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Abstract

Background
Osteogenesis imperfecta (OI) is a heterogeneous hereditary connective tissue

disorder clinically hallmarked by increased susceptibility to bone fractures.

Methods
We analyzed a cohort of 77 diagnosed OI patients from 49 unrelated Pales-

tinian families. Next-generation sequencing technology was used to screen a

panel of known OI genes.

Results
In 41 probands, we identified 28 different disease-causing variants of 9 different

known OI genes. Eleven of the variants are novel. Ten of the 28 variants are

located in COL1A1, five in COL1A2, three in BMP1, three in FKBP10, two in

TMEM38B, two in P3H1, and one each in CRTAP, SERPINF1, and SERPINH1.

The absence of disease-causing variants in the remaining eight probands sug-

gests further genetic heterogeneity in OI. In general, most OI patients (90%)

harbor mainly variants in type I collagen resulting in an autosomal dominant

inheritance pattern. However, in our cohort almost 61% (25/41) were affected

with autosomal recessive OI. Moreover, we document a 21-kb genomic deletion

in the TMEM38B gene identified in 29% (12/41) of the tested probands, mak-

ing it the most frequent OI-causing variant in the Palestinian population.

Conclusion
This is the first genetic screening of an OI cohort from the Palestinian popula-

tion. Our data are important for genetic counseling of OI patients and families

in highly consanguineous populations.

Introduction

Osteogenesis imperfecta (OI) or brittle bone disease is a

rare heterogeneous hereditary disorder with an incidence

of 1:15,000 to 1:25,000 births (Stoll et al. 1989; Martin

and Shapiro 2007). The clinical hallmark of OI is a low

bone mass that causes bone fragility, easy fracturing, and

growth impairment. Other features may include blue scle-

rae, dentinogenesis imperfecta, and hearing loss (van Dijk

and Sillence 2014). The clinical heterogeneity of OI ranges

from hardly detectable mild OI with few fractures to peri-

natal lethality. Autosomal dominant (AD), autosomal

recessive (AR), and X-linked inheritance patterns have

been described previously. The current clinical
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classifications elaborating on the OI classification of 2010

reveal the importance of phenotyping for classifying and

diagnosing OI (Warman et al. 2011; van Dijk and Sillence

2014; Bonafe et al. 2015). Forlino and Marini (2016) sub-

divide OI genes in five functional groups according to the

pathway and mechanism in which they are involved. We

present our results according to these functional groups.

However, several reported OI genes cannot be classified,

including TAPT1, SEC24D, P4HB, SPARC, and MBTPS2

(OMIM#300294) (Garbes et al. 2015; Mendoza-Londono

et al. 2015; Rauch et al. 2015; Symoens et al. 2015;

Lindert et al. 2016).

Middle Eastern populations, especially Arabs, are highly

consanguineous because of cultural reasons. Population-

based surveys show consanguinity rates of 20–50% in all

marriages in Arab countries (Tadmouri et al. 2009). In

Palestine, this rate has been estimated to be about 40%

(Assaf and Khawaja 2009; Tadmouri et al. 2009; Sirdah

2014). Consequently, AR disorders are common in these

populations. In contrast to the high frequency of the AD

forms caused by defects in the structure or quantity of

type I collagen in nonconsanguineous populations (Byers

and Pyott 2012; Rohrbach and Giunta 2012), AR forms

of OI are expected to be more common in highly consan-

guineous populations. The many AR genes identified in

consanguineous families have revealed new pathogenic

mechanisms. Some genes have been subjected to intensive

study, such as CRTAP, P3H1, and PPIB, which encode

components of the collagen prolyl 3-hydroxylation

complex (Marini and Blissett 2013; Homan et al. 2014;

Forlino and Marini 2016) and BMP1, which encodes the

C-propeptidase of type I procollagen and causes AR OI

through a procollagen processing defect. In addition,

BMP1 activates lysl oxidase, which has a critical role in

collagen cross-linking (Panchenko et al. 1996; Borel et al.

2001). Other genes have not been fully explored: (i) SER-

PINF1, encoding the pigment epithelium-derived factor

protein (PEDF), which has a crucial role in bone home-

ostasis and osteoid mineralization (Minillo et al. 2014);

(ii) SP7, encoding the transcription factor Sp7 protein;

(iii) WNT1, encoding the proto-oncogene Wnt-1 protein;

and (iv) CREB3L1, encoding the endoplasmic reticulum

stress transducer “old astrocyte specifically induced sub-

stance” (OASIS) (Lapunzina et al. 2010; Keupp et al.

2013; Symoens et al. 2013). A recently identified AR OI

gene is TMEM38B, encoding the TRIC-B protein (Sha-

heen et al. 2012). It has been proposed that the TRIC-B

channel acts as a counter ion to facilitate the Ca2+ efflux

from the endoplasmic reticulum (ER) mediated by inosi-

tol 1,4,5-trisphosphate receptors (IP3Rs) (Fink and Veigel

1996). Impaired bone mineralization and insufficient col-

lagen matrix in bones have been reported in TRIC-B

knockout mice, which die immediately after birth from

respiratory complications. Moreover, it was proposed in

the same study that TRIC-B knockout osteoblasts inhibit

IP3R-mediated Ca2+ release, leading to impaired Ca2+ sig-

naling and Ca2+ store overload (Zhao et al. 2016). A

recent study based on data obtained from cells of OI

patients reported higher ER stress accompanied by defec-

tive matrix collagen due to the decreased synthesis, secre-

tion, and deposition of type I collagen, in addition to the

impaired assembly and lysyl hydroxylation of procollagen

fibers (Cabral et al. 2016). Here, we report for the first

time an in-depth molecular screening of a large cohort of

Palestinian OI families and describe a wide range of

mostly autosomal recessive variants, with phenotypes

ranging from mild to severe.

Materials and Methods

Ethical compliance

The study was approved by the ethics committee of

Ghent University Hospital (Belgium) and the ethics com-

mittee of Birzeit University (Palestine).

Patients

Forty-nine Palestinian families with 77 affected family

members participated in the study. Participating families

were distributed all over Palestine, with 38 residing in the

West Bank and 11 in Gaza. Thirty-two (65%) of the 49

families were consanguineous. Blood samples were

obtained from affected individuals after obtaining appro-

priate informed consent from the participant and/or the

legal guardians.

Cell culture and isolation of DNA and RNA

Genomic DNA was isolated and purified from whole

EDTA blood by Qiagen DNeasy Kit using standard proto-

cols (Qiagen, Frankfurt, Germany). Skin biopsies were

obtained from probands affected by a disease-causing

splice variant in FKBP10. RNA was isolated with the

RNeasy mini kit (Qiagen). Subsequently, cDNA was syn-

thesized using the M-MLV cDNA synthesis kit according

to the manufacturer’s instructions (Qiagen).

Analysis strategies

A total of 82 primer sets were developed to amplify the

exons and their intron boundaries of OI panel 1, associ-

ated with AD OI, including COL1A1 (OMIM# 120150),

COL1A2 (OMIM# 120160), and IFITM5 (OMIM#

614757); 185 primer sets were developed to amplify OI

panel 2, associated with AR OI, including SERPINF1
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(OMIM# 172860), SERPINH1 (OMIM# 600943), P3H1

(OMIM# 610339), FKBP10 (OMIM# 607063), TMEM38B

(OMIM# 611236), CRTAP (OMIM# 605497),

SP7 (OMIM# 606633), BMP1 (OMIM# 112264), CREB3L1

(OMIM# 616215), PLOD2 (OMIM# 601865), TAPT1

(OMIM# 612758), PPIB (OMIM# 123841),

SEC24D (OMIM# 607186), P4HB (OMIM# 176790), and

SPARC (OMIM# 182120). All primer sequences were

obtained from Pxlence (Dendermonde, Belgium). The

coding regions and flanking introns were amplified using a

2720 Thermal Cycler (Applied Biosystems, Inc., Foster city,

CA, USA). Depending on the clinical presentation and

family history, either OI panel 1 or OI panel 2 was ana-

lyzed. If the screening was negative, the other panel was

investigated. Samples (50 ng DNA) were prepared using

the Nextera sample preparation protocol (Nextera XT

DNA Sample Prep Kit) (Illumina, Inc., San Diego, CA,

USA) and sequenced on a MiSeq instrument (Illumina,

Inc.). Alterations were confirmed by bidirectional Sanger

sequencing using an ABI3730XL sequencer (Applied

Biosystems, Inc.). Nomenclature is based on the HGMD

guidelines and refers to NCBI reference sequence

NM_000088.3/NP_000079.2 for COL1A1, NM_000089.3/

NP_000080.2 for COL1A2, NM_006129.4/NP_006120.1

for BMP1, NM_006371.4/NP_006362.1 for CRTAP,

NM_022356.3/NP_071751.3 for P3H1, NM_018112.1/

NP_060582.1 for TMEM38B, NM_00

1207014.1/NP_001193943.1 for SERPINH1, NM_021939.3/

NP_068758.3 for FKBP10, and NM_002615.5/

NP_002606.3 for SERPINF1. Pathogenic variants were

evaluated with the Alamut software (Alamut Visual, Inter-

active Biosoftware, Rouen, France) and the Mutalyzer soft-

ware (https://mutalyzer.nl/batchNameChecker). The

results were submitted to the OI variant database (https://

oi.gene.le.ac.uk) (Dalgleish 1997, 1998).

To identify disease-causing variants, all alterations were

filtered against the OI variant database (https://oi.gene.

le.ac.uk), the dbSNP database (Sherry et al. 2001), and

the ExAc database (Lek et al. 2016) (MAF <1%). Variants

were considered pathogenic if they satisfied previously

published criteria (Symoens et al. 2012).

Linkage analysis

Microsatellite markers within the �1 Mb flanking the gene

being investigated were selected from the Genethon and

Marshfield genetic map for linkage analysis. Markers and

primer sequences are shown in Table S1. PCR reactions

were performed (reaction conditions are available upon

request). One lL PCR product was added to 10 lL of a

mixture of GeneScan 500 LIZ Size Standards (Applied

Biosystems, Inc.) and formamide, and analyzed on an

ABI3730XL Genetic Analyzer (Applied Biosystems, Inc.).

The results were analyzed using GeneMapper software V5.0

(Applied Biosystems, Inc.).

Results

Alterations causing defects in collagen
synthesis, structure, or processing

We identified variants in COL1A1, COL1A2, or BMP1 in

19 of the 49 Palestinian OI probands (Table 1). Eleven of

19 probands harbored 10 different COL1A1 disease-caus-

ing variants. Two probands had glycine substitutions in

the a-helical region c.3226G>A p.(Gly1076Ser) and

c.3118G>A p.(Gly1040Ser), and a third proband carried

an aspartate substitution in the C-propeptide domain

c.4237G>A p.(Asp1413Asn). The phenotype of these pro-

bands is in agreement with the reports that associate these

three substitutions with severe OI (Marini et al. 2007;

Bodian et al. 2009; Pyott et al. 2011; Barkova et al. 2015;

Lindahl et al. 2015). Three probands had a splice site

variant, including variants c.1200+1G>A and

c.1299+1G>A, previously reported to cause an in-frame

skip of exons 18 and 19, respectively, and a novel splice

site variant, c.3531+1G>T, predicted to cause an in-frame

skip of exon 47. Those three splice site variants were asso-

ciated with mild to moderate phenotypic features charac-

terized primarily by short stature and recurrent fractures,

which is in agreement with previous descriptions (Willing

et al. 1993; Benusiene and Kucinskas 2003). Finally, we

found four premature termination variants associated

with mild phenotypic features. The c.2426dup

p.(Ala811Cysfs*10) and c.3749del p.(Gly1250Alafs*81)
variants are novel, whereas the c.3567del p.(Gly1190-

Valfs*49) and c.189C>A p.(Cys63*) variants have been

reported previously (Dalgleish 1997, 1998; Lindahl et al.

2015).

Five probands had a COL1A2 variant. Four were gly-

cine substitutions located in the a-helical region of the a2
(I) chain. One of them, c.1991G>T p.(Gly664Val), was

novel, and segregation was confirmed in two affected

family members (Fig. 1, 5812). The fifth variant is an in-

frame deletion c.1031_1033del p.(Val345del) causing a

severe form of OI. Remarkably, only three probands har-

boring variants in one of the collagen genes have a posi-

tive family history of OI. Mosaicism is suspected in two

of those families because there were patients whose par-

ents did not exhibit any OI symptoms (Fig. 1, 5805 and

5806).

Three probands carried novel homozygous missense

variants in BMP1. The proband with the homozygous

variant c.688C>G p.(Arg230Gly) had a moderate to severe

phenotype and various deformities necessitating depen-

dency on a wheel chair. The second proband and his
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affected brother harbored a homozygous missense variant

c.691G>T p.(Asp231Tyr) and had a milder phenotype

with few fractures and mild deformities (Fig. 1, 5815).

The third proband with a homozygous missense variant,

c.818C>T p.(Ala273Val), had the most severe phenotype

with more than 100 fractures and severe mobility-limiting

deformities.

Alterations causing defects in collagen
modification

A novel homozygous nonsense variant, c.976C>T
p.(Gln326*), located in exon 5 of the CRTAP gene, was

identified in two probands residing in the same

geographical region. This variant resulted in a very severe

phenotype, including bone and pectus deformities, multi-

ple recurrent fractures, short stature, and congenital

hernia.

Two previously reported homozygous variants were

detected in the P3H1 gene, one nonsense variant,

c.2041C>T p.(Arg681*) (Pepin et al. 2013), and a splice

site variant, c.1080+1G>T (Fig. 1, 968 and 5819). Both

variants resulted in a severe OI phenotype, with extremely

short stature, short and deformed extremities, and signifi-

cant mobility impairment (Table 1). Moreover, a family

history of neonatal and childhood death was reported.

TMEM38B variants were identified in 12 probands and

9 affected family members (Fig. 1, 5820, 5821, 5826,

Figure 1. Pedigrees of the families that participated in this study and have more than one OI patient. All relevant family members are indicated.

Asterisk (*) indicates patients from whom DNA was obtained.
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5827, 5828, and 5831). A previously reported homozygous

exon 4 deletion (21 kb), g.32476_53457delinsATTAAGG-

TATA, p.(Gly152Alafs*5), was found in 11 probands.

One proband was compound heterozygous for this 21 kb

deletion and a nonsense variant, c.507G>A p.(Trp169*),
located in exon 4. This latter variant is generally associ-

ated with a severe early-onset form of OI characterized by

bowing of the limbs and multiple fractures, mostly of the

femur. In addition, some individuals have blue sclerae,

bone deformities, and/or dentinogenesis imperfecta, but

none have hearing loss (Table 1). We identified a shared

haplotype between the 12 probands, indicating that the

deletion most likely represents a founder alteration

(Fig. 2).

Alterations causing defects in collagen
folding and cross-linking

A novel homozygous small genomic deletion was identified

in exon 3 of the SERPINH1 gene, c.314_325del p.(Glu105_-

His108del). This in-frame deletion caused the loss of four

amino acid residues and resulted in a moderate to severe

phenotype in an 18 months old proband presenting with

blue sclerae, joint hypermobility, pectus deformity,

osteopenia, and multiple recurrent fractures, in addition to

general growth and developmental delay (Table 1).

Three different homozygous variants in the FKBP10

gene were identified in four probands. The previously

described nonsense variant c.1330C>T p.(Gln444*) segre-

gated in four patients of the same family (Fig. 1, 5835). A

novel splice site variant, c.391+4A>T, was identified in

two probands originating from the same city, which indi-

cates that the families could be related. The pedigree of

the family containing eight patients harboring the splice

site variant is presented in Figure 1_5833. mRNA studies

revealed an out-of-frame skip of exon 2 of the FKBP10

gene (data not shown). A third proband had a novel

homozygous frameshift variant, c.1276del

p.(Gln426Argfs*10) (Fig. 1, 5836). All affected individuals

were diagnosed with Bruck syndrome based on recurrence

of long bone fractures and congenital contractures typical

of Bruck syndrome. In addition, scoliosis and/or pectus

deformities (Table 1) occurred in accordance with previ-

ously published data (Alanay et al. 2010; Shaheen et al.

2011; Schwarze et al. 2013).

Alterations causing defects in bone
mineralization

In a proband aged 7 years, we identified a homozygous

missense variant, c.242C>G p.(Ser81Cys), in exon 3 of

the SERPINF1 gene. The patient had recurrent and multi-

ple fractures, but with normal sclerae and teeth (Table 1).

The proband responded poorly to bisphosphonate treat-

ment, as reported for patients with SERPINF1-related OI

(Homan et al. 2011; Venturi et al. 2012; Minillo et al.

2014).

Discussion

We performed mutation analysis on a cohort of 49 Pales-

tinian OI families. By using an OI gene panel NGS

screening strategy, we identified variants of known OI

genes in 41 probands, corresponding to a variant uptake

rate of 84%. In contrast to the OI populations studied so

far, more than half of the Palestinian OI probands (25/

41) have a recessive form of OI due to high rates of con-

sanguinity. Consanguinity was more prevalent in our

study population than in the general Palestinian popula-

tion (65% vs. 39%), indicating ascertainment bias in fam-

ilies with possible recessive genetic disorders (Table 1).

Eight probands, of whom six belong to consanguineous

families, did not have any disease-causing variant in the

known OI genes, reflecting further genetic heterogeneity

in OI.

In total, we identified 28 different variants in nine OI

genes, including 10 COL1A1, five COL1A2, three BMP1,

three FKBP10, two TMEM38B, two P3H1, one CRTAP,

one SERPINF1, and one SERPINH1 (Table 1).

The phenotypes of patients with COL1A1 and COL1A2

variants (Table 1) were in line with previously reported

genotype–phenotype correlations, with haploinsufficiency

Figure 2. Haplotype analysis for the 12 probands with in an intragenic TMEM38B marker and five flanking markers. The green box indicates the

intragenic marker D9S2107.
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resulting in milder phenotypic abnormalities and patho-

genic missense variants causing more severe phenotypes

(Gentile et al. 2012; Vandersteen et al. 2014). However,

the novel splice site variant c.3531+1G>T is associated

with moderate phenotypic features, which is at odds with

an earlier report that this variant resulted in mild OI

(Willing et al. 1994).

We identified three novel homozygous BMP1 missense

variants affecting highly conserved amino acids located in

the catalytic metalloprotease domain, which may thus

interfere with the enzymatic activity of the BMP1/tolloid-

like protein. Hitherto, four BMP1 missense variants have

been reported (Asharani et al. 2012; Martinez-Glez et al.

2012; Valencia et al. 2014; Cho et al. 2015; Syx et al.

2015). Two of them, c.747C>G p.(Phe249Leu) and

c.808A>G p.(Met270Val), are in the same domain as the

variants we identified (Fig. S1) and it diminishes BMP1/

mTLD proteolytic activity, resulting in impaired secretion

of the protein (Martinez-Glez et al. 2012; Cho et al.

2015). The phenotypes of those two patients were severe

in accordance with the phenotype of our patient harbor-

ing the c.818C>T p.(Ala273Val) variant. Nevertheless, the

other two patients harboring the c.688C>G p.(Arg230Gly)

and c.691G>T p.(Asp231Tyr) variants have a moderate

and a mild phenotype, respectively (Table 1). Highly vari-

able phenotypes associated with BMP1 variants have been

recently reported (Pollitt et al. 2016), but further investi-

gation of the correlating molecular pathogenesis is

needed. In agreement with previous observations (Bal-

dridge et al. 2008), both variants of CRTAP and P3H1

caused severe OI (Table 1). Notably, the P3H1 splice site

variant c.1080+1G>T has been previously described as the

“West African allele’’ (Cabral et al. 2007; Pepin et al.

2013), but it seems to be more widely spread.

Remarkably, we found a recurrent exon 4 deletion

p.(Gly152Alafs*5) in TMEM38B in 12 probands, making

it the most frequent variant among the Palestinian OI

patients. This variant has been reported previously in

three Saudi Arabian families (Shaheen et al. 2012) and in

three Israeli Arab Bedouin families (Volodarsky et al.

2013). The latter families have the same ancestry as the

Palestinian population. Haplotype analysis suggests a

founder effect for this particular variant. The genotype–
phenotype correlation is in line with the previous reports,

so we recommend evaluation of this variant in Palestinian

families with moderate AR OI (Table 1).

The SERPINH1 variant reported here is the first in-

frame genomic SERPINH1 deletion to be identified,

though its phenotype of moderately severe OI does not

differ from the phenotype caused by variants generated

by a premature termination codon (PTC) (Christiansen

et al. 2010; Duran et al. 2015). Consistent with previous

observations (Schwarze et al. 2013), patients with variants

in the FKBP10 gene were diagnosed with Bruck syndrome

because of congenital contractures. Notably, OI severity

varied widely (Table 1).

The proband harboring a SERPINF1 missense variant

has a milder phenotype than the patients previously

reported (Becker et al. 2011; Homan et al. 2011; Capar-

ros-Martin et al. 2013; Cho et al. 2013; Minillo et al.

2014; Stephen et al. 2015), possibly because the mutant

PEDF protein retains some activity. Although the

c.242C>G p.(Ser81Cys) missense variant has been

reported as a variant with uncertain clinical significance

in the Clinvar database (Variation ID 218613) and with

an allele frequency in ExAC of about 0.1%, the amino

acid is well conserved and is located directly next to a

putative receptor binding site of the PEDF protein

(Fig. S2). Missense variants in SERPINF1 were

found to underlie otosclerosis in three families (Ziff et al.

2016), but our patient aged 7 years had no hearing

impairment.

In conclusion, AR forms of OI are the most prevalent

(>60%) in the Palestinian OI population. This finding

emphasizes the importance of genetic analysis of AR OI

genes in Palestinians with OI in order to reduce the risk

of this devastating disorder. A TMEMB38B deletion was

found to be the most common variant among the Pales-

tinian OI patients. In eight probands we did not identify

any disease-causing variant in the known OI genes, mak-

ing them suitable for exome sequencing in order to iden-

tify the underlying genetic defects. Such analysis will

probably lead to the identification of new OI genes.
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