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Abstract  Similar to species immigration or exotic species invasion, infectious disease transmis-
sion is strengthened due to the globalization of human activities. Using schistosomiasis as an exam-
ple, we propose a conceptual model simulating the spatio-temporal dynamics of infectious diseases. 
We base the model on the knowledge of the interrelationship among the source, media, and the hosts 
of the disease. With the endemics data of schistosomiasis in Xichang, China, we demonstrate that the 
conceptual model is feasible; we introduce how remote sensing and geographic information systems 
techniques can be used in support of spatio-temporal modeling; we compare the different effects 
caused to the entire population when selecting different groups of people for schistosomiasis control. 
Our work illustrates the importance of such a modeling tool in supporting spatial decisions. Our mod-
eling method can be directly applied to such infectious diseases as the plague, lyme disease, and 
hemorrhagic fever with renal syndrome. The application of remote sensing and geographic informa-
tion systems can shed light on the modeling of other infectious disease and invasive species studies. 

Keywords: spatio-temporal modeling, spatial connectivity, prevention and control of infectious diseases, 
biological invasion. 

1  Introduction  

Infectious disease dispersion is becoming more 
rapid and more extensive due to economic globaliza-
tion. The impact of infectious diseases is often related 
to the population of the entire world. Severe Acute 
Respirotory Syndrome (SARS) rapidly spread over 30 
countries and regions during a period of less than half 
a year from the beginning of 2003, leading to over 
8000 infected people and over 700 deaths(http://www. 
cdc.gov/ncidod/sars/). The West Nile virus, originating  

from Uganda, was found in New York in 1999, and 
had spread to over 44 states by 2002;  in 2003 and 
2004, the West Nile virus had infected over 12000 
people, killing 350(http://www.cdc.gov/ncidod/dvbid/ 
westnile/). After battling schistosomiasis for many 
years along the Yangtze River Basin, many counties in 
China had the disease under control for some time. 
However, there have been recent resurgences in many 
counties. In 2004, seven counties that used to have 
schistosomiasis under control had resurgences of the 
disease.  
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The factors that dominate the spreading mechanism 
of a particular infectious disease are still unknown. For 
example, though the direct reason of SARS dispersal 
is due to human air travel, we have little understanding 
of its origin, transmission channel, and media. How-
ever, many other diseases are being carried around 
spatially by trade and tourism, but do not spread in 
their new environment. Therefore, we would like to 
ask which diseases will be spread around the globe 
successfully via globalization. What are their origins, 
destinations, and spreading channels? What is the like-
lihood of survival and endemics of a pathogen under 
new environment?  

In order to answer those questions, we need to de-
velop models that can predict the transmission of in-
fectious diseases. We need to understand the history 
and current endemic region of an infectious disease. 
There are three stages in predicting the transmission of 
infectious diseases: (1) identification of the pathogen, 
its animal host, and its pathway of transmission among 
the hosts; (2) determining the spatial transmission pat-
tern of each infectious disease, particularly the rela-
tionship between the distribution of the disease and its 
environment; (3) understanding the dynamic process 
of the transmission of the disease, using models cali-
brated with field survey data[1]. The epidemiological 
model thus established will have the capability to pre-
dict the dispersal of the virus, and its likelihood of 
transmission in new environment. However, each of 
these stages is difficult to complete. The work at stage 
one is a diagnosis and initial exploration of the disease. 
For a new virus, there is the possibility of important 
new discoveries. 

The second stage involves the survey and quantita-
tive description of the spatial and temporal pattern of 
an infectious disease, followed by an analysis of the 
relationship of the disease with its environment. Geo-
graphic information systems (GIS), remote sensing, 
and statistical methods are most suitable to deal with 
the problems at this stage. Remotely sensed data pro-
vide us with information about the land cover, surface 
temperature, soil moisture, and vegetation growth. 
Such information is very useful in indirectly predicting 
the abundance of virus transmission vectors, including 
mosquitoes, ticks, mice and snails. GIS provides a 
spatial database containing environmental and epide- 

miological data. Such data provide a basis for statisti-
cal analysis. For example, with GIS one can explore 
the statistical relationship between infectious disease 
data and environmental data, and then map the risk 
level in the area of interest. Infection risk mapping is 
usually based on environmental suitability analysis. 
This is done by searching for the environment whose 
conditions meet the requirement of a particular infec-
tious disease. There are four cases that can result from 
the comparison between suitability for and actual dis-
tribution of a particular disease:  first, the actual dis-
tribution is located in the suitable area; second, the 
disease is found in unsuitable areas; third, the suitable 
area does not have the actual disease. Though the first 
and second cases are the most reasonable ones, the 
third should not be considered incorrect. Only when 
the distribution area is classified as an unsuitable area, 
is the third case incorrect. More can be done with GIS. 
For example, when examining the infection risk dis-
tribution of schistosomiasis, one can evaluate the spa-
tial autocorrelation among different residential groups; 
such information is helpful in the spatial control of the 
disease transmission[2,3]  

The third stage is based on the two previous stages. 
The goal is to establish a quantitative process based 
biological model. Such models can be calibrated with 
field measurements and surveys. In general, these 
models are limited to modeling the biological repro-
duction cycle of a particular disease, and relevant 
hosts[4]. However, there are also studies that directly 
model the dynamics between the environment and the 
transmission vector. For example, the relationship be-
tween the climate and mosquito populations can be 
modeled. Rogers and Randolph[1] found that the sur-
face temperature is nonlinearly related to the mortality 
of Gambia TseTse Fly with a one-month time lag. 

We are certain that the increase of spatial connec-
tivity and environmental change resulting from glob-
alization are two dominant reasons for the intensifica-
tion of the spread of infectious diseases. Similar to 
invasive species, there exists a positive feedback be-
tween the intensification of infectious diseases and 
environmental change (Fig. 1). GIS and remote sens-
ing are important tools for the study of spatial connec-
tivity and environmental change, respectively. 
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Fig. 1.  The relationship between the invasion of exotic species and environmental change. Human activities cause the migration of species, changes 
in ecological properties, and climate changes (mainly through modification of atmospheric constituents). Climate change and species migration may 
alter the ecological condition of a new area. Faced with changes in ecological conditions, humans may alter their land use and land management in 
order to protect themselves. Any of these behaviors would cause new invasions. This positive feedback model equally suits the introduction and dis-
persion of infectious diseases. 

 
It is worth mentioning that the three stages of study 

are usually independently undertaken. It is particularly 
true for the second and third stages. This has largely 
limited the understanding of the impact of the envi-
ronment on the transmission of infectious diseases. 
Such a limitation further hampers disease control and 
prevention. In this paper, we use schistosomiasis as an 
example to illustrate the important roles that remote 
sensing and GIS can play in modeling the interaction 
between the environment and disease transmission.  

2  A conceptual mathematical model of the life 
cycle of schistosomiasis  

According to the World Health Organization, schis-
tosomiasis disease is endemic in 74 countries with 
approximately 120 million people infected and over 
600 million people at risk. In China, there are ap-
proximately 800,000 people infected and over 60 mil-
lion at risk. In recent years, the patterns of endemic 
occurrences and control of schistosmiasis have been 
changing due to changes in social-economic and natu-
ral factors. On the one hand, some endemic areas have 
intensified the risk of schistosomiasis infection. On the 
other hand, some areas that were not endemic areas in 
the past, for example, in the mountainous areas of Si-
chuan Province, where snails are present but have had 

no historically reported schistosomiasis infection, have 
become endemic areas. How and where new snail 
habitats will emerge according to recent environ-
mental changes have increasingly attracted research 
attention. 

Our model is obtained by adding a spatial connec-
tivity component, and simplifying the temporal dy-
namics from a detailed dynamics model by Liang et 
al.[5]. According to the life cycle of schistosomiasis in 
Fig. 2, we can build the above conceptual model. We 
first describe the number of adult worms in the final 
host as a function of time 

 i
i i w i i i

dW
c W W

dt
β μ π= − − , (1) 

where Wi is the worm load in village i (or country, or 
group of human, or cattle) at time t; βi is the infection 
rate through water contamination with cercaria (den-
sity ci); μw is the natural death rate of schistosome in 
the host; πi is the death rate of schistosomes by medi-
cal treatment. In the life cycle, egg production by unit 
time is modeled by 

 
1
2i i ie hgn W φ= , (2) 

where ei is the average egg production of ni infected 
people in group i. Half of the adult worms produce 
eggs of quantity h, produced by each worm. The  
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Fig. 2.  The life cycle of schistosomiasis. Egg (E) are excreted with the 
stool of humans and other animal hosts (i.e. water buffalo and other 
cattle). They then hatch into miracidia, M, in water with suitable tem-
perature. Miracidia must penetrate into snails within 48 h in the water, 
causing the susceptible snails, X, to be infected into Y. The incubation 
of the miracidia will last 30―60 d to asexually reproduce into cercaria, 
C. The number of infected snails that survive to this stage are noted as Z. 
Cercaria must penetrate the skin of their final host in the water within 
48 hours and find their final destination near the liver organ of the host 
and grow into the adult schistosome, W, where they pair to reproduce 
eggs and complete the life cycle. Human and cattle get infected by 
schistosomiasis through contact with contaminated water by cercaria 
(e.g. work in the field, grazing, washing, swimming, etc.). 
 

number of eggs contained in each gram of stool is g. 
Because the life cycle of the adult worm is longer than 
the other forms, we will not use a differential equation 
to model the number of eggs. The successfully hatched 
eggs into miracidia are determined by 

 
1

n
j ij
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j i
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where mi is the density of miracidia in group i, which 
includes the import and export of miracidia from other 
groups; the hatching rate is α and the area of water 
surface is bi; the redistribution coefficient among 
neighboring groups is Sij; n represents the number of 
groups. The key to the spatial dispersion of schisto- 
somes is to determine the spatial distribution coeffi- 
cients as a function of the spatial interaction at differ- 
ent levels. This is determined by the spatial interaction 
processes at different scales. In general, a hierarchical 
scheme is needed to construct the spatial distribution 
coefficient. Because we lack the spatial interaction 
data at multiple scales, we only use a distance (e.g., 
1.5 km) to determine the interconnection among 
neighboring groups through the ditch networks. This is 

done with GIS (see the next section). The infection of 
snails by miracidia in the water is de- scribed by 

 i
i i z i

dZ
m x Z

dt
ρ μ= − , (4) 

where Zi is the number of infected snails that are shed- 
ding cercaria; this is determined by the total snail den-
sity, xi, and the density of miracidia, mi, the infection 
rate of snails, ρ, and the death rate of snails, μz. Snail 
density, xi is obtained with remote sensing methods 
(see section 4). Finally, the cercaria production is de-
termined by 
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where σ is the daily cercaria production rate of each 
infected snail; aj is the water area of snail habitat. The 
above model omitted the infected latent snail, Y, as 
shown in Fig. 2. To obtain Z from Y, one only needs to 
multiply with a death rate of infected snails. The 
above 5 equations provide us with a spatio-temporal 
model for schistosomiasis transmission. . 

The model described above is based on the follow- 
ing assumptions: (1) the accessible and associated 
immunization among host groups during the infection 
process is ignored; (2) there is no density dependence 
in schistosomiasis infection, this assumption is rea-
sonable when the modeling period is not long (~5 
years); (3) there is no relationship between the number 
of miracidia that infect snails and the number of cer-
caria shed by infected snails; (4) the aggregation dis-
tribution parameter, k, in host groups is constant;(5) 
the host population during the modeling process is 
constant; (6) annual climate change does not change 
(although the model can accommodate climate change 
with available data). Values for each parameter in this 
model are listed in Table 1. 

3  Spatial interaction determination between 
neighboring villages through GIS  

We selected an endemic area of schistosomiasis in 
Xichang surrounding Qionghai Lake for our study area. 
The area has 227 natural villages covered by one scene 
of IKONOS imagery(11 km×11 km)(27°47′―27°50′N, 
102°14′―102°18′E)(Fig. 3), and is located in the 
western mountainous area in Sichuan Province at an  
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Table 1  Parameter ranges in the schistosomiasis transmission model 
Parameter Interpretation and unit Range Reference 

τw development time of worms in human hosts (day) 20―40 [4] 
μw worm natural mortality (/day) 0.000183―0.0014 [4] 
h eggs excreted (/worm pair /gram feces) 0.768―2.72 [6] 
μs snail mortality rate (/day) 0.0023―0.007 [7] 
μz patent and latent snail death rate (/day) 0.0063―0.033 [8] 
πi efficacy of praziquantel 0.8―0.95 [9, 10] 

σ cercarial production (/sporocyst/day) 20―50 [11, 12] 

β schistosome infection rate (/cercaria/m2 contact) 0.0001―0.5 model calibration 

ρ snail infection (/miracidium/m2 surface water) 0.000001―0.0005 model calibration 
w0i initial worm burden in the ith group data estimated local data 
z0 initial density of infected snails data estimated local data & satellite image 
x0 initial density of susceptible snails data estimated local data & satellite image 
κ0i initial worm aggregation parameter  data estimated local data 

Distributions for all parameters are uniform except for α and ρ, which have log-uniform distributions. 
 

elevation between 1500 m and 2700 m. We con-
structed a digital elevation model (DEM) based on a 
stereopair of ASTER images acquired in August of 
2002 with a grid size of 15 m (Fig. 4). The precision 
of this DEM is assessed by taking GPS measurements 
of 29 points in the study area, resulting in an average 
error of less than 6 m. This level of accuracy is suffi-
cient for our analysis. 

We digitized the boundaries of 227 villages, and 
inputted them into a GIS database. In the GIS, we 
calculated the geometric center of each natural village,  

 
Fig. 3.  The IKONOS image of Xichang acquired in December of 
2000. The false color image is made from a combination of green, red 
and near infrared bands displayed with a color gun of blue, green and 
red, respectively. The yellow areas are the ditches where field snail 
surveys were conducted in 19 villages. 

 
Fig. 4.  The digital elevation model of the study area derived from a 
stereopair of ASTER images. The red area is the Qionghai Lake ex-
tracted from image analysis of the image in Fig. 3. 

 
and then calculated the inter-distance among the 
neighboring villages. We also calculated the number of 
neighboring villages for each village. With the 
boundaries of the natural villages overlaid on top of 
the DEM, we calculated the average elevation for each 
village. The slope between the center points and the 
direction of ditch water flow between the neighboring 
villages was determined by comparing the average 
elevation between neighboring villages. The amount 
of miracidia and cercaria exchange and retention was 
determined by water flow direction, slope between 
neighboring villages, and the area of each individual 
village. Miracidia and cercaria flowed in the direction 
of the water flow. Therefore, only villages at lower 
elevations received inputs from villages at higher ele-
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vations.  
We constructed a village-to-village spatial connec-

tion matrix S. The ith row and jth column, Sij, repre-
sents the number of miracidia and cercaria transport 
from the ith village to the jth village. In this study we 
did not consider the migration of snails and eggs, be-
cause the active movement of snails is rather limited in 
space, and the eggs stored in stool are mostly accumu-
lated by individual farmers and applied to their own 
fields near their house. The interaction of eggs be-
tween neighboring villages is limited. Passive move-
ment of snails is usually caused by the transport of 
agricultural products, but their numbers are usually 
low. Therefore, we ignored this. The diagonal ele-
ments in S represent the retention rates of the villages. 
The retention rate, Sii, is related to the area and slope 
of the village. The calculation was done by setting an 
upper and lower bound (0.3―0.9), and by building a 
linear model of slope and area. The retention rate was 
then calculated as the average between the outcomes 
of the slope function and area function. The Sichuan 
Institute of Parasitic Diseases conducted some obser-
vations of the viability of cercaria and miracidia with 
respect to the hydrological condition in the study area, 
finding that their distance of movement during half of 
a lifetime in water was 400 m. However, the average 
diameter of natural villages is 500 m. Therefore, we 
did not consider indirectly connected villages. Clearly, 
S is not symmetric. If Sij>0 then Sji = 0, because 
miracidia and cercaria can only flow from higher 
places to lower places. Sij is estimated by 

 

1

(1 ) ,

/ ,

ij ii j

ne

j ij ik
k

S S ω

ω β β
=

= −

= ∑
 (6) 

where ne represents the effective neighbors of the ith 
village, that is, those villages having a higher elevation 
than village i; β is the slope; and ω is the normaliza-
tion factor.  

Applying the above method, we can get the spatial 
interaction matrix as displayed in Fig. 5. Substituting 
Sij into eqs. (3) and (5) allows us to redistribute the 
iracidia and cercaria numbers among the 227 villages. 
Xu et al.[13] introduced a simpler version of this spatial 
interaction matrix construction method. 

 
Fig. 5. The spatial interaction (connectivity) matrix constructed in GIS 
with data from a DEM and village boundaries. This matrix has 227 
rows and 227 columns.  

4  Snail density estimation with remote sensing 

Previous research involving remote sensing for 
schistosomiasis control primarily concentrated on the 
mapping of potential snail habitats. Xu et al.[14] at-
tempted to construct a statistical relationship between 
field survey snail densities and land cover information 
derived from remote sensing data, producing a snail 
density for the entire study area. They used a 4-m 
resolution IKONOS multispectral imagery and a DEM 
derived from ASTER images, spatially densified into 4 
m grids in a land cover classification. As a result, 16 
land cover types were obtained (Fig. 6). Field valida-
tion indicates that the average accuracy of this map is 
89%. Classification accuracies of the major cover 
types such as residential areas, flood plains, crop areas, 
riverbeds, lowland terraces, high land terraces, and 
forest areas are all greater than 87%. The land cover 
types are intentionally schemed so that they are not 
sensitive to season. In this manner, it is possible to 
establish statistical relations with imagery obtained 
from different seasons for snail density estimation. In 
order to find out if detailed land cover information 
with such a classification scheme can be derived from 
remote sensing data at lower resolutions, the land 
cover data derived from the 4-m data were converted 
to fractional cover data based on an aggregation of 
7×7 pixels. We then applied a linear model to estimate 
snail density, 
 1 1 2 2 i i k kSA a f a f La f L a f= + + + , (7) 
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Fig. 6.  Land cover map of the Xichang area based on IKONOS and 
DEM data. 
 
where f is the fraction of area for a particular land 
cover type calculated from the 7×7 pixel window; SA 
is the estimated snail density; and a’s are the coeffi-
cients of the model. The snail density for each village 
was calculated. Using over 10,000 snail sampling 
points collected in the ditches from 19 villages, they 
found that the R2 value between survey data and the 
estimation data could be as high as 0.87. 

Because it is very time and labor intensive for snail 
surveys in the field, we only did field surveys in the 
summer of 2001. We surveyed 19 villages for every 
ditch at 10 m intervals. At each sampling site, we 
placed a Kuang (0.11 m2) to survey the snail density. A 
shortcoming of this experiment was that we did not 
have independent samples to validate our statistical 
model, since we used all the sampling data when 
building the multivariate statistical model in eq. (7). 
Additionally, snail density changes with season. An-
other shortcoming of this research was that we did not 
use satellite data from multiple times to estimate snail 
density variation in time. However, since the purpose 
of this study is mainly to test the feasibility of the 
conceptual model for spatial temporal dynamics simu-
lation, this is sufficient. With eq. (7), we can calculate 
the snail density for each village. By then using the 
village area, the snail number in each village can be 
obtained (Fig. 7). Snail number can then be applied in 
eq.(4). 

 
Fig. 7.  Snail density map of the study area estimated with land cover 
fraction data. 

5  Simulation results 

Based on model parameter adjustments, we used 
eqs. (1)―(5) to simulate the schistosomiasis transmis-
sion dynamics. With spatial connectivity, our temporal 
dynamics model became a spatial temporal model. We 
tested the model from June 15, 2000 and ran it on a 
daily basis for 5 years. The worm load in year 1 and 
year 5 is shown in Fig. 8. Clearly, if there is no schis-
tosomiasis control the worm load increases annually. 
The areas showing no change are forested areas with 
no human settlement. The total number of simulated 
worm load after 5 years is 789467. 

The effect of schistosomiasis control is easy to ex-
amine with the spatial temporal model. If only the pa-
tients in 5 villages can be treated for 1 week, our 
model can help us to answer which villages should be 
selected to maximize the control effect. For example, 
we can select the villages with the greatest worm load 
for treatment. Or, we can select the villages with the 
strongest spatial connectivity. We can also consider 
both, that is, those villages with high worm load and 
also high connectivity with a large number of effective 
neighbors. Fig. 9 compares two treatment plans: treat- 
ing the 5 villages with the greatest worm load and 
treating the 5 villages with high worm load and high 
spatial connectivity. Treating the 5 villages with the 
greatest worm load caused a reduction of 13211 
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Fig. 8.  Worm load in each village as simulated with the spatial temporal model. (a) Model simulation results for the first year and (b) model simula-
tion results for the fifth year. 
 

 
Fig. 9.  Simulation results from the spatio-temporal model treating patients in 5 villages for one week each year. Two different village selection plans 
were compared:  worm load reduction resulting from (a) treating 5 villages with the greatest worm load, and from (b) treating 5 villages with high 
worm load and high spatial connectivity. 
 
worms, while treating the 5 villages with both high 
worm loading and high spatial connectivity led to a 
worm load reduction of 17505. From Fig. 9, the influ-
ence of the later treatment plan can reach many more 
villages. Therefore, it is necessary to compare differ-
ent control strategies by considering spatial connec-
tivity. The advantage of this spatio-temporal model for 
schistosmiasis transmission and control is that it al-
lows us to develop and compare various control plans, 
in order to select the optimal ones to support control 
decision making.  

Figure 10 compares the simulation results without 
schistosomiasis control to results with the patient 
treatment from the second village selection plan. Only 
the cercaria number and worm load are shown in the 
figure. Each curve represents results for one village in 

the 5 year simulation period. There is a clear distinc-
tion between the two simulations for cercaria produc-
tion and worm loading in each village. Because treat-
ing 5 villages primarily kills the worm in hosts, some 
of the worm load drops in the curves can be clearly 
seen in Fig. 10(d).  

The simulation results for cercaria production (Fig. 
10(c) and worm loading (Fig. 10(d), based on the spa-
tial temporal model with a control plan of treating pa-
tients in 5 villages that have high worm load and high 
spatial connectivity. 

6   Summary and discussions 

The above results demonstrate 
(1) The conceptual model for the spatio-temporal 
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Fig. 10.  The simulation results for (a), (c) cercaria production and (b), (d) worm loading, based on the spatio-temporal model without any control. 

 
schistosomiasis transmission dynamics can be real-
ized. 

(2) Remote sensing and geographic information 
system are indispensable components in such spatio- 
temporal models.  

(3) It is possible to use a spatio-temporal schisto- 
somiasis transmission model in supporting spatial de- 
cisions, to improve the effectiveness of schistosomi- 
asis control.  

However, much work needs to be done to build a 
practical model. Firstly, we need to further investigate 
snail density estimation methods based on remotely 
sensed data from multiple sources. Secondly, spatial 
connectivity exists at multiple scales and among dif-
ferent environmental factors, and more work needs to 
be done in this aspect. For example, the spatial unit in 
this study is natural villages; but, populations can be 
divided at even finer units, such as at the occupational 
level, family level, or even at the individual level. On 
the other hand, scaling up from the village unit to the 
township and county level still remains to be resolved. 
Thirdly, more field data need to be collected to vali-
date the models developed.  

The transmission of schistosomiasis only represents 
one type of transmission processes for an infectious 
disease interacting with vectors, intermediate host and 
various environmental factors. Each infectious disease 
has its original endemic area. Its spatial transmission  

mainly relies on the natural forces, such as climate 
variation, vegetation succession, atmospheric and 
ocean circulation. Human activity promotes the trans-
mission of infectious disease to new environments, by 
facilitating species invasion. Thus, human activity in 
the infectious disease transmission system acts as a 
positive feedback. We must have a better understand-
ing of this positive feedback system, establish a better 
prediction model, and improve our prevention capacity. 
The model proposed in this study sheds lights on the 
spatio-temporal modeling of other infectious diseases. 
When the biological and environmental processes be-
tween the origin of the disease, its vector and host are 
relatively clear, we can adopt such models to predict 
the spatial and temporal dynamics of an infectious 
disease. For example, the plague, hemorrhagic fever 
with renal syndrome, and lyme disease can be mod-
eled using the conceptual framework proposed here. 
Remote sensing and GIS can play important roles in 
supporting the spatial decisions in controlling infec-
tious disease transmission.  
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