterol and cholesterol, and
lanosterol has the ability to induce membrane curvature
formation in model membranes (145). Whether lanosterol
affects membrane structure/organization in living cells remains
to be investigated. In the absence of acceptors, lanosterol
and other intermediate sterols immediately leave the PM
domains and are transported back to the ER for cholesterol
synthesis (87). ABCA1 participates in this retrograde transport
(94). ABCA1 deficiency thus associates with accumulation of
cholesterol and other sterols in the PM of various cell types
including macrophages and fibroblasts (94, 114). In addition
to endogenously synthesized sterols, LE/LYS-derived cholesterol
is a significant source for ABCA1-dependent HDL formation
(105, 146).

Recently, the structure of human ABCA1 in digitonin
micelles but not in phospholipid bilayer was determined by
cryoelectron microscopy (cryo-EM) (147). The structure reveals
that an elongated hydrophobic tunnel is present within the two
large extracellular domains. Whether this hydrophobic tunnel
serves as a route for delivering lipids to apoA-I needs further
investigation. Although the molecular mechanisms by which
ABCA1 transports lipid and mediates HDL biogenesis remain
obscure, the cryo-EM structure supports that structure-based
studies of ABCA1 can provide further insights into its function
and HDL assembly.

Regulation of ABCA1
ABCA1 expression is tightly regulated at transcriptional and
post-transcriptional levels. LXR serves as major transcription
factor that activateABCA1 gene expression (148, 149). Oxysterols
and intermediate sterols, including desmosterol, activate LXR
and induce ABCA1 expression (14, 148). LXR forms a
heterodimer with another nuclear receptor, RXR. 9-cis retinoic
acid, an RXR ligand, also induces ABCA1 expression (148).
Recent studies found that many microRNAs (miRNAs), such as
miR-33a/b and miR-148 are involved in ABCA1 gene expression
[reviewed in (150)]. These miRNAs suppress ABCA1 gene
expression and reduce plasma HDL levels in mice and non-
human primates (151–153). MiR-33a and miR-33b are encoded
by introns of SREBF2 and SREBF1 genes, respectively (151, 152).

ABCA1 protein is a short-live protein with half-life of about
1–2 h (154, 155). ABCA1 is degraded by the calcium-dependent
cysteine protease, calpain (154, 156), and in proteasomes or
in the LYS through ABCA1 ubiquitination by an unknown
ubiquitin ligase (157–159). Unsaturated fatty acids accelerate
ABCA1 degradation (160). Free cholesterol loading enhances the
ubiquination and degradation of ABCA1 (158, 161). Importantly,
in addition to its lipid acceptor function, apoA-I has an ability
to protect ABCA1 from calpain-mediated degradation, thereby
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increasing cell surface ABCA1 and further inducing lipid release
(154, 156). It has been suggested that the ABCA1-apoA-I
interaction at the cell surface leads ABCA1 to recycle back to
the PM from the endocytic compartments (135) through a Rab8-
dependent trafficking pathway (162). It would be interesting to
determine whether the interaction between ABCA1 and apoA-I
causes modifications of ABCA1 before endocytic internalization,
to prevent its degradation.

ABCA1 has several important motifs/domains that modulate
its stability. It has been demonstrated that the PDZ domain
located in the C-terminal cytosolic region binds to several
proteins including α1-syntrophin and β1-syntrophin (155, 163).
Interaction of these two proteins with ABCA1 leads to its
stabilization. LXRβ also binds to the C-terminal region of ABCA1
and stabilizes ABCA1 (164). The cytosolic region between the
two transmembrane domains contains the PEST sequence that
plays an important role in calpain-mediated degradation (154).
Near the PEST sequence, ABCA1 contains calmodulin binding
site. Calmodulin binding to ABCA1 inhibits ABCA1 degradation
(165).

Several protein kinases including protein kinase A (PKA),
PKC, and Janus kinase 2 (JAK2) modulate ABCA1 activity
and stability. PKA phosphorylates ABCA1 and modulates its
lipid efflux activity (166, 167). PKC, activated by apoA-I-cell
interaction or by apoA-I-dependent lipid removal, is involved in
the stability of ABCA1 (168, 169). JAK2 is activated by apoA-I
andmodulates ABCA1 activity without affecting its stability (170,
171). Other factors regulating ABCA1 protein activity and/or
stability are reviewed elsewhere (172).

ABCG1 and ABCG4
In addition to ABCA1, the ABCG subfamily proteins ABCG1 and
ABCG4 are well-recognized members of ABC transporters that
facilitate cholesterol efflux to HDL (173). ABCG transporters are
half-transporters that contain one nucleotide-binding domain
in the N-terminal region. ABCG1 and ABCG4 transporters
form either homodimer or heterodimer to function as an active
transporter. ABCG1 is expressed in numerous tissues. ABCG1
localizes to both the PM and the endocytic compartments when
overexpressed (174, 175). At physiological expression levels,
however, this transporter largely resides in the intracellular
compartments and acts as intracellular cholesterol transporter
(176). Regardless of its localization, deficiency of ABCG1
impairs cholesterol efflux to HDL in macrophages (177).
Importantly, ABCG1 also exports 7-ketocholesterol, an oxysterol
abundant in oxidized LDL and atherosclerotic lessions, to
HDL, whereas ABCA1 does not (118). Because 7-KC can
induce apoptosis in macrophages, ABCG1-mediated 7-KC efflux
to HDL protects macrophages from its cytotoxicity (118).
Furthermore, in addition to sterols, ABCG1 preferentially
exports SM over PC (174). While how ABCG1 mediates
efflux of sterols and phospholipids is poorly characterized, its
ATPase activity is stimulated by cholesterol and SM in vitro
(178). These findings suggest that the activities of ABCA1
and ABCG1 are differentially regulated. ABCA1 and ABCG1
cooperatively promote cholesterol export pathway, and as

such act synergistically to prevent cholesterol accumulation in
macrophages (179).

ABCG4 is highly expressed in the brain (180). ABCG1 and
ABCG4 are expressed in both neurons and astrocytes. Both
of these transporters have the ability to export cholesterol
as well as the intermediate sterol desmosterol to HDL (180).
Deficiency in ABCG1 and/or ABCG4 results in the accumulation
of intermediate sterols including lanosterol, desmosterol, and
lathosterol, but not cholesterol, in mouse brains, with greater
accumulation in double knockoutmice (180). In ABCG1/ABCG4
double knockout mice, 27-OHC but not 24(S)-OHC is also
accumulated in the brain (180).

ABCG5 and ABCG8
ABCG5 and ABCG8 form a heterodimer as an active transporter
and are expressed in the apical membranes of enterocytes
and hepatocytes. In the small intestine, ABCG5/G8 promote
efflux of cholesterol and plant sterols absorbed through NPC1
like 1 (NPC1L1), to the lumen, thus limiting the absorption
of dietary sterols (181). In the liver, the heterodimer exports
cholesterol and phytosterols into the bile, thus enhancing sterol
excretion from the body (182). Deficiency in either one the two
transporters causes β-sitosterolemia, which is characterized by
the robust accumulation of dietary sterols in plasma and tissues
(183, 184). This accumulation is caused by increased intestinal
absorption and decreased biliary excretion, and individuals with
β-sitosterolemia develop premature atherosclerosis [reviewed in
(185)].

Other ABC Transporters With Potential
Sterol Exporting Activity
ABCA7, a close homolog of ABCA1, is highly expressed in the
brain, lung, spleen, and adrenal in mice. ABCA7 is associated
with Alzheimer’s disease [reviewed in (186)]. The exact functions
of ABCA7 are largely unknown, but it is capable of exporting
lipids (phospholipid and cholesterol) to extracellular apoA-I and
generates HDL-like particles when overexpressed in mammalian
cells (187, 188). The ability of ABCA7 to export cholesterol
is much less compared to that of ABCA1 (189). Consistent
with the cell-based studies, an in vitro reconstitution assay
shows that ABCA7 exports PS and PC with preference for PS
(139). Although ABCA7 has similar lipid transporting functions
as ABCA1, it plays a minimum, if any, role in lipid efflux
and HDL formation in macrophages and in mice (190). At
physiological expression levels, ABCA7 is mainly intracellular
localized in resting macrophages, and following stimulation with
apoptoic cells, ABCA7 translocates to the PM and plays a role in
phagocytosis (191).

Additional ABCA family proteins are involved in cholesterol
efflux. ABCA8 facilitates cholesterol efflux to apoA-I and
modulates HDL-cholesterol levels (192). In humans, mutations
in this gene are associated with low HDL-cholesterol levels
(192). In addition, ABCA12 also regulates cholesterol efflux
(193). It has been reported that ABCA12 interacts with ABCA1
and regulates its stability in macrophages, thereby modulating
ABCA1-dependent lipid release (193). ABCA12 was originally
identified as a protein defective in one of the most severe
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skin disorders, Harlequin ichthyosis that is characterized by
severe skin barrier defects and by abnormal keratinocyte lamellar
granules (194). It is suggested that ABCA12 is involved in
the transport of glucosylceramide in the lamellar granules
(194). Unlike other ABC transporters described above, ABCA2
attenuates cholesterol efflux to extracellular cholesterol acceptors
through poorly characterized pathway (195).

Certain ABCB family proteins also exhibit cholesterol
transport activities. ABCB1 (also known as multidrug resistant
protein 1, MDR1, or P-glycoprotein) translocates cholesterol
from the inner leaflet to the outer leaflet of the PM (196).
ABCB4 (also known as MDR3 in humans or MDR3 in mice),
is expressed on the apical canalicular membranes of hepatocytes
and exports PC and cholesterol to bile acids, as suchABCB4 along
with ABCG5/ABCG8 contributes to biliary cholesterol excretion
(197).

Passive Diffusion
Cholesterol can be removed from cells through passive diffusion,
which is driven by a cholesterol gradient between cell surface
and acceptors [reviewed in (198, 199)], with HDL serving as
the major cholesterol acceptor. LCAT has phospholipase A2 and
acyltransferase activities; LCAT transfers an acyl-chain from PC
to 3-OH position of cholesterol, resulting in the formation of
CE. LCAT-mediated cholesterol esterification plays a role in HDL
maturation (200). Cholesterol esterification by LCAT in HDL
causes the expansion of the cores in HDL particles and the
reduction of free cholesterol at HDL surface, further facilitating
net cholesterol efflux from cells to HDL. Serum albumin acts
as a shuttle to facilitate passive cholesterol efflux from cells
(199). Although the HDL receptor SR-BI is known to enhance
cholesterol efflux from cells to HDL, SR-BI-mediated cholesterol
efflux may not contribute to net cholesterol removal from cells,
as it mediates bidirectional transport of cholesterol between
the cell surface and HDL [reviewed in (115)]. As previously
described, SR-BI rather plays an important role in selective
uptake of HDL-cholesterol in the liver and steroidogenic tissues
(115).

STEROLS AND HUMAN DISEASES

Cholesterol, sterol intermediates, and oxysterols play diverse
and important roles in the body, in addition to contributing to
various human diseases including cancer, cardiovascular disease,
neurodegenerative disorders such as Alzheimer’s disease and
infection. This review focuses on discussing the connection
between sterol metabolism and atherosclerosis as well as cancers.
For a detailed discussion between cholesterol metabolism and
neurodegenerative diseases, a recent review by Chang et al. (201)
is available. Detailed reviews on the roles of sterols in immune
responses are available elsewhere (20, 202). Pathophysiological
roles of SREBPs in various human diseases are extensively
discussed by Shimano and Sato (203).

Sterols and Atherosclerosis
Cholesterol along with inflammation regulation are major
therapeutic targets for atherosclerosis, a condition in which

plaque buildup in the artery wall can lead to a multitude of
vascular complications, including heart attack and stroke. Large-
scale trials have demonstrated the effectiveness of HMGCR
inhibitors, statins, but have also shown residual risk with many
statin-taking patients suffering from cardiovascular events (204).
Further LDL cholesterol lowering by combining statin with
the Niemann-Pick C1-like 1 intestinal cholesterol absorption
inhibitor, ezetimibe provides modest benefit (205). Monoclonal
antibody inhibition of proprotein convertase subtilisin-kexin
type 9 (PCSK9), which reduces LDL cholesterol by about 60% via
reducing LDL receptor degradation, improves clinical outcomes
in patients with cardiovascular disease (206). While outcomes
are not known, inhibition of the lipoprotein lipase inhibitor,
angiopoitein-like 3 reduces circulating cholesterol, notably in
homozygous familial hypercholesterolemia patients that only
have limited responses to statin and PCSK9 therapies, and
who typically require arduous LDL apheresis treatment (207).
Supporting a key role of SR-BI-mediated HDL-cholesterol uptake
in human reverse cholesterol transport, a loss-of-function variant
(P376L) in SR-BI was recently identified in people with extremely
high HDL cholesterol that also have increased risk of coronary
heart disease (208). Much is known about the impact of reducing
cholesterol in cardiovascular disease; however, less is known
about the contributions of sterol metabolites to atherosclerosis
that may provide insight into novel risk factors and therapies to
target residual cardiovascular risk.

Macrophage lipid accumulation leads to foam cell formation

and inflammation, contributing to atherosclerosis (209). In
macrophages, the cholesterol precursor desmosterol exhibits

several beneficial properties including inhibiting expression of
cholesterol biosynthesis and proinflammatory genes, along with
induction of LXR genes and cholesterol efflux (210). LXR-
deficiency in mice exacerbates atherosclerosis disease pathology,
and LXR activation generally reduces cell and animal model
pathology through a variety of mechanisms [reviewed in (211)];
however, LXR activation can also have an accompanying
unacceptable side effect of raising liver triglyceride synthesis
(212).

Oxysterols are associated with nearly every atherosclerosis-
contributing pathway, as such they present a promising area of
future therapeutic research. Oxidized forms of cholesterol
produced by LDL oxidation exhibit pro-atherosclerotic
properties [reviewed in (213, 214)]. Like cholesterol, oxysterols
can be stored as fatty acid esters [reviewed in (51)]. In mice,
ACAT1 small molecule inhibition (215), genetic knockout (216),
and macrophage-specific deletion (217) reduce atherosclerosis
pathology. Additionally, ACAT1 was recently associated as a
causal modifier variant explaining strain differences in mouse
atherosclerosis pathology (218); although a cardiovascular
benefit of ACAT inhibition has not been demonstrated in human
ACAT inhibitor trials (219).

Oxysterols can regulate atherosclerosis-related pathologies,
but the extent to which oxysterols drive atherosclerosis is
unclear. Multi-omics mapping of oxysterols and associated
genes and proteins in healthy and diseased tissue could clarify
the complex roles of these lipids in cardiovascular disease. In
primary mouse macrophages, 22-OHC, 24-OHC, and the sterol
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24, 25 epoxycholesterol repress activation of the inflammation-
related factor, inducible nitric oxide synthase, while also inducing
ABCA1 expression, and 25-OHC and 27-OHC activate ABCA1
but do not repress inducible nitric oxide synthase (220). On
top of plaque formation, calcification is frequently observed
in atherosclerosis, and may contribute to plaque rupture
(221). In bovine aortic and mouse smooth muscle cells, 25-
OHC stimulates mineralization pathways leading to vascular
calcification, including through LXR-independent mechanisms
(222, 223). 27-OHC is increased in human atherosclerotic arteries
and functions in macrophage cholesterol elimination (224);
however, the role of 27-OHC in atherosclerosis is complex.
Elevated 27-OHC via deletion of CYP7B1 that metabolizes 27-
OHC promotes atherosclerosis via a proinflammatory process
involving estrogen receptor alpha in apoE-deficient mice
(225). Knockout of Cyp27A1 in apolipoprotein E-deficient
mice revealed a gene dose effect with a 10-fold reduction
in atherosclerosis severity observed in double knockout mice,
and Cyp27A1 heterozygosity leads to accelerated atherosclerosis
(226). Cerebrotendinous xanthomatosis develops in the absence
of CYP27A1 in humans, while mice lacking CYP27A1 do not
develop xanthomas. Further complicating matters are that loss
of 27-hydroxylase may have athero-protective effects including
increased cholesterol degradation, in addition to pro-atherogenic
effects, such as reduced cholesterol efflux, and the balance of
this may vary between patients (227). Raising a confounding
factor, sex-specific effects in bile acids are observed in CYP27A1
overexpressing mice (227).

Sterol Metabolism and Cancer
Altered metabolism is a hallmark of cancer cells, with a
major metabolic alteration being elevated glucose uptake and
glycolysis (228). In addition to this “glycolytic phenotype,”
biosynthesis of lipids (including cholesterol), which are essential
building blocks of cell membranes, is increased in cancer cells
to support proliferation (229). Elevated lipogenesis is referred
to as “lipogenic phenotype.” In human melanomas, increased
expression of various cholesterol biosynthetic genes is found in
more than 60% of patients (230). SREBPs serve as master drivers
for lipogenic phenotype of cancer cells. Activation of SREBPs
and/or upregulation of SREBP-target gene expression is observed
in a wide variety of human cancers including glioblastoma (231),
prostate cancer (232), breast cancer (233), melanoma (230, 234),
and is often associated with poor prognosis/survival. Cholesterol
is an indispensable component of lipid rafts, which serve as
platforms for various oncogenic signals including Akt activation,
and therefore cholesterol synthesis in cancer cells links to the
integrity of these membrane domains. SREBPs are activated by
PI3K-Akt-mTORC1 signaling (235, 236), which is hyperactivated
in human cancers. Consequently, a positive feedback loop
between PI3K-Akt-mTORC1 signaling and SREBP-dependent
lipogenesis is formed to sustain malignant properties of cancer
cells (234, 237). Several mechanisms are involved in the
activation of SREBP by PI3K-Akt-mTORC1 signaling: (1)
Phosphorylation of SREBP-1 mature form by the protein kinase
GSK3β results in ubiquitination by the ubiquitin ligase Fbw7,
leading to the proteasomal degradation of the mature form (238).

Independently of mTORC1, Akt phosphorylates and inactivates
GSK3β, thereby increasing SREBP transcriptional activity. (2)
PI3K-Akt-mTORC1 axis regulates processing of both SREBP-
1 and SREBP-2 (234). mTOR phosphorylates cytosolic CREB
regulated transcription coactivator 2 (CRTC2) and attenuates
its inhibitory effect on COPII-dependent transport of SREBP-1
from the ER to the Golgi, which facilitates SREBP-1 processing
(239), and this pathway is at least partly involved in PI3K-
Akt-mTORC1 regulation of SREBP processing. Whether this
axis also regulates SREBP-2 processing is unknown at present.
In addition, the mTOR-CRTC2 axis could be involved in
general COP-II transport. Additional mechanisms may also
participate in SREBP processing as the protein kinase S6K also
regulates SREBP processing downstream of mTORC1 (240). (3)
mTORC1 phosphorylates lipin1 and regulates nuclear entry of
SREBP mature form through an unknown mechanism (241).
While cholesterol plays crucial roles in malignant properties of
cancer cells, whether blocking cholesterol biosynthesis by statins,
HMGCR inhibitor, reduce the risk of cancer onset or mortality is
controversial at present; the statin effects could be dependent on
types of cancer (242–244). To plausibly explain this, inhibiting
HMGCR increases LDL uptake through upregulation of LDLR
expression, which could enable cancer cells to acquire sufficient
amounts of cholesterol. LDL levels are much higher in humans
than mice. Therefore, inhibiting SREBP could be a more direct
target to treat a broad range of cancers.

An aberrant accumulation of CE in lipid droplets via ACAT1
is found in prostate (245) and pancreatic cancer tissues (246).
Pharmacological or genetic ACAT1 inhibition attenuates cancer
cell proliferation and invasive activity in vitro and tumor growth
and metastasis in xenograft models (245, 246). Blocking ACAT1
causes an increase in free cholesterol at the ER, which inactivates
SREBP-1 but not SREBP-2, reducing cholesterol synthesis and
uptake (245). Increased ER free cholesterol levels may induce
ER stress and cancer cell apoptosis (246). Furthermore, ACAT
inhibition blocks activation of Akt partly though a reduction
of cellular arachidonic acid (245), and reduced SREBP activity
and cholesterol biosynthesis could also impair the integrity of
lipid rafts and suppress Akt activity. Therefore, ACAT1 is an
attractive therapeutic target for certain types of cancer where
large accumulations of CE are observed.

Cancer immunotherapy targeting PD-1 expressed on T cells
or PD-L1 expressed on cancer cells is clinically used. In
these therapies, CD8+ T cell activity is crucial for successful
achievement. Recent work by Yang et al. (247) showed that
blocking ACAT1 activates T cells; ACAT blockage increases
PM cholesterol levels and enhances T-cell receptor clustering
and signaling, which in turn potentiates effector function and
proliferation of these cells to suppress tumor growth in mice.
Inhibiting ACAT1 further improved anti-tumor efficacy of anti-
PD1 antibody (247). Given the additional suppressive effects of
ACAT1 inhibitor on malignant properties of cancer cells, ACAT1
blockage thus has dual beneficial effects in cancer therapy.
However, proliferation of CD8+ T cell depends upon SREBPs and
cholesterol biosynthesis (248), creating difficulties in targeting
SREBP pathway to combat cancer. Developing specific drug
delivery systems could overcome this barrier.
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Oxysterols and Cancer
Serum cholesterol levels are positively correlated with serum 27-
OHC, the most abundant oxysterol (213). Hypercholesterolemia
is a risk factor of breast cancer, and 27-OHC is involved in the
pathophysiology of human breast cancer (249). Expression of
CYP27A1, which converts cholesterol to 27-OHC is positively
correlated to tumor grade in human breast cancer (250). In
aggressive tumor tissues, high CYP27A1 expression was found
in both tumor cells and tumor-associated macrophages (TAMs)
(250). 27-OHC administration increases the growth of human
breast cancers, and CYP27A1 inhibition suppresses tumor
growth in xenograft models (250, 251). Further, abrogation of
Cyp7B1, which catalyzes the conversion of 27-OHC to 7α, 27-di-
OHC resulting in 27-OHC accumulation in plasma and tumor
tissues, accelerates tumor growth in a mouse estrogen receptor-
positive mammary adenocarcinoma model (250). Reduced
expression of CYP7B1 is correlated with estrogen receptor-
positive breast cancer aggressiveness (251). 27-OHC exerts pro-
tumor effects on breast cancer cells by acting as an estrogen
receptor agonist (as a SERM). Additionally, 27-OHC promotes
metastases of not only estrogen receptor-positive and -negative
breast cancer cells but also of melanoma, lung cancer cells, and
pancreatic cancer cells (252). The pro-metastatic roles of 27-
OHC depend partly on LXR activity of tumor cells (250) and on
immune cells within tumor microenvironment (252). 27-OHC
affects several types of immune cells, increasing the number of
polymorphonuclear-neutrophils and γδ-T cells, and decreasing
CD8+ T cells (252).

In contrast to breast cancer, CYP27A1 expression is negatively
associated with aggressiveness of prostate cancer; patients whose
tumors express higher CYP27A1 mRNA exhibit lower tumor
grade and longer disease-free survival (253). 27-OHC suppresses
growth of human prostate cancer cells at least partially by
inactivating SREBP-2 pathway (253).

Sterol Transporters and Cancer
Lipid transport proteins can modulate malignant properties
of cancer cells. ABCA1 has an anti-cancer activity dependent
on lipid transport activity (254). ABCA1 expression levels are
inversely correlated with tumor aggressiveness in prostate cancer.
The ABCA1 gene promotor is hypermethylated in the tissues
of prostate cancer, suppressing its expression (255). ABCA1
deficiency causes an increase in mitochondrial cholesterol
content, which promotes survival of cancer cells (254).

Studies using LXR agonists showed that activation of LXR
reduces cellular cholesterol content in glioblastoma cells through
increased cholesterol export and decreased cholesterol uptake,
which suppresses the growth of glioblastoma cells in vitro and
in xenograft models (256, 257). LXR agonists also suppress
metastases of melanoma and prolong animal survival, at
least partially though LXRβ-dependent upregulation of apoE
expression, in several in vivo models (258). Furthermore,
accumulation of endogenous 4α-monomethylsterols by genetic
manipulation leads to LXR activation and inhibits tumorigenesis
in a mouse model (259).

Several ABCA family transporters associate with overall
survival of serous ovarian cancer patients. Patients with high

expression of ABCA1, ABCA6, ABCA8, or ABCA9 in primary
tumors exhibit reduced survival (260). Furthermore, combined
expression of ABCA1, ABCA5, and either ABCA8 or ABCA9
leads to poorer survival (260). In this cancer type, ABCA1
seems to have an opposite effect on malignancy by unknown
mechanisms. The roles of ABCA5, ABCA8, and ABCA9 are not
well-understood.

Independently of LXR/RXR-mediated transcription, ABCA1
expression is regulated by cell density in A431 human epidermal
carcinoma cells (261). In cells at low density, focal adhesion
kinase (FAK) inactivates the transcription factors Foxo3 and
TAL1, resulting in suppression of ABCA1 expression. In
contrast, at high density, FAK activity is suppressed, and
ABCA1 expression is upregulated (261). Cell density-dependent
ABCA1 expression regulates PM lipid compositions (261); cells
expressing ABCA1 at high levels contain less cholesterol and
ganglioside in the PM compared to those expressing ABCA1
at low levels (94, 114, 261). ABCA1 modulates trans-bilayer
distribution of cholesterol at the PM (262). Collectively, in
addition to a well-known role in HDL biogenesis, ABCA1 acts
to fine-tune membrane lipid compositions to modulate PM
functionality that may alter cancer cell phenotypes in a cell
type-dependent manner.

Macrophage ABCA1 and ABCG1 also play roles in tumor
growth. Deficiency in either ABCA1 or ABCG1 in macrophages
attenuates tumor growth in xenograft models (263, 264). Deletion
of these genes inmacrophages converts the tumor-promotingM2
phenotype to the anti-tumor M1 phenotype TAMs within the
tumor microenvironment (263, 264).

Additional lipid/sterol transporter is also involved in human
cancer. Higher expression of ORP5, an ER membrane anchored
ORP, associates with poor prognosis of patients with pancreatic
cancer (265). ORP5 expression levels are positively correlated
with cell proliferation and invasive activity. Of mechanistic
interest, ORP5 interacts with mTOR, and enhances mTORC1
activity (266).

CONCLUDING REMARKS

Cells are highly compartmentalized at both the cellular and
organelle levels. Cholesterol, oxysterols, and intermediate sterols
move dynamically in cells with correct cellular distribution,
being paramount to regulating cellular functions. Cellular
sterol transport must be spatiotemporally regulated; however,
the mechanisms of this are not fully understood. Compared
to cholesterol, much less is known about the transport of
oxysterols and intermediate sterols. Additionally, elucidating
sterol metabolism and transport mechanisms in disease
via pathophysiologically relevant models, such as patient-
derived iPS- cell systems and organoid culture, could help
identify novel therapies for human diseases. State-of-the-art
technologies including genome editing, imaging, and multi-
omics may provide new insights into how cells handle sterols in
physiological and pathophysiological conditions.

Experimental evidence demonstrates that sterols and sterol
metabolism play crucial roles in various aspects of human
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diseases, not only in atherosclerosis and cancer, but also
those not reviewed here, including Alzheimer’s disease and
other neurodegenerative disorders, and infection among others.
Sterol metabolism is an attractive target in disease treatment.
Several drugs targeting sterol metabolism are clinically used to
treat patients currently, including statins to block cholesterol
synthesis and enhance LDL uptake, Ezetimibe to block NPC1L1-
mediated absorption of dietary cholesterol, and the anti-
PCSK9 monoclonal antibodies (Evolocumab and Alirocumab)
to block LDLR degradation and reduce plasma LDL. New
potential therapeutic target molecules include SREBPs and
SREBP regulators, LXR, ABC transporters, ACAT, and sterol
hydroxylases, as a growing number of preclinical and clinical
studies targeting these molecules are ongoing. Given the
importance of target localization, development of novel drug
delivery systems to address associated issues will also be key.
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