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The role of Ras–ERK signaling in behavioral plasticity is well established. Inhibition stud-
ies using the blood–brain barrier permeable drug SL327 have conclusively demonstrated
that this neuronal cell signaling cascade is a crucial component of the synaptic machinery
implicated in the formation of various forms of long-term memory, from spatial learning
to fear and operant conditioning. However, abnormal Ras–ERK signaling has also been
linked to a number of neuropsychiatric conditions, including mental retardation syndromes
(“RASopathies”), drug addiction, and L-DOPA induced dyskinesia (LID). The work recently
done on these brain disorders has pointed to previously underappreciated roles of Ras–
ERK in specific subsets of neurons, like GABAergic interneurons of the hippocampus or
the cortex, as well as in the medium spiny neurons of the striatum. Here we will highlight
the open questions related to Ras–ERK signaling in these behavioral manifestations and
propose crucial experiments for the future.
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Since the discovery, 15 years ago, of the role of Ras–ERK signaling
in long-term potentiation first (English and Sweatt, 1996, 1997)
and then in memory formation (Brambilla et al., 1997; Silva et al.,
1997; Atkins et al., 1998), a considerable experimental evidence
has been accumulated to support the idea that this signal trans-
duction pathway is crucial for strengthening synaptic connections
in a variety of behavioral processes. The scope of this work is not
to provide an extensive review of the available data but rather to
highlight the aspects which still need to be clarified in order to gain
a comprehensive description of the molecular processes involving
Ras–ERK in behavior. For a detailed analysis of the published evi-
dence, we refer to a few excellent review articles appeared in the
last 4–5 years (Davis and Laroche, 2006; Girault et al., 2007; Santini
et al., 2008; Samuels et al., 2009).

THE RAS–ERK PARADOX: BALANCING SYNAPTIC
EXCITATION AND INHIBITION
Early on, when the first two publications on genetically altered
mice in the Ras–ERK pathway became simultaneously available,
what we call here the Ras–ERK paradox appeared immediately
clear: any manipulation of this pathway either causing an enhance-
ment or a partial inhibition of cell signaling, would lead to learning
and memory deficits (Brambilla et al., 1997; Silva et al., 1997).
In fact, not only the ablation from the mouse of Ras-GRF1, a
CNS specific neuronal activator of Ras proteins, results in mem-
ory deficits but also the gene disruption of the neurofibromatosis
type 1 (NF1) gene, the locus responsible for the expression of
the Ras-specific negative regulator neurofibromin, a GTPase acti-
vating protein, causes significant learning impairments. Although
these early studies did not provide any biochemical evidence sup-
porting the expected contrasting cell signaling effect of the two
mutations (Ras-GRF1 loss would attenuate Ras activity while

neurofibromin should enhance it), these genetic results initially
suggested that any bidirectional alteration from the “physiologi-
cal” neuronal ERK activity would negatively impact on the brain’s
ability to correctly process information. There are many exam-
ple in which biological responses follow an “inverted U” shape,
for instance the effect on memory mediated by corticosteroids,
but the Ras–ERK paradox is a unique case in which the modu-
lation of an intracellular signal transduction pathway results in
such a clear detrimental effect on cognitive functions. This obser-
vation was clearly underappreciated at that time, but in retrospect
it was and it is still a formidable obstacle to the development
of cognitive enhancers which, either directly or indirectly, would
impact on ERK signaling. One of the reasons why this question was
not promptly investigated is that immediately after the Ras-GRF1
and NF1 KO publications, SL327 became available. This small
chemical inhibitor of MEK1/2, the kinases upstream of ERK1/2,
has been extremely useful in dissecting the effect of ERK inhibi-
tion on behavior since it rapidly passes the brain–blood barrier.
Later on, other similar drugs started to be used, e.g., PD184161,
with similar effects. Predictably, ERK inhibition does block long-
term experience- and drug-dependent behavioral plasticity (see
the above articles for review). In addition, this pharmacological
approach has also been instrumental in demonstrating a central
role of the ERK pathway in psychiatric conditions less dependent
on memory functions such as chronic stress and depression (see
for instance Duman et al., 2007). However, this plethora of inhibi-
tion studies, generated in the last decade, has not helped us much
in resolving the ERK paradox but has simply confirmed that this
pathway is a necessary (“permissive”) condition to cause long-
term changes behavior. Once again, the use of genetically altered
animals has instead significantly contributed to define a much
more complex role of Ras–ERK in the brain. In 2002 the initial
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hypothesis that a general and “non-cell-specific” increase in ERK
signaling may lead to memory impairments had to be dismissed
on the basis of two publications. Firstly, the ideal system to test this
hypothesis has been represented by the ERK1 mutant mice which
show a general enhancement of ERK activity in the brain (Mazzuc-
chelli et al., 2002). This is due to a de-repression of ERK2, the main
MAP kinase. In normal conditions, ERK1 acts as a built-in partial
agonist, keeping ERK2 activity tightly regulated (Vantaggiato et al.,
2006; Indrigo et al., 2010). Despite this general effect of the bio-
chemistry of ERK2, ERK1 mutant animals do not show any sign of
cognitive deterioration as one would have predicted from the early
studies on the NF1 KO mice. On the contrary, ERK1 deficient mice
manifest specific memory enhancing effects, including striatum-
dependent operant conditioning long-term memory formation,
increased fear memory consolidation and extinction, novel object
recognition memory, and cocaine-dependent associative and non-
associative learning but not spatial memory changes (Mazzucchelli
et al., 2002; Cestari et al., 2006; Ferguson et al., 2006; Tronson et al.,
2008; Berardi et al., 2011). Interestingly, while two independently
generated Ras-GRF1 KO lines seem to show behavioral responses
which are the mirror image of those found in the ERK1 mutants,
a mutant showing a mild over-expression of Ras-GRF1 manifest
a similar memory enhancing effect in most tasks but not, quite
surprisingly, in spatial memory ones (Fasano et al., 2009a; Berardi
et al., 2011; D’Isa et al., 2011). Thus, the results obtained with
the analysis of the ERK1 mutants indicate that a general enhance-
ment of Ras–ERK signaling can promote learning and memory
functions. However, this observation is still in apparent contrast
to the phenotype observed in the NF1 mice in which, supposedly,
a general ERK enhancement occurs as well. The explanation of
this discrepancy was provided by two papers in 2002 and in 2008,
both from the Silva’s lab. These two papers radically changed our
view on cell signaling mediated by Ras–ERK in the brain since
they clearly demonstrated that the Ras-dependent effect of neu-
rofibromin ablation is specifically linked to an increase in GABA
inhibition which is the likely cause of the learning and memory
deficits. Either using the global heterozygous NF1 mice or cell-
specific promoters to drive CRE expression in conditional NF1
mutants, Silva and co-workers showed that the behavioral effect
was compatible with an enhancement of Ras activity in GABAer-
gic interneurons that in turn may affect synaptic plasticity in key
areas of the brain implicated in learning, such as the hippocam-
pus. Interestingly, the memory deficits could be partially rescued
by either reducing (pharmacologically or genetically) Ras activity
(especially of the K-Ras isoform) or by partially inhibiting GABA
activity using receptor antagonists. These experimental observa-
tions are important since they provide a likely explanation why loss
of neurofibromin in NF1 patients may lead to learning disabilities.
Importantly, they may also provide a rationale to understand other
genetic diseases characterized by gain of function mutations in the
Ras–ERK pathway leading to mental retardation, the now called
RASopathies or Ras–MAPK syndromes (Aoki et al., 2008; Tidy-
man and Rauen, 2009). The clinical relevance of these disorders is
such that a cogent question arising from the work on NF1 mutant
mice requires an urgent answer: why do these changes in the Ras–
ERK activity only occur in GABAergic cells and not in all neurons?
Indeed the data provided by the Silva’s 2008 paper indicate that a

mutation restricted to glutamatergic pyramidal cells, using the
CamKII promoter-CRE line has no impact on behavior. Con-
sistently, our own data on a conditional K-Ras G12V knock-in
mutant line also show that a pyramidal specific activation of this
Ras isoform has no effect on learning and memory (Papale et al.,
2010). On the contrary, the CRE line driving expression under
the Synapsin I early promoter leads to significant learning impair-
ments in both NF1 and K-Ras12V mutants. In order to explain
these observations, some possibilities arise. Firstly, expression
analysis provided by the Allen Brain Atlas (www.brain-map.org) of
both NF1 and K-Ras genes seems to indicate that their transcrip-
tome levels are higher from late embryonic development (E18.5)
to early post-natal stages (P4), a phase in which the Synapsin I early
promoter is already active while the CamKII promoter is not. In
addition, since during the post-natal maturation of GABAergic
cells, the expression of NF1 and of K-Ras is maximal while later
during pyramidal cell development is down to lower levels the
occurrence an increased inhibition would be favored. Indeed, an
indirect evidence that K-Ras is acting early in development during
a temporal window which coincides with GABAergic development
comes from the transgenic mouse model in which the H-RasG12V
mutation is expressed under the CamKII promoter. In that case
a forced over-expression in pyramidal neurons of this gain of
function mutant leads to memory and plasticity improvements
(Kushner et al., 2005; Kaneko et al., 2010). Whether this positive
effect on memory is specific to this Ras isoform still needs to be
seen but it is unlikely. Indeed, to complicate the matter, a recently
described targeted expression of the very same H-RasG12V via
homologous recombination (gene knock-in) results in significant
behavioral impairments which partially recapitulate the pheno-
types observed in patients affected by the Costello Syndrome, one
of the RASopathies (Viosca et al., 2009). Thus, all available data
point to the importance of “when” and “where”: if Ras–ERK sig-
naling is predominantly active in the GABAergic compartment,
then plasticity and memory impairments may occur while the
opposite is true when ERK activity is mainly activated in pyrami-
dal cells. Indeed the real scenario is probably even more complex
than that if we take into consideration the global ERK1 KO model
in which memory improves despite gene ablation is not cell-type
selective and the manipulation alters a protein hardly regulated in
development. In this specific case, a possible explanation is that
ERK1 loss causes a differential effect between excitation and inhi-
bition by favoring the former. If that is the real case still remain to
be seen since appropriated experiments, either using conditional
ERK1 mutants or viral-mediated cell-specific gene knockdowns
of ERK1, have not yet been performed. However, one prediction
which can already be made is that a specific enhancement of ERK2
activity in GABAergic cells via ERK1 ablation should recapitulate
the NF1 KO phenotype by bypassing the requirement for an ele-
vated Ras activity. Certainly, this prediction could be incorrect in
the case that other Ras-dependent signaling pathways, e.g., the PI3
Kinase cascade, significantly contribute to the mental retardation
phenotype observed in the NF1 mutants.

One last comment is necessary on the exact mechanism
by which neurofibromin and K-Ras cause the enhancement of
GABAergic activity. Currently this is unclear but the possible
explanations, not mutually exclusive are: (i) enhanced GABA
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release; (ii) larger GABA synapses; (iii) more GABA synapses; (iv)
enhanced GABA-mediated post synaptic signaling. In any case, it is
clear that in cortical regions and in the hippocampus, future exper-
iments targeting the Ras–ERK signaling in a cell-specific manner
and at different stages of development will provide substantial new
evidence and will tell us whether the development of general cog-
nitive enhancers based on ERK manipulation will ever be a viable
therapeutic option for memory impairments.

NEURONAL CELL SIGNALING BEYOND THE RAS–ERK
PARADOX: THE STRANGE CASE OF THE STRIATUM
Most cortical and hippocampal regions function by a tight inte-
gration of excitatory and inhibitory signals. Alterations of this
balance, as we have seen above, may result in either a mem-
ory gain or a memory loss. However, not all brain areas work
in this way. For instance, the striatum, the input nucleus of
the basal ganglia system, is essentially constituted (>95%) by
GABAergic projection neurons, the so called medium spiny neu-
rons (MSN; Kreitzer and Malenka, 2008). Instead of generating
an output activity toward the thalamus and the motor cortex
by balancing excitation and inhibition within its structure, the
dorsal portion of the striatum (the ventral one, the nucleus
accumbens, may be slightly different) integrates two main neu-
rotransmitter signals, the glutamatergic and the dopaminergic
ones, and conveys their action on two distinct subclasses of
MSN: the direct pathway neurons, mainly expressing dopamine
D1 receptors, and the indirect pathway neurons, mainly express-
ing D2 receptors. In normal conditions, a balanced activa-
tion of both pathways leads to an efficient activation of the
thalamus and of the cortex. However, in certain neuropsychi-
atric diseases, one of the two pathways tends to dominate:
an enhancement of the direct pathway leads to motor acti-
vation while that of the indirect pathway results in motor
inhibition.

Not surprisingly, in recent years, the role of the Ras–ERK
pathway and downstream gene expression has extensively been
investigated in the striatum, using both pharmacological (e.g.,
SL327) or genetic approaches. The scenario which has resulted
from these studies is that in both the behavioral responses to
drugs of abuse (“drug addiction”) and in a pathological condition
resembling l-DOPA induced dyskinesia (LID) in Parkinson’s Dis-
ease, an aberrant hyperactivation of Ras–ERK appears to be a key
pathogenetic factor (Murer and Moratalla, 2011). In general terms,
the most widely studied drugs of abuse, psychostimulants (e.g.,
cocaine and amphetamine), opiates (e.g., morphine and heroine),
and cannabinoids (delta-9-tetrahydrocannabinol, THC) can cause
both short-term changes of motor activity or long-term behav-
ioral changes, which can include an enhanced locomotor activity
or increased reward responses, as measured in conditioned place
preference (CPP) or in self-administration procedures. The fact
that pharmacological inhibition of ERK blocks these responses is
now well established but, for the same reasons of the memory
studies discussed in the previous chapter, it provides little addi-
tional information beyond establishing a “permissive” role of this
pathway in the process.

On the contrary, mouse models of specific genes in the pathway
have significantly contributed to outline an interesting scenario.

For instance, the original report on ERK1 KO mice that demon-
strated an “instructive” role of ERK signaling in memory con-
solidation, i.e., these mice showed better striatum-dependent
memory, also showed that CPP responses to morphine can be
significantly enhanced (Mazzucchelli et al., 2002). This effect is
not drug-specific since the same can be seen with cocaine (Fergu-
son et al., 2006). Similar drug-dependent enhancing effects have
subsequently been seen in other mutant mice, most notably a
striatal-specific dominant negative form of the transcription factor
CREB (“killer CREB”) and an overexpressing line for Ras-GRF1
(Fasano et al., 2009a,b). The case of CREB is particularly intrigu-
ing since the same dominant negative mutant, not only causes
memory impairment when expressed in a “hippocampus” spe-
cific mouse line but also leads to instrumental learning deficits
and LTP/LTD loss in a striatal-specific line (Pittenger et al., 2002,
2006). Thus, the manipulation of CREB within a given brain area,
the dorsal striatum, shows a stimulus-specific effect which is in
contrast to what was observed for other mutations in the ERK
pathway, most notably Ras-GRF1, in which the gene disruption
causes both memory loss and a reduced response to drugs (Bram-
billa et al., 1997; Fasano et al., 2009a; D’Isa et al., 2011). In the
case of CREB, a likely possibility is that a repeated administra-
tion of a drug of abuse may lead to a compensatory upregulation
of endogenous CREB, as seen previously for hypomorphic muta-
tions of the gene itself or after viral-mediated expression of either
WT or other dominant negative mutants of CREB in the Nucleus
Accumbens (see Carlezon et al., 2005). It is obvious that more
sophisticated experiments will be required to fully understand the
role of CREB in striatum specific behavioral plasticity, including
its expression specifically in either the direct or in the indirect
pathway MSN.

In that respect, the use of BAC transgenic mice expressing
the green fluorescent protein (GFP) in the two MSN compart-
ments has enormously facilitated the analysis of the activation
profile of the Ras–ERK pathway. Drugs like cocaine specifically
activate ERK1/2 in the direct pathway MSN (Girault et al., 2007;
Bertran-Gonzalez et al., 2008). On the contrary, antipsychotics
like haloperidol, uniquely induced ERK1/2 activity in the indirect
pathway. Consistently with the molecular data, a specific activa-
tion of the direct pathway leads to motor activation whereas motor
inhibition is seen when the indirect pathway is induced.

l-DOPA induced dyskinesia is a severe condition in which
chronic administration (several years) of the gold standard treat-
ment of Parkinson’s Disease results in abnormal involuntary
movements (AIM). This pathological condition can be modeled
in rodents by causing an unilateral loss of the substantia nigra
pars compacta (SNc) neurons with the neurotoxin 6-hydroxy
dopamine (6-OHDA) followed by repeated l-DOPA injections.
LID takes several years to appear in patients while in rodents
the effect is almost immediate, after one or few injections of
the therapeutic drug. In recent years, we have started to under-
stand the molecular mechanisms underlying LID in rodents and
the key event occurring in the dorsal portion of the striatum,
the target region of the dopaminergic SNc cells, is the super-
sensitization of D1 receptor signaling through the upregulation
of Golf (Girault et al., 2007). In other words, LID is essentially
characterized by an aberrant enhancement of the striatal direct
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pathway, a feature, as we have seen, shared with drug addic-
tion (Cenci, 2007; Jenner, 2008; Murer and Moratalla, 2011). The
intriguing similarities between LID and the responses to drugs
of abuse are also evident for what ERK signaling is concerned.
Indeed, this signaling pathway is massively upregulated in the
striatum of dyskinetic animals. To our knowledge, the induc-
tion of phosphorylated ERK1/2 in D1 receptor expressing MSN
is the strongest ever detected not only in brain but in the whole
body, accounting to up 50-fold increase over basal levels (as a
comparison, high dose of cocaine can lead to a 10-fold increase).
This enormous activation of ERK signaling is a combination of
the engagement of the larger share of D1R expressing MSN and
also, to a lesser extent, of an increase of the signal in already acti-
vated cells (Gerfen et al., 2002; Pavon et al., 2006; Westin et al.,
2007). The specificity of the cell-type implicated in ERK acti-
vation was initially demonstrated pharmacologically but then it
was confirmed using the BAC transgenic mice mentioned above
as well as by causing gene ablation of the D1 receptors (San-
tini et al., 2008, 2009; Darmopil et al., 2009). As expected from
the initial observations, pharmacological inhibition of ERK using
SL327 or a partial blockade of Ras activity using statins results
in a significant attenuation of LID onset (Santini et al., 2007;
Schuster et al., 2008). More recently, also the Ras-GRF1 mutant
mouse which was previously shown to be involved in memory
and in drug addiction has been used to test the role of this mol-
ecule in LID. Indeed, a strong reduction in the AIM profile of
Ras-GRF1 KO animals was observed together with a very sig-
nificant attenuation of ERK1/2 activity in the dorsal striatum of
these animals (Fasano et al., 2010). Interestingly, that work also
showed that a combined treatment with suboptimal doses of SL327
(10 mg/kg), a condition which per se is ineffective in wild-type
animals, causes an almost complete reduction of the dyskinetic
symptoms.

All these data strongly support the notion that a specific tar-
geting of neuronal components of the Ras–ERK pathway, like
Ras-GRF1, may lead to effective treatments of both drug addiction
and LID. In that respect, the scientific community still lacks phar-
macological tools which go beyond SL327 and can target other
molecular components besides MEK1/2. An interesting option is
the development of cell permeable peptides that readily cross the
brain–blood barrier and cause reversible disruptions of protein–
protein interactions (Patel et al., 2007; Heitz et al., 2009). For
instance, one can imagine that a Ras-GRF1 specific cell permeable
peptide would be a valuable tool to study the role of this mol-
ecule in diverse behavioral processes, from memory formation,
reconsolidation, and extinction, as well as for the development of
treatments for the above mentioned diseases. At the same time, it
is imperative to further advance in the development of cell-specific
genetic tools to target crucial components of the Ras–ERK path-
way with a tight temporal and spatial control. One step in that
direction is the availability of BAC transgenics expressing CRE

recombinase in a cell and brain area specific manner. For instance,
the recent report in which DARPP-32, a signal integrator which
in the striatum also controls ERK signaling, was either specifically
targeted in the MSN of the direct or the indirect pathway lead
to changes in the responses to cocaine/l-DOPA or to haloperi-
dol, respectively (Bateup et al., 2010). Also, a very significant leap
forward would be represented by the combination of condition-
ally targeted mouse mutants with cell-specific CRE delivery via
viral vectors which would also allow us to achieve an excellent
temporal control of gene expression. At present though, since
some limitations still apply to validate viral vectors with bona fide
cell-specific promoters, probably the best option would be to use
BAC transgenic lines expressing CRE in combination with vec-
tors conditionally expressing either dominant negative constructs,
cell permeable peptides, or small interfering RNAs (shRNA), as
recently suggested (Papale et al., 2009). These multiple approaches
should be able to address the major remaining question linking
drug addiction, LID and the Ras–ERK pathway in the striatum:
why is only the direct pathway affected in these diseases? The
specificity certainly lies on the hyperactivation of the D1 recep-
tors in response to l-DOPA or to drugs like cocaine but this type
of reasoning is rather circular and provides little explanation. So
far, there is no evidence that any component of the Ras–ERK path-
way is differentially expressed in the two striatal cell populations.
Thus, it is difficult to judge whether the activation of Ras–ERK in
D1R expressing cells is just a “minor” consequence of upstream
events or plays a more “instructive” role. Certainly, gene ablation
of D1R completely block ERK activation and downstream events
in the striatum and affects not only LID but also learning and LTP
in the hippocampus, as well as cocaine self-administration (Caine
et al., 2007; Darmopil et al., 2009; Ortiz et al., 2010). An interest-
ing experiment in the direction to solve this problem would be
to force over-expression of one of Ras–ERK elements, e.g., Ras-
GRF1 (which is normally in both MSN types) in the indirect
pathway, which is silent in LID and in response to cocaine, and
see whether that is sufficient to readjust the system. In addition,
it would be important to knockdown Ras-GRF1 individually in
each compartment and to express constitutively active mutations
in the pathway (e.g., Ras G12V) and to verify the effect at the
behavioral level. Both loss and gain of function experiments will
be crucial but certainly demanding from the technological point
of view. However, in our opinion, they will represent a necessary
new level of investigation to tackle the complexity of Ras–ERK sig-
naling in behavior which will keep us busy for at least additional
15 years.
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