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ABSTRACT
Recent studies have proposed that tumor-specific tumor-infiltrating CD8+ T lymphocytes (CD8 TIL) can
be classified into two main groups: “exhausted” TILs, characterized by high expression of the inhibitory
receptors PD-1 and TIM-3 and lack of transcription factor 1 (Tcf1); and “memory-like” TILs, with self-
renewal capacity and co-expressing Tcf1 and PD-1. However, a comprehensive definition of the hetero-
geneity existing within CD8 TILs has yet to be clearly established. To investigate this heterogeneity at
the transcriptomic level, we performed paired single-cell RNA and TCR sequencing of CD8 T cells
infiltrating B16 murine melanoma tumors, including cells of known tumor specificity. Unsupervised
clustering and gene-signature analysis revealed four distinct CD8 TIL states – exhausted, memory-like,
naïve and effector memory-like (EM-like) – and predicted novel markers, including Ly6C for the EM-like
cells, that were validated by flow cytometry. Tumor-specific PMEL T cells were predominantly found
within the exhausted and memory-like states but also within the EM-like state. Further, T cell receptor
sequencing revealed a large clonal expansion of exhausted, memory-like and EM-like cells with partial
clonal relatedness between them. Finally, meta-analyses of public bulk and single-cell RNA-seq data
suggested that anti-PD-1 treatment induces the expansion of EM-like cells. Our reference map of the
transcriptomic landscape of murine CD8 TILs will help interpreting future bulk and single-cell transcrip-
tomic studies and may guide the analysis of CD8IL subpopulations in response to therapeutic
interventions.
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Introduction

Chronic antigen stimulation and inflammation lead to CD8
T cell differentiation and function that differ from those
generated during acute infections. Chronically stimulated
CD8 T cells acquire an “exhausted” state characterized by
a progressive loss of cytolytic activity, reduced cytokine pro-
duction and proliferative capacity, upregulation of multiple
co-inhibitory receptors, such as PD-1, CTLA4, LAG3, TIGIT
and TIM3, and a unique epigenetic state.1 Although initially
considered hypofunctional effector T cells, several observa-
tions suggest that exhausted T cells are heterogeneous and
have crucial roles in limiting viral infection or tumor growth
while avoiding damage to normal tissues.2 Yet, tumor-specific
T cells often lack effector function and fail to control tumor
growth and therefore they are also referred to as
“dysfunctional”.3,4 Notwithstanding, immune-checkpoint
blockade (ICB) therapies using anti-PD-1 can result in
a proliferative response of CD8 tumor-infiltrating lympho-
cytes (TILs) and improve effector functions.5

Understanding how anti-PD-1 therapy affects distinct CD8
TIL subsets is a major challenge in cancer immunotherapy.
Recently, a novel intratumoral tumor-specific CD8 T cell
subpopulation was discovered among murine TILs that med-
iates cellular expansion in response to immune-checkpoint

blockade.6,7 These cells have been isolated and characterized
using different combinations of surface markers and reporter
genes (e.g. PD-1+ Tcf7:GFP+ and PD-1+ TIM3− SLAMF6+)
and were named “memory-like”7 or “progenitor exhausted.”6

Memory-like CD8 TIL cells have the capacity to expand, self-
renew and give rise to terminally differentiated cells (PD-1+

TIM3+ Tcf1−, GZMB+; termed “exhausted”) in the context of
chronic antigenic stimulation, similarly to progenitor CD8
T cell subsets previously described in chronic infection.8-12

However, there are still many unknowns regarding how
T cells committed to the exhaustion lineage develop from pre-
exhausted T cell states and which of these states are present in
the tumor. Therefore, a comprehensive definition of the het-
erogeneity existing within CD8 TILs has yet to be clearly
established.

Here we aimed at defining a reference transcriptomic map
and determining clonal relatedness of CD8 TILs, including
cells of known tumor-specificity, in the pre-clinical melanoma
model B16. To this aim, we have sequenced the transcriptome
including full-length T cell receptor genes of >3500 single-cell
CD8 TILs from seven tumor-bearing mice including wild-type
C57BL/6 and PMEL transgenic mice. Furthermore, to study
how the CD8 TIL landscape is modulated by immunotherapy,
we performed a meta-analysis of published bulk and single-
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cell RNA-seq (scRNA-seq) data. Our study provides new
insights into the heterogeneity of CD8 TILs, including novel
markers to define T cell subpopulations, as well as freely
accessible bioinformatics tools to guide the analysis of scRNA-
seq data sets.

Materials and methods

Mice

For scRNA-seq 6–12 week-old male C57BL/6 mice (CD45.1+)
and PMEL (Jackson Laboratory, Cat#005023) were bred and
housed under SPF conditions in the conventional animal
facility of the University of Lausanne. Experiments were per-
formed in compliance with the University of Lausanne
Institutional regulations and were approved by the veterinar-
ian authorities of the Canton de Vaud.

Tumor experiments and isolation of TILs

Right flanks of mice (C57BL/6 or PMEL) were shaved and
B16F10 cells (2.5x105) were injected subcutaneously. Tumor
volumes were estimated by measuring the tumor size in two
dimensions using a caliper. The tumor volume was calculated
according to the formula (length x width2)/2. Mice were
sacrificed at the indicated time point and the weight of the
excised tumor mass was determined.

Tumors were excised post 15 days of tumor engraftment,
manually dissociated and digested enzymatically with Tumor
Dissociation Kit (Miltenyi Biotec). Digested tumors were
mashed through 70 µm filters. Hematopoietic cells were
further purified using a discontinuous Percoll gradient (GE
Healthcare). Cells at the interface were harvested and washed
twice before further use. For cell sorting, tumor-infiltrating
T cells were further purified using mouse CD8 T cell enrich-
ment kit (StemCell Technologies) and sorted by flow cytome-
try using following antibodies – CD8a (Clone 53–6.7;
eBiosciences), CD45 (Clone MI/89; eBiosciences) and
Zombie Aqua (423102; Biolegend). The purity of sorted cells
was greater than 99%. Flow sorted tumor-infiltrating CD8 T
cells were thus used for single-cell RNA sequence purpose.

10x genomics single-cell gene expression sample
processing and sequencing

After sorting, intratumoral CD8 T cells were loaded into
a Chromium Single Cell Instrument (10x Genomics, Pleasanton,
CA) together with beads, master mix reagents (containing RT
enzyme and poly-dt RT primers) and oil to generate single-cell-
containing Gel Beads-in-emulsion (GEMs). Single-cell Gene
Expression libraries were then prepared using Chromium Single
Cell 5ʹ Library & Gel Bead Kit (PN-1000006) following the man-
ufacturer’s instruction (protocol CG000086 Rev E). With this
procedure, the cDNAs from distinct droplets harbor a distinct
and unique 10x “cell barcode”. These sequencing libraries were
loaded onto Illumina NextSeq High Output Flow Cells and
sequenced using read lengths of 26 nt for read1 and 132 nt for
read2. The Cell Ranger Single Cell Software Suite 2.1.1 (https://
support.10xgenomics.com/single-cell-gene-expression/software/

pipelines/latest/using/mkfastq) was used to perform sample
demultiplexing, barcode processing, reads downsampling per
sample (down to 118,806 mean reads per cell) and single-cell 5ʹ
gene counting using default parameters and mouse genome
assembly mm10.

Single-cell TCR sequencing and analysis

Intratumoral CD8 T cell cDNAs that were generated as an
intermediate step during the aforementioned single-cell gene
expression libraries preparation were subsequently used in
a distinct workflow. Briefly, the 10x mouse V(D)J
Enrichment Kit (PN-1000071) was used to enrich for T cell
receptor (TCR) sequences, after which V(D)J-enriched
libraries were constructed with the Chromium Single Cell 5ʹ
Library Construction Kit (PN-1000020). The Cell Ranger
Single Cell Software Suite 2.2.0 (https://support.10xge
nomics.com/single-cell-gene-expression/software/pipelines/lat
est/using/mkfastq) was used to perform sample demultiplex-
ing, barcode processing and clonotype identification, using
default parameters.

For each mouse separately, T cells sharing identical alpha
and beta TCR chains were assigned to a unique clonotype ID.
PMEL-specific cells were identified based on the expression of
the transgenic PMEL-specific TCR (CASSFHRDYNSPLYF
and CAVNTGNYKYVF for beta and alpha CDR3 sequences,
respectively, Overwijk et al.13, GenBank entries EF154513.1
and EF154514.1). Single-cell TCR sequences are available as
Supplementary Files at GEO under accession GSE116390).

TCR repertoire similarity was calculated using the
Morisita-Horn (MH) index as implemented in the
R package ‘divo’ v1.0.014 with parameters resample = 10,000,
CI = 0.95 and size = 1.

For clonal analysis of the Singer dataset, we reconstructed
TCR alpha and beta chains using Tracer v0.5.0 (https://github.
com/Teichlab/tracer) with the option ‘-q salmon’ for transcript
quantification (Supplemental Table 4). Next, we defined clusters
of T cell clones (clonotypes) as those sharing identical productive
alpha and beta chains, as described above. Mouse 4 corre-
sponded to a PMEL transgenic mouse, expressing the alpha
and beta chains TRAV7 N-5_TGAAC(A)CAGGA_TRAJ40
and TRBV14_GTTTCCACAGGGA(CT)ATAAT_TRBJ1-6
(Supplemental Figure 6(a)). Detected TCR recombinants and
assigned clonotype clusters are available in Supplemental Table
4. TCR repertoire similarity between WT mice (1,2,3) and TIL
states (as predicted by TILPRED) was calculated using the
Morisita-Horn (MH) index as implemented in the R package
‘divo’ v1.0.014 with parameters resample = 10,000, CI = 0.95 and
size = 1 (Supplemental Figure 6(d, e)).

Processing, dimensionality reduction and clustering of
newly generated scRNA-seq data

A total of 7174 single-cell transcriptomes (with a median of
4908 UMIs and 1424 detected genes per cell) were obtained
from 7 samples (4 WT + 3 PMEL mice) after Cell Ranger
pre-processing and UMI quantification. Next, UMI counts
were normalized by dividing them by the total UMI counts
in each cell and multiplying by a factor of 10,000. Then, we
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took the log of the normalized UMI counts the prior sum of
1 (log normalized UMI counts+1). Then, cells were filtered
based on quality control and expression of CD8 T cell
markers to remove low-quality cells, doublets and contam-
inating non-CD8 T cells, as follows: Upon examination of
parameter distributions, we filtered out cells having less
than 1,500 or more than 30,000 UMIs; cells having less
than 1,500 or more than 5,000 detected genes, cells in
which ribosomal protein-coding genes represented more
than 50% of UMI content and cells in which mitochondrial
protein-coding genes represented more than 5% of UMI
content. The 5542 quality-passed cells were further filtered
based on the expression of CD8 T cell markers: 3574 cells
expressing Cd8a, Cd8b1 and Cd2 but not Cd4 were kept for
further analysis (processed data available as supplementary
file in GEO entry).

For dimensionality reduction, we first identified the set of
most variable genes using Seurat 2.3.4 method ‘mean.var.plot’
(using 20 bins, minimum mean expression = 0.25 and z-score
threshold for dispersion = 0), which identified 1107 highly
variable genes while controlling for the relationship between
variability and average expression. Briefly, this method divides
genes into 20 bins based on average expression, and then
calculates z-scores for dispersion (calculated as log(variance/
mean)) within each bin. From this initial set of highly variable
genes, we removed 204 genes involved in cell cycle (as anno-
tated by Gene Ontology under code GO:0007049 or highly
correlated with them, i.e. with Pearson’s correlation coeffi-
cient >0.5) or coding for ribosomal or mitochondrial proteins.
The remaining 903 highly variable genes were used for
dimensionality reduction using Principal Components
Analysis (PCA). PCA was performed on standardized gene
expression values by subtracting from normalized UMI
counts, their mean and dividing by the standard deviation.
Upon scree plot inspection of PCA eigenvalues contributions,
we selected the first 10 Principal Components for clustering
and tSNE visualization (Supplemental Figure 10(a)). For
visualization, we used tSNE with default parameters (perplex-
ity = 30 and seed set to 12345). For clustering, we performed
hierarchical clustering on the top 10 PCs using Euclidean
distance and Ward’s criteria. Silhouette coefficient analysis
over different number K of clusters indicated a big drop of
cluster silhouette after K = 4, and this was selected as the
optimal number of clusters. To evaluate clustering robustness,
we additionally ran K-means (with K = 4) and the shared
nearest neighbor (SNN) modularity optimization clustering
algorithm implemented in Seurat 2.3.4 with resolution para-
meter = 0.3 (which produced 4 clusters) and other parameters
by default. Clustering agreement analysis using adjusted Rand
Index (as implemented in mclust R package15) indicated high
agreement between the three clustering results (Rand Index
0.70–0.81). Moreover, this analysis indicated that the SNN
clustering produced the most consistent result with the
other two (with Rand Index of 0.81 against hierarchical and
0.76 against K-means, while K-means vs hierarchical had 0.7),
and therefore was kept as the final clustering solution.
Robustness of our clustering results in data normalization,
scaling and detection of variable genes was confirmed by re-

analysis using Seurat 3 SCTransform16 (Supplemental Figure
10(b)).

The code to reproduce the clustering is available at https://
gitlab.unil.ch/carmona/workflow_Carmona_etal_2019_
CD8TIL for the original analysis with Seurat 2, and at https://
gitlab.unil.ch/carmona/workflow_Carmona_etal_2019_
CD8TIL_Sv3 for validation using Seurat 3.

Gene-signature analysis

To obtain cluster-specific gene signatures, we performed dif-
ferential expression analysis of each cluster against the others
using MAST17 with default parameters, and further required
that for each cluster, differentially expressed genes had a log
fold-change higher than 0.25, were expressed at least in 10%
of its cells, and that this fraction is at least 10% higher than in
the other clusters. Lists of differentially expressed genes in
each cluster can be found in Supplemental Table 1.

To identify cycling cells we evaluated enrichment of the
cell-cycle signature (Supplemental Table 3) in each cell, using
the Area Under the Curve (AUC) method implemented in
AUCell Bioconductor’s package.18 Briefly, the AUC value
represents the fraction of genes, within the top 1500 genes
in the ranking (ordered by decreasing expression) that are
included in the signature. Upon examination of AUCs dis-
tribution, we set an AUC cutoff of 0.2 for cell cycling classi-
fication (which corresponded to a z-score of ~2.5).

For CD8 T cell subtypes reference signature enrichment
analysis, we first collected different T cell signatures from
literature and generated other signatures by performing dif-
ferential expression analysis (using Geo2R NCBI Gene
Expression Omnibus tool, with default parameters) from pub-
lic transcriptomic datasets. For every gene signature, up to
200 top genes (same limit used by MSigDB Immunologic
Signatures collection) were kept sorted by fold-change from
the differentially expressed genes (defined as FDR adjusted
p-value <0.05 and |log2 fold-change| >1). The list of genes in
each signature can be found in Supplemental Table 3.

For signatures of naïve (CD44-), effector (KLRG1+ at day
4.5 p.i.) and memory (day 60 p.i.) virus-specific CD8 T cell
isolated in the context of acute infection (“Memory vs effector
(acute inf.)”), we used the LCMV Armstrong virus infection
data from Sarkar et al.19, GEO accession GSE10239, consider-
ing differentially expressed genes of effector vs naive, memory
vs naïve and effector vs memory. The signatures of (PD-1+

Tcf1+) memory-like vs (PD-1+ Tcf1−) exhausted virus-specific
(P14) CD8 T cells in LCMV chronic infection clone 13
(“memory-like vs exhausted (chronic inf.)”) were obtained
from Utzschneider et al.11 (GSE83978) by taking differentially
expressed genes between PD-1+ Tcf7:GFP+ vs PD-1+ Tcf7:
GFP– . The signatures of (PD-1+ Tcf1+) memory-like vs
(PD-1+ Tcf1−) exhausted tumor-specific (P14) CD8 T cells
in B16-gp33 melanoma tumors (“memory-like vs exhausted
(tumor)”) were obtained from GEO GSE1146317 by taking
differentially expressed genes between Tcf7:GFP+ vs Tcf7:
GFP−. For the signatures of tumor-infiltrating vs spleen-
derived in acute infection at day 8 post listeria infection
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(“Tumor vs acute infection”), we used the data of Schietinger
et al.20 (GEO GSE60501).

For cell-cycle signature we used the gene set
(cellCycle_union, Supplemental Table 3) obtained by combin-
ing the G1/S and G2/M signature genes from Tirosh et al.21

(cellCycle, Supplemental Table 3) with the set of genes whose
expression in our dataset was highly correlated with cell-cycle
-related genes (Pearson’s correlation > 0.5,
cellCycleCorrelated, Supplemental Table 3).

Figure 1. Defining CD8 TIL states.
(a) Experimental design. (b) tSNE plots indicating global transcriptomic similarities of CD8 TILs, and colored by unsupervised clustering (upper-left panel, clusters C1
to C4) or by expression of specific marker genes (other panels). Cycling cells are marked in magenta. (c) Dotplot indicating average expression of a panel of marker
genes (x-axis, associated with naïve/memory, exhaustion and effector T cell phenotypes) for the four T cell clusters (y-axis). Color scale indicates scaled and centered
log-normalized UMI counts. (d) Projection of T cell states onto three phenotypic score axes (stemness, inhibition/exhaustion and cytotoxicity, see Methods).
Phenotypic scores are relative to each other, varying from 0% (inner circle) for the lowest score to 100% (outermost circle) for the highest score. (e) Gene-signature
enrichment analysis against reference CD8 T cell subtypes signatures observed in cancer and chronic infection. UP and DOWN refer to the sets of up- or down-
regulated genes associated with each comparison (e.g. Memory-like vs exhausted UP: genes up-regulated in memory-like and down-regulated in exhausted;
Memory-like vs exhausted DOWN: genes down-regulated in memory-like and up-regulated in exhausted). Color scale indicates statistical significance of signature
overlap (FDR corrected p-values, Fisher’s exact test). Details about the reference signatures in Methods. (f) Volcano plot showing top differentially expressed genes
between EM-like vs exhausted and memory-like states. (g) Relative T cell cluster composition for each mouse. (h) Percentage of cycling cells in each cluster, as
defined by high expression levels of cell-cycle genes in all TILs (left) or PMEL-specific TILs (expressing PMEL TCR, right). See methods for details.
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To evaluate associations (overlap) between cluster signa-
tures and reference signatures (Figure 1(e) and Supplemental
Figure 1), for each pair of cell cluster signature genes and
reference signatures, contingency tables were calculated by
counting how many genes among all expressed genes
(15337) are present or absent in the cluster or the reference
signature, and then one-sided Fisher’s exact test with FDR
adjustment for multiple testing was used to calculate statistical
significance of associations.

For the quantification of stemness (Tcf7, Lef1, Sell, Il7r),
cytotoxicity (Prf1, Fasl, Gzmb) and inhibition/exhaustion
(Pdcd1, Havcr2, Tigit, Lag3, Ctla4) scores, we calculated single-
cell AUC enrichment scores (using AUCell package, as described
for cell cycling). For Figure 1(d), average enrichment scores for
each cluster (after removing cycling cells from all clusters) were
scaled to range between 0 and 1 and plotted using ggradar R’s
package (https://github.com/ricardo-bion/ggradar).

To evaluate enrichment of EM-like, memory-like and
exhausted signatures in public bulk RNA-seq data of CD8
T cells upon PD-1 blockade or TOX KO, we performed signature
enrichment analysis (GSEA) using Bioconductor package
clusterProfiler with default parameters (version 3.10.122). Reads
were pre-filtered using Trimmomatic v0.3923 transcript abun-
dances were estimated using Salmon v0.14.0 24 with default para-
meters and mouse reference transcriptome version GRCm38,
summarized at gene-level using tximport v1.10.125 and differential
gene expression analysis was conducted using DESeq2 v1.22.2
with default parameters.26 RNA-seq data of CD8 TILs in murine
sarcoma (tumors were harvested at day 12 post-transplant, 3 days
after treatment) was obtained from GEO accession GSE62771
(anti-PD-1 vs control).27 RNA-seq data of CD8 TILs in non-
small cell lung cancer (anti-PD1 vs control) were obtained from
GEO accession GSE114300.28 RNA-seq data from adoptively
transferred (in vitro activated) OT-1 cells infiltrating B16-OVA
tumors (anti-PD1 vs control) were obtained from GEO
GSE93014.29 Differential expression data from tumor-specific
CD8 TILs (liver cancer) knockout for TOX (TOX-KO) vs wild-
type were obtained from Table S1 of Scott et al.30

Cluster validation using independent dataset

To confirm the robustness of the transcriptomic states identified
in our data, we re-analyzed an independent publicly available
single-cell RNA-seq dataset of ~400 CD8 TILs from B16 mela-
noma tumors.31 Gene expression data processing and clustering
were conducted in the same way as described for our dataset.
Consistently, four distinct transcriptomic states were identified
corresponding to naïve, terminal exhausted, memory-like and
EM-like populations (Supplemental Figure 3(a, b)), plus a cluster
of cycling cells in proximity to exhausted and memory-like cells.
Despite the different technologies used (smart-seq2 vs 10X 5ʹ
counting), we found a remarkable correspondence between the
CD8 TIL states identified in the two datasets, both in terms of
gene markers (Supplemental Figure 3(b)) and systematic com-
parison of gene signatures (Supplemental Figure 3(g)). To eval-
uate associations (overlap) between cluster signatures from the
two datasets, one-sided Fisher’s exact test with FDR adjustment
for multiple testing was used (Supplemental Figure 3(g)).

Flow cytometry analysis of CD8 TILs

For the flow cytometry analysis purified CD8 cells specific for
the surrogate tumor antigen LCMV gp33 (P14) were adop-
tively transferred (106 cells) into naive C57BL/6 (B6) mice
(CD45.1). One day later, mice were implanted subcutaneously
with B16 melanoma cells expressing LCMV gp33 (B16-gp33).
Tumors were excised post 12 days of tumor engraftment and
tumor-infiltrating T cells were isolated as described above.
Surface staining was performed with mAbs for 30 min at 4°
C in PBS supplemented with 2% FCS and 0.01% azide (FACS
buffer) using antibodies listed in the table.

For intranuclear staining cells were first stained at the
surface before fixation and permeabilization using the tran-
scription factor staining kit (eBioscience) followed by intra-
nuclear staining for transcription factor.

Flow cytometry measurements of cells were performed on
an LSR-II or Fortessa flow cytometer (BD). Data were ana-
lyzed using FlowJo (TreeStar).

Construction and validation of the tumor-infiltrating
CD8T cell transcriptomic state predictor (TILPRED)

Integrated knowledge on CD8 tumor-infiltrating T cells states
was used to develop a novel transcriptomic classifier of CD8
T cell states for mice and human (TILPRED). A major chal-
lenge for the classification of single-cell transcriptomes across
experiments is that gene expression measurements are
affected by the large variability in single-cell library sizes,
and experimental and data processing protocols used. To
overcome some of these issues, our classifier uses only gene
expression rankings to quantify TIL state signature enrich-
ment. Moreover, since cell cycle has a significant transcrip-
tomic impact32-34 we also included cell-cycle signature
detection in TILPRED, which allows for quantification of
cycling T cells in the different states.

To classify tumor-infiltrating CD8 T cells from single-cell
RNA-seq data we first generated 12 sets of differently
expressed genes (DEG) corresponding to all possible pairs
between the four transcriptomic states. Differential expression
between pairs of clusters was assessed with MAST 1.8.2 using
default parameters (after excluding cycling cells in all clusters,
in order to avoid this confounding factor), and further filter-
ing genes with a log fold-change higher than 0.5, expressed at
least in 10% of one of the clusters, and with a cellular detec-
tion rate difference of at least 10% between clusters. Next,
pairwise DEG sets were further filtered to keep those having
orthologs in humans (as annotated in Ensembl 9535 or NCBI
HomoloGene 68 if orthologs missing in Ensembl).

The 12 pairwise DEG sets were then used to score all
single-cells in our dataset, calculating gene-set enrichment
AUC (area under the ‘enrichment’ curve) within the top
1500 genes in the ranking, using AUCell.18

Next, the dataset was randomly split into a training and
a test dataset with 70% and 30% of the cells, respectively. The
AUC scores for the 12 pairwise DEG (a training set of 70% of
the cells) were used to train a multinomial logistic regression
model with lasso penalty using R package glmnet36 with
parameter alpha = 1 (lasso penalty) and intercept set to 0.
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The regularization parameter lambda for the lasso was eval-
uated by 10-fold cross-validation using cv.glmnet function,
and was set to the minimum value (lambda = e−6) for which
the mean cross-validated error (cve) was at most 50% higher
(i.e. cve = 0.539) than the minimum mean cross-validation
error (cve = 0.374, for lamda = 4.2 e−5).

Performance of the model was assessed in the test set
(remaining 30% of the cells) assigning T cell state predictions
to all cells where the model output (logistic response variable)
was higher than 0.5 in any state (~5% of the cells did not pass
the threshold and were annotated as ‘unknown’); its accuracy
was 0.94 (95% CI: 0.92, 0.95) with a mean specificity of 0.98
and a mean sensitivity of 0.90. Finally, the model was trained
on the full dataset and implemented as an R package, publicly
available at http://github.com/carmonalab/TILPRED. To
detect cycling cells with TILPRED, we recommend a cutoff
for cellCycleThreshold between 0.1 and 0.2 depending on
desired sensitivity/specificity; the optimal value might differ
between datasets of different quality levels.

To evaluate predictive performance in an independent data-
set, we compared TILPRED predictions against the result of
unsupervised clustering of the CD8 TIL dataset of Singer et al.31

(GEO GSE86042) (Supplementary Figure 4(a)). The clustering
analysis was performed in the same way as for our dataset (on
the first 10 principal components of the most highly variable
genes), except that instead of using a unique clustering solution
(such as SNN clustering used to define clusters in our dataset),
we used as T cell states ‘ground truth’ the consensus between
SNN, K-means and hierarchical clustering (using Ward’s cri-
teria) solutions. Classification accuracy using this dataset was
91% (Supplementary Figure 4(a)).

While we showed that TILPRED performed very well in
multiple murine datasets, one of its potential limitations is that
its classification is restricted to the currently known mouse CD8
TIL states (i.e. terminally exhausted, progenitor exhausted/
memory-like, effector memory and naïve, plus “cycling”).
Hence, if under certain perturbations (e.g. for certain gene
knock-outs or immuno-modulatory therapies) CD8 T cells
undergo alternative differentiation pathways and acquire novel
transcriptomic states, these will not be correctly classified by
TILPRED. Once additional CD8 TIL states are described and
more data are used for training, future versions of TILPRED will
be updated to predict them.

TILPRED analysis of public datasets

For the prediction of TIL states in MC38 carcinoma, we
analyzed tumor-infiltrating T cells of the Xiong dataset.37

UMI counts matrix was obtained from ArrayExpress (acces-
sion E-MTAB-7919). Upon examination, high-quality CD8
T cells were filtered as those having between 1000 and 5000
expressed genes, 1000 and 20,000 UMI counts, less than 4% of
UMI counts mapping to mitochondrial genes, less than 40%
of genes mapping to ribosomal proteins coding genes, and
that expressed Cd2, Cd3g, Cd8a, Cd8b1 and did not express
Cd4, Foxp3, Tyrobp or Spi1 (that are associated to CD4 T cells
or myeloid cells). Next, TILPRED was run to classify CD8 TIL
states, with parameters scoreThreshold = 0.6 and

cellCycleThreshold = 0.1. For visualization, we identified the
most variable genes (using Seurat 2.3.4 FindVariableGenes
function with y.cutoff = 0), performed PCA on scaled variable
genes excluding ribosomal, mitochondrial and cell-cycle-
related genes, and ran tSNE on the top 10 principal compo-
nents (with perplexity by default, equal to 30). For prediction
of (PD-1low) CD8 TIL states in MC38 upon ICB (NCBI GEO
GSE122969 38), high-quality cells were filtered based on num-
ber of detected genes (between 500 and 5000), number of
UMIs (1–50 K) and percentage of UMIs mapping to mito-
chondrial (<10%) or ribosomal genes (<60%). CD8 T cells
were further filtered by based on co-expression of Cd2, Cd8a,
Cd8b1 and Cd3g (≥1 UMI each) and lack of Cd4 expression.
For the sarcoma dataset (NCBI GEO GSE122969 39), after
examining distributions, high-quality cells were filtered
based on number of detected genes (between 500 and 5000),
number of UMIs (1.5–20 K) and percentage of UMIs map-
ping to mitochondrial (<10%) or ribosomal genes (<50%).
CD8 T cells were further filtered from other immune cell
infiltrates based on co-expression of Cd2, Cd8a and Cd8b1
(≥1 UMIs each), lack of Cd4 expression (0 UMI) and lack
of – or low expression of – Fcer1g and Tyrobp (<2 UMIs).
Next, for T cell classification TILPRED was run with default
parameters.

For the prediction of CD8 TIL states in the melanoma
patients dataset, we downloaded processed gene expression
data from NCBI GEO (accession GSE12057540). High-quality
cells were filtered based on the number of detected genes
(between 1000 and 6000) and the percentage of TPMs mapping
to ribosomal genes (<10%). CD8 T cells were further filtered
from other immune cell infiltrates based on co-expression of
CD2, CD8A, CD8B (log2 (TMP+1) ≥1), lack of CD4 expression
(TPM = 0) and lack of – or low expression of – non-T cell genes
FCER1G, TYROBP, SPI1, IGKC, IGJ, IGHG3 (log2 (TPM+1)
<3). Next, TILPRED was run using parameters set for human
cells (human = TRUE) and with a lower score threshold for
prediction (scoreThreshold = 0.3, instead of the default 0.5), in
order to increase sensitivity to weaker signals. TILPRED was
trained on mouse data and therefore the classification of human
TILs is done via ortholog mapping. For the visualization of these
data in Supplemental Figure 9(a), we used Seurat 2.3.4 to identify
highly variable genes and perform dimensionality reduction
using tSNE on the first 10 Principal Components computed on
centered and variance-scaled expression values. The four CD8
TIL states (naïve, EM-like, exhausted and memory-like) as well
as cycling TILs were predicted in all patients (Supplemental
Figure 9(a)). To evaluate compositional shifts upon therapy, we
selected patients having samples before and after ICB and at least
30 cells in each sample (Supplemental Figure 9(b)). Seven
patients matched these criteria, three of which responded (P1,
P7, P28) and four that failed to respond to ICB (P2, P3, P12,
P20). Interestingly, compared to non-responders, responders
had an increased proportion of EM-like cells upon therapy
(Supplemental Figure 9(c), p = .0317 one-sided Wilcoxon test).

For the prediction of TIL states of the Miller dataset of
(B16-OVA) tumor-specific tumor-infiltrating CD8+ T cells,
UMI counts matrix was obtained from GEO (accession
GSE122675). Upon examination, high-quality CD8 T cells
were filtered as those having between 1000 and 5000
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expressed genes, 1000 and 30,000 UMI counts, less than 6% of
UMI counts mapping to mitochondrial genes, less than 50%
of genes mapping to ribosomal proteins coding genes, and
that expressed Cd2, Cd3 g, Cd8a, Cd8b1 and did not express
Cd4 or high levels of Tyrobp or Spi1 (that are associated to
CD4 T cells or myeloid cells, respectively). Next, cell states
were predicted with TILPRED (using cellCycleThreshold = 0.1
for increased sensitivity). Cells classified as cycling were
excluded from the analysis.

WebApp deployment for scRNA-seq data exploration

Our web application uses interactive Summarized Experiment
Explorer “iSEE”41 and R Shiny, and is available at http://
TILAtlas.org.

Results

Single-cell RNA-seq of CD8 TILs reveals the presence of
exhausted, memory-like, naïve and effector memory-like
T cells

To obtain an unbiased view of the transcriptomic landscape of
tumor-infiltrating CD8 T cells from B16 melanoma tumor-
bearingmice, we performed single-cell transcriptomic profiling
paired with VDJ locus sequencing of CD8 TILs. We individu-
ally analyzed four wild-type (WT) C57BL/6 mice and three
PMEL transgenic mice, whose CD8 T cells express
a transgenic TCR specific for the B16 tumor-associated antigen
gp100/PMEL on a C57BL/6 genetic background (Figure 1(a)).
After data processing and quality control, >3500 CD8 T cells
from the seven tumors were kept for downstream analyses (see
Methods). Unsupervised clustering on the high-dimensional
space revealed the presence of four robust CD8 TIL clusters
with distinct transcriptomic profiles. Cluster 1 (C1) was
defined by high expression of inhibitory receptors Pdcd1,
Havcr2, Ctla4, Tigit and Lag3, exhaustion-related transcription
factors such as Batf and Tox30,42-44 and high expression of
cytotoxic molecules (e.g. Gzmb, Prf1, Fasl), compatible with
an exhausted state (Figure 1(b,c)). Cluster 2 (C2), in proximity
to C1, was defined by the co-expression of inhibitory receptors
(expressing Pdcd1, Tigit and Lag3 but not Havcr2 or Entpd1)
and memory-related genes (e.g. Tcf7, Lef1, Sell), and low levels
of cytotoxicity genes (Figure 1(b,c)), compatible with the
recently described memory-like subset.6,7 Cluster 3 (C3) was
defined by high expression of markers of naïve/memory (e.g.
Tcf7, Sell, Ccr7, Lef1, Il7r) and no expression of cytotoxicity
genes or inhibitory receptors, compatible with a naïve or cen-
tral memory state (Figure 1(b,c)). Based on the lack of Cd44
expression in this cluster (Figure 1(c)) we provisionally refer to
it as naïve cells cluster. Finally, cells in cluster 4 (C4) expressed
high levels of memory-related genes (e.g. Tcf7, Lef1, Il7r)
together with cytotoxicity genes (e.g. Gzmk, Gzmb).
Compared to the memory-like C2, C4 was characterized by
low expression of the inhibitory receptors Pdcd1, Tigit, Lag3
and the exhaustion-related transcription factors Tox and Batf
(Figure 1(c)). Expression of granzymes and lack of Sell and
Ccr7 expression suggested an effector memory rather than
a central memory phenotype (Figure 1(c)). Hence, this cluster

was referred to as Effector Memory-like (“EM-like”) state
(Figure 1(b,c)). Note that, while T cells with effector memory
phenotype have been previously observed among TILs,45,46

EM-like cells have never been characterized at the transcrip-
tomic level on murine tumors, and a gene signature for this
population remains to be defined. Differentially expressed
genes in each cluster are shown in Supplemental Table 1.
Gene expression differences between these four clusters could
be further summarized by the expression of three gene sets
associated with 1) cytotoxicity (Gzmb, Prf1 and Fasl), 2) inhibi-
tion/exhaustion (Pdcd1, Havcr2, Tigit, Lag3, Ctla4) and 3)
“stemness” (Tcf7, Sell, Il7 r, Lef1). While the naïve cluster
(C3) presented the highest level of stemness and the lowest
inhibition and cytotoxicity, the exhausted cluster (C1) pre-
sented the lowest levels of stemness with the highest levels of
inhibition and cytotoxicity (Figure 1(d)). The memory-like
(C2) cluster displayed higher levels of “stemness” compared
to exhausted, together with lower levels of inhibition and very
low levels of cytotoxicity, in line with previous observations.6,7

Instead, the EM-like (C4) cluster displayed intermediate levels
of cytotoxicity and “stemness”, with low levels of inhibition
(Figure 1(d)).

We next evaluated to what extent these CD8 TIL states relate
to previously described CD8 T cell subsets found in the context
of cancer or infection. An initial gene-signature enrichment
analysis confirmed that C3 matched the transcriptomic state of
splenic naïve T cells,19 while the other three clusters up-regulated
genes associated with differentiated CD8 T cells (Supplemental
Figure 1, see Methods). Next, we focused on the three differen-
tiated states to evaluate signature enrichment against specific
CD8 T cell subtypes. We found a consistent mapping of the
memory-like (C2) cluster with the tumor-resident PD-1+ Tcf1+

“memory-like” subset7 (Figure 1(e)), whereas the exhausted
cluster (C1) was mapped to the “exhausted” PD-1+ Tcf1− subset
described in the same study. Further, these two clusters also
matched the memory-like and exhausted subsets, respectively,
found in chronic infection11 (Figure 1(e)).

The EM-like cluster did not match the exhausted nor the
memory-like signatures, and instead showed specific enrich-
ment for the signature of pathogen-specific CD8 T cells
found upon acute infection (“Tumor vs acute infection –
DOWN”, row 6 in Figure 1 (e)).20 Further, among pathogen-
specific CD8 T cells found upon acute infection, the EM-like
cluster was specifically enriched in the signature of memory
(day 60 post LCMV Armstrong infection, “Memory vs effec-
tor (acute inf.) – UP”) rather than effector (KLRG1+ day 4.5
post LCMV Armstrong infection) CD8 T cells (“Memory vs
effector (acute inf.) – DOWN”) (rows 7 and 8 in Figure 1
(e)). Hence, signature enrichment analysis confirmed an
effector memory (EM-like) phenotype for this population.
Since EM-like cells have not been previously characterized in
B16 tumors, we analyzed this cluster in more detail.
Differential gene expression analysis of EM-like vs exhausted
and memory-like cells revealed potential novel markers for
this population (Figure 1(f)), including Ly6c2 that encodes
a surface molecule that has been previously associated to
memory CD8 T cells48-50 and Cxcr3, a chemokine receptor
that guides the recruitment of T cells into inflamed periph-
eral tissue.51
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Next, we analyzed how CD8 TIL states were distributed
among and within WT and PMEL mice. We found that T cells
from all mice were present in all four states (Figure 1(g),
Supplemental Figure 2 and Supplemental Table 2), although
a clear distribution bias was observed between WT and PMEL
mice (i.e. according to antigen-specificity). TILs from PMEL
mice were enriched in exhausted (33–49% of PMEL vs 2–4%
of WT) and memory-like (14–20% of PMEL vs 3-8% of WT)
states. TILs from WT mice were enriched in EM-like (17–37%
of PMEL vs 26–69% of WT) and naïve (14–20% of PMEL vs
27–65% of WT) T cells. Thus, while tumor-specific cells are
enriched in the exhausted and memory-like states, total poly-
clonal CD8 TILs are enriched in the EM-like and naïve states.
Interestingly, our analysis revealed the presence of tumor-
reactive (PMEL) cells in the EM-like state.

Cycling cells (i.e. with high expression of cell cycle-related
genes) were detected within exhausted (16%), memory-like
(6%) and EM-like (4%) states (cells in magenta in Figure 1
(b–h) left panel), as opposed to cells from the naïve cluster
that did not cycle (<1%). When considering PMEL-specific
T cells (effectively expressing PMEL TCR receptor, see
Methods), a similar distribution was observed (Figure 1(h),
right panel). This indicates that in addition to exhausted and
memory-like, EM-like cells, including tumor-specific EM-like
cells, replicate in the tumor.

The robustness of the four identified transcriptomic states
was confirmed by unsupervised clustering of an independent
publicly available scRNA-seq dataset of CD8 TILs from B16
melanoma tumors,31 where a consistent cluster correspon-
dence was verified between datasets (Supplemental Figure 3).
Furthermore, re-analysis of a recently published scRNA-seq
dataset of tumor-specific CD8 TILs in B16-OVA tumors6

revealed the presence of EM-like cells (12% among OVA
Tetramer+ CD8 TILs) in addition to memory-like (11%) and
exhausted (76%) cells (Supplemental Figure 4(b-d)), further
supporting that part of the EM-like subset contains tumor-
specific cells.

Overall, we were able to define the landscape of transcrip-
tomic states of endogenous CD8 TILs in B16 melanoma
tumors and recapitulate the naïve, memory-like and
exhausted CD8 TIL subsets through an unbiased analysis of
single-cell heterogeneity. Moreover, we observed that among
total CD8 TILs the most prominent subset corresponded to
a transcriptomically distinct state that resembles that of effec-
tor memory T cells found in the context of acute infections.

EM-like cells can be identified as Tcf1 high PD-1
intermediate CD8 TILs by flow cytometry

Our scRNA-seq data showed that the levels of Tcf7 (encoding
Tcf1) expression were high among naïve, memory-like and EM-
like, and zero among exhausted cells (Figure 2(a)). Pdcd1
(encoding PD-1) expression was highest in exhausted and mem-
ory-like, intermediate in EM-like and absent in naïve CD8 TILs
(Figure 2(a)). To validate these observations at the protein level,
we performed flow cytometry analysis of CD8 TILs infiltrating
B16 tumors at day 12 post tumor engraftment. In agreement
with previous studies52 and consistently with our scRNA-seq
data, we found both naïve (CD44low, 4–20%) and antigen-

experienced (CD44high) cells among CD8 TILs. Next, CD44high

CD8 TILs were classified into four compartments according to
Tcf1 and PD-1 expression: Tcf1low PD-1high (~9% on average),
Tcf1high PD-1high (~31%) and Tcf1high cells with low (~21%) or
intermediate (~30%) PD-1 levels (Figure 2(a,b)). According to
the transcriptomic profiles and in line with previous evidence6,7

exhausted cells are mostly found in the Tcf1low PD-1high com-
partment and memory-like cells in the Tcf1high PD-1high gate.
From our transcriptomics data EM-like cells were predicted to
be in the Tcf1high PD-1int compartment (Figure 2(a)) and to
display high levels of Ly6c2, Cxcr3 and Itgb7 (Figure 1(f)).
Indeed, the Tcf1high PD-1int compartment showed the highest
levels of EM-like predicted markers Ly6C and CXCR3 and
a higher proportion of ITGB7+ cells compared to PD-1 high

cells (Figure 2(b,c)), confirming our predictions. Hence, EM-
like cells can be identified by flow cytometry as Tcf1high PD-1int

CD8 TILs.

Exhausted, memory-like and EM-like CD8 TILs are
clonally expanded and show partial clonal relatedness

In order to assess the clonal relatedness of CD8 TIL states, we
analyzed T cell receptors' alpha and beta chain sequences in
the >3500 single-cells shown in Figure 1(b) (see Methods).
We obtained full-length productive paired alpha and beta
chain sequences (VJ or VDJ, respectively) in 81% of the
CD8 TILs (Figure 3(a) and Supplemental Figure 5(a)).

In each WT mouse, we identified T cells of the same clono-
type, i.e. those expressing identical CDR3 sequences for both
alpha and beta T cell receptor chains. We found that between
10% and 39% of the TILs were expanded (i.e. their TCR were
shared with at least another T cell in the same mouse,
Supplemental Figure 5(a)). As expected, less than 1% of
expanded T cells were found in the naïve state (Figure 3(b)). In
contrast, 68% of the T cells were expanded in the exhausted state,
52% in the EM-like state and 39% in the memory-like state
(Figure 3(b,c) and Supplemental Figure 5(b,c)). Expanded clo-
notypes did not match reported invariant chains and no known
epitopes were found for these TCRs by literature and database
searches. Furthermore, clonotypes in WT mice were largely
private (mouse-specific) (see Methods and Supplemental
Figure 5(d)). As a control, a large clonal overlap was observed
between different PMEL mice, due to the common transgenic
PMEL TCR (Supplemental Figure 5(d,e)).

Next, we quantified TCR repertoire overlap between tran-
scriptomic states. To this aim, we assessed TCR repertoire
similarity using the Morisita-Horn (MH) similarity index that
considers the relative frequencies of clonotypes between sam-
ples, where 0 indicates no overlap, and 1 is an exact match.53

Interestingly, this analysis revealed a large clonal overlap
between exhausted and memory-like states (MH index = 0.30,
confidence interval of (0.16,0.46), Figure 3(d), see Methods).
A smaller yet considerable overlap was observed between
exhausted and EM-like states (MH = 0.12, confidence interval
(0.06,0.2)), indicating that these are also clonally related.
Finally, overlaps between EM-like and memory-like or
between naïve and any other state were not detected
(MH = 0). Examples of expanded clones are shown in
Figure 3(e). A consistent clonal structure was observed in an
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independent dataset and in individual tumors (Supplemental
Figure 6(d), see Methods).

These results show that single clonotypes within endogen-
ous CD8 TILs span both exhausted and memory-like states in
line with recent studies demonstrating that memory-like
tumor-specific T cells can give rise to exhausted T cells in
the tumor.6,7 Furthermore, although EM-like and exhausted
states presented largely distinct TCR repertoires, some clones
were present in both, suggesting that occasionally EM-like
cells (most likely tumor-specific) may yield exhausted
T cells, yet to a lesser degree than the memory-like state.

PD-1 checkpoint blockade expands EM-like cells

Multiple studies have established that PD-1 blockade expands
intratumoral T cells and improves tumor control.39,54-56

However, it is less clear how different CD8 T cell states are
affected by immune-checkpoint blockade (ICB). Hence, here

we aimed at evaluating the impact of ICB on the murine CD8
TIL transcriptomic landscape. To this end, we first extracted
gene signatures of the exhausted, memory-like and EM-like
states from our scRNA-seq dataset (Figure 4(a) and
Supplemental Table 1). Next, we performed gene-set enrich-
ment analysis (GSEA) on published bulk RNA-seq data of
CD8 TILs following anti-PD-1 therapy (raw data in murine
sarcoma from Gubin et al.27). Our results indicated that ICB
led to a selective enrichment of the EM-like signature
(p = .035, Figure 4(b)). A similar effect was observed for non-
small-cell lung cancer CD8 TILs upon ICB (Supplemental
Figure 7(a), raw data from Markowitz et al.28).

In order to assess whether the bulk transcriptomic sig-
nature shift toward the EM-like state upon ICB is explained
by differences in CD8 TIL states composition, we re-
analyzed publicly available scRNA-seq data of CD8 TILs
pre vs post ICB. To this end, we developed a new machine
learning tool, named TILPRED, that accurately classifies
murine CD8 TIL states (see Methods). We used TILPRED

Figure 2. Flow cytometry validation of CD8 TIL populations.
(a) Violin plots showing the decreasing and increasing expression levels (log-transformed normalized UMI counts +1) for Tcf7 and Pdcd1 for naïve, EM-like, memory-
like and exhausted states. (b) Flow cytometry analysis of endogenous CD8 TILs from one representative tumor. Histograms show cell counts normalized by mode for
naïve (CD44 low) T cells (red), Tcf1high PD-1low (light violet), Tcf1high PD-1intermediate (violet), Tcf1high PD-1high (blue) and Tcf1low PD-1high (green). (c) geometric Mean
Fluorescence Intensity (MFI) for Ly6c and Cxcr3 and percentage of ITGB7high cells for three tumors. Representative of two independent experiments. * denote
statistically significant differences (Dunnett’s multiple comparisons test p-value <0.05).
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to classify CD8 TILs in multiple datasets and cancer types,
including melanoma, colon adenocarcinoma and sarcoma
(Figure 4(c), Supplemental Figure 4). TILPRED showed
high accuracy in cross-validation (specificity of 0.98 and
sensitivity of 0.90, see Methods) and high concordance
with clustering approaches in independent datasets
(Supplemental Figure 4(a)). TILPRED classification of
CD8 TILs from MC38 colon adenocarcinoma38 and
sarcoma39 showed an increase in the proportion of EM-
like TILs upon ICB at the single-cell level (Figure 4(d),
Supplemental Figure 4), consistent with the enrichment of
the EM-like signature in the bulk transcriptomics data.
Hence, our analyses indicate that EM-like T cells expand
upon ICB.

Finally, to investigate whether ICB resulted in an enrich-
ment of EM-like cells in cancer patients, we ran TILPRED on
CD8 TIL scRNA-seq data from melanoma patients. TILPRED
was trained on mouse data only and thus it might not fully
capture human TIL heterogeneity. Regardless, patients that
responded to ICB40 showed an increased proportion of pre-
dicted EM-like cells (p = .032, see Methods and Supplemental

Figure 9). These data suggest that intratumoral EM-like
T cells in cancer patients might also be modulated by ICB.

Discussion

In the past few years, single-cell transcriptomics studies have
revealed a large complexity of CD8 T cells in the tumor
microenvironment3,21,46,57-59 and this heterogeneity is likely
to be a determining factor in therapy outcome.40,60 Murine
pre-clinical models have been instrumental to characterize
this heterogeneity.6,7 To correctly interpret murine scRNA-
seq data, robust transcriptomic maps of the total CD8 TIL
subtypes are needed. Such maps can further facilitate inter-
pretation of human CD8 TIL samples that are typically char-
acterized by large biological and technical variability and for
which antigen specificity is often unknown.

Here we have defined a reference transcriptomic map of CD8
TILs in the common B16 melanoma model. Our single-cell
RNA-seq analysis enabled us to robustly and unbiasedly define
four distinct CD8 TIL transcriptomic states: exhausted, mem-
ory-like, naïve and effector memory-like (EM-like). Consistent

Figure 3., Clonal relatedness of CD8 TIL states.
(a) Percentage of cells with productive TCR paired alpha/beta chains obtained in each of the seven mice. (b) Percentage of T cells with non-unique (clonally
expanded) TCR clonotype in each CD8 TIL cluster in endogenous responses in wild-type mice. (c) tSNE map distribution of (non-PMEL) clones with a clonal size of at
least 10 cells per clonotype. (d) TCR repertoire overlap (Morisita-Horn index) between TIL states in wild-type mice. Ninety-five percent confidence intervals are shown
in brackets. E Examples of expanded clones in wild-type mice. In each sub-panel, T cells sharing alpha and beta TCR sequences detected in individual mice are
shown. Cell colors represent corresponding CD8 TIL states.
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with previous observations, tumor-specific PMEL TILs were
enriched in exhausted and memory-like states.6,7 In contrast,
total polyclonal CD8 TILs were enriched in the EM-like and
naïve states. Therefore, an intriguing question is why the EM-
like population is abundant in the endogenous polyclonal CD8
TIL compartment, but small among tumor-specific cells. A likely
explanation is that the EM-like compartment is enriched in non-
tumor-specific cells, as multiple studies have shown the presence
of large numbers of “bystander” T cells in human tumors.61,62

However, the presence of tumor-specific PMEL T cells in the
EM-like state (Figure 1(g) and Supplemental Figure 2) as well as
the clonal expansion and partial TCR repertoire overlap between
the EM-like and exhausted states (Figure 3(d) and Supplemental
Figure 6 D) indicates that at least part of the EM-like population
is indeed tumor-specific.

Compared to exhausted and memory-like, EM-like cells have
lower expression of inhibitory receptor genes such as Pdcd1,
Tigit, Lag3 and of the transcription factor Tox (Supplemental
Figure 7 D), which is essential to establish and maintain the
epigenetic T cell exhaustion program enabling T cells to persist
in the context of chronic antigenic stimulation.30,42-44

Interestingly, reanalysis of published data indicated that tumor-
specific CD8 TILs knock-out for Tox down-regulated the sig-
nature of the exhausted state and up-regulated the EM-like
signature (and the memory-like signature to a lesser extent,
Supplemental Figure 7(c)). This suggests that Tox-KO tumor-
specific CD8 TILs, which are unable to differentiate into
exhausted cells, might remain in the pre-exhausted EM-like
and memory-like states. Hence, our data suggest that the EM-
like may be an early differentiation state of tumor-infiltrating

Figure 4. CD8 TIL landscape modulation upon anti-PD-1 therapy.
(a) Gene signatures of EM-like, memory-like and exhausted derived from our scRNA-seq analysis. For visualization, 100 random cells were sampled from each TIL
state, and top differentially expressed genes are displayed. Horizontal lines separate groups of genes with similar expression patterns. (b) TIL state gene-signature
enrichment analysis (GSEA) for the transcriptomic response of bulk endogenous CD8 TILs to PD-1 blockade (raw from Gubin et al.27). NES = Normalized Enrichment
Score. (c) TILPRED classification of total (left) and PD-1low (right) CD8 TIL from MC38 colon adenocarcinoma (datasets from Xiong et al.37 and Kurtulus et al.38

expression of markers in Supplemental Figure 8). (d) States composition (TILPRED classification) of CD8 TILs upon ICB in MC38 (anti-PD-1 +anti-TIM3 vs isotype
control) and sarcoma (anti-PD-1 vs isotype control)
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CD8 TILs before receiving persistent antigenic stimulation. In
this scenario, upon tumor migration, immunodominant clones
in the EM-like state would rapidly activate the exhaustion
program and differentiate in response to strong antigenic sti-
mulation. In line with this hypothesis, our re-analysis of scRNA-
seq data of tumor-specific CD8 TILs from Miller and
colleagues6 indicated that while 12% of EM-like cells were
detected at day 10 (Supplemental Figure 4(c)), only 1% were
detected at day 20 post-tumor engraftment, suggesting
a temporal progression toward more differentiated states.
Cognate antigen dose and T cell avidity might be relevant
factors controlling the dynamics of such intratumoral differen-
tiation. For example, it has been shown that increased antigen
dose and T cell avidity promote CD8 T cell differentiation into
the exhausted phenotype in cancer and chronic infection.11,63 It
is possible that subdominant clones, less subject to persistent
stimulation, undergo a retarded differentiation and accumulate
in the EM-like state. Hence, our results have potential implica-
tions on the understanding of intratumoral differentiation of
CD8 T cells, an open central question in immunology.64

Our flow cytometry analysis revealed that the EM-like popu-
lation is enriched within the Tcf1high PD-1intermediate CD8 TIL
compartment and expresses high levels of the surface markers
Ly6C, CXCR3 and ITGB7, as predicted from the transcriptomic
analysis. These are novel EM-like CD8 TIL surface markers that
can be useful in functional studies of this population. Ly6C is an
adhesion molecule expressed by neutrophils, monocytes, den-
dritic cells and also in subsets of CD4 and CD8 T cells, including
memory CD8 T cells.48-50,65 Interestingly, Ly6C+ CD8 T cells
with effectormemory phenotype isolated from spleens of tumor-
primed mice have shown anti-tumor activity in vitro,66 support-
ing the hypothesis that tumor-specific EM-like cells are related
to pre-exhaustion states. The chemokine receptor CXCR3 is
important for the recruitment of T cells into inflamed peripheral
tissue51 in response to CXCL9 and CXCL10 and is also required
by CD8 TILs for effective response to anti-PD-1 therapy.67 As
the EM-like state expressed the highest levels of CXCR3, this
chemokine system might contribute to the enrichment of EM-
like cells upon anti-PD-1 therapy observed in our study. The
EM-like state – together with naïve cells – also showed differ-
ential expression of the integrin subunit β7 (Itgb7). At the
protein level, however, ITGB7 was expressed only by a subset
of EM-like cells (Figure 2(c)). Of note, Itgb7 was co-expressed in
EM-like cells with the integrin subunit α4 (Itga4) but not with
Itgae (CD103), with which ITGB7 dimerizes in tissue-resident
T cells.68 Instead, the α4β7 integrin has been previously shown to
mediate lymphocytemigration to gut-associated lymphoid tissue
and might have a different function in the context of tumors.69

Multiple studies have established that PD-1 blockade
increases T cell infiltrations in tumors leading to improved
anti-tumor control.39,54-56 Moreover, recent studies have
shown that ICB promotes the expansion of tumor-specific
memory-like cells and their differentiation into (terminally)
exhausted cells.6,7 However, it is less clear how the total CD8
TIL landscape is impacted by ICB. Our meta-analysis of bulk
and single-cell transcriptomic data showed a selective enrich-
ment of the EM-like signature (e.g. Cxcr3, Ly6c2, Ccl5, Gzmk,
Itgb7) following ICB. As the EM-like is a relatively undiffer-
entiated state, we reasoned that the EM-like signature would

not be enriched upon ICB among T cell subsets that were
already differentiated before treatment. Indeed, we observed
that in vitro activated tumor-specific cells did not up-regulate
the EM-like signature following adoptive transfer and ICB but
instead up-regulated the exhaustion signature (e.g. Mt1,
Havcr2, Prf1, Gzmb, etc., Supplemental Figure 7(b), sequen-
cing data from Mognol et al.29). This suggests that the enrich-
ment in EM-like cells upon ICB depends on the expansion of
relatively undifferentiated clones whereas tumor-specific
T cells that have already activated the exhaustion program
will only progress further toward exhaustion in response to
ICB. In line with our observations, other studies have shown
up-regulation of Cxcr3, Ccl5 and Ifit3 (EM-like state genes) or
expansion of PD-1low CD8 T cells that partially contain EM-
like cells, Figure 4(d,e) among CD8 TILs following ICB in
murine models.38,39 In humans, a CD8 TIL subset differen-
tially expressing GZMK and CXCR3 (EM-like state markers)
has been previously observed in scRNA-seq analysis of basal
and squamous cell carcinoma70 hepatocellular carcinoma59

and small-cell lung cancer57 suggesting that a similar popula-
tion might be conserved between mice and human. However,
in these studies tumor specificity was unknown, limiting our
understanding of EM-like TILs in cancer patients. Our find-
ing of novel EM-like markers will facilitate future investiga-
tions aimed at defining the function of this intratumoral
population and may provide better biomarkers of T cell
response to immune-checkpoint blockade.

In conclusion, our scRNA-seq study defined a reference
map of the transcriptomic landscape of CD8 TILs in B16
melanoma. As such, this resource provides a base upon
which to interpret more complex CD8 TIL transcriptomic
landscapes such as those derived from clinical samples,
where T cell specificity and clonality are usually unknown.
Future studies of additional mouse strains and cancer types
will help us further refine the CD8 TIL landscape allowing for
the translation of these findings to human TIL populations.
Our new CD8 TIL classifier (https://github.com/carmonalab/
TILPRED) might be an instrumental tool for this task. Finally,
to enable seamless exploration of our scRNA-seq data we have
deployed a streamlined web interface at http://TILAtlas.org.
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