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ABSTRACT: Studying the structure and dynamics of nucleic acids and their complexes is crucial for understanding fundamental
biological processes and developing therapeutic interventions. However, the limited availability of experimentally characterized
nucleic acid structures poses a challenge for exploring their properties comprehensively. To address this, we developed a
customizable mutagenesis tool, CHIMERA_NA, to manipulate nucleic acid structures and their complexes. Utilizing the user-
friendly CHIMERA_NA, researchers can perform mutations in nucleic acid structures, enabling the exploration of diverse structural
configurations and dynamic behaviors. The tool offers the flexibility to generate all possible combinations of mutations or specific
user-defined mutations based on research requirements. CHIMERA_NA leverages the capabilities of UCSF Chimera software, a
widely used platform for molecular structure analysis, to facilitate the generation of mutations in nucleic acids. Our tool modifies the
reference structure of nucleic acids or their complexes to generate initial coordinates of mutated structures/complexes within
seconds for further computational exploration. This capability allows users to extend their investigations beyond structural
repositories, enabling the study of DNA/RNA drug recognition, nucleic acid−protein interactions, and the intrinsic structural and
dynamic properties of nucleic acids. By providing a user-friendly and customizable approach to nucleic acid mutagenesis,
CHIMERA_NA contributes to advancing our understanding of nucleic acid biology and facilitating drug discovery efforts targeting
nucleic acid-based mechanisms. CHIMERA_NA is freely available in the Supporting Information of this article.

■ INTRODUCTION
DNA and RNA serve as fundamental molecules in biological
systems, governing essential cellular processes such as
replication, transcription, and translation.1−4 DNA acts as the
repository of genetic information, encoding the instructions
necessary for the development, growth, and functioning of living
organisms.4,5 On the other hand, RNA plays versatile roles,
including mRNA, which carries genetic information from DNA
to ribosomes for protein synthesis, tRNA, which transports
amino acids to the ribosome during translation, and rRNA,
which forms an integral part of the ribosome structure.6,7 Both
DNA and RNA exhibit intricate structures and dynamic
behaviors, influencing their interactions with other molecules
and the overall functioning of the cell.1,8

Understanding the interactions of nucleic acids with other
molecules such as proteins and drugs is crucial for elucidating
molecular mechanisms underlying diseases and developing
effective therapeutic interventions.4 DNA−drug interactions,
for instance, are central to the design of anticancer agents and
antimicrobial drugs, where small molecules target specific DNA

sequences to inhibit DNA replication or induce DNA damage in
diseased cells.4,8 Similarly, DNA−protein interactions play
pivotal roles in gene regulation, DNA repair, and chromatin
remodeling, affecting cellular processes that govern cell fate and
function.9,10 RNA also forms complexes with drugs and proteins,
contributing to gene expression regulation, RNA processing, and
RNA interference pathways.11,12 Investigating these complex
interactions provides valuable insights into disease mechanisms
and helps strategizing the development of targeted therapies for
a wide range of human diseases.13,14

While nucleic acids and their complexes play pivotal roles in
understanding biological processes and drug discovery, the
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scarcity of experimentally determined structures and complexes
poses challenges in nucleic acid-based studies.15 Addressing this
need, we propose the development of a mutagenesis tool to
generate a repertoire of modeled nucleic acid structures. Our
approach utilizes an experimentally known nucleic acid
structure/complex and allows for user-specific mutations or all
of the possible combinations, enabling the generation of initial
coordinates for computational exploration of nucleic acid
research.

■ METHODS
The tools for generating a modified library of nucleic acid
structures, where one or more nucleotide residues are replaced
with another, are not very common, posing a challenging
situation for exploring these systems. One approach involves
changing the residue name to the desired nucleotide followed by
removing the atoms that are not present in the modified
nucleotide and allowing the force fields to add the updated
residue to the structure template. However, this approach is
time-consuming, requires expert supervision, and is not always
accurate. This is particularly problematic in the case of DNA, as
the modified template added may not maintain the helical form
and may protrude outside the intended helical structural core.
An alternative approach is to use Chimera software, a powerful
visualization tool with several built-in utilities to analyze the
molecular structure and related data, which offers a feature called
swapna.16 The swapna command changes the nucleotide to the
desired one while preserving the existing torsion angles around
the base-sugar (glycosidic) bond and the position of the base
nitrogen involved in that bond.17−19 This approach is advanta-
geous for double-helical DNA or RNA and for mutating nucleic
acid base pairs, as it retains the conformation of the base pairs
after mutation. However, the swapna command mutates only
one residue at a time and is not efficient for performing multiple
mutations simultaneously. For example, in the case of generating
a library of modified DNA structures where multiple nucleotides
need to be mutated to study their collective effect, using the
swapna command for each mutation individually would be
laborious and inefficient. When dealing with RNA molecules
that require simultaneous mutations at multiple sites to
investigate their structural stability or binding affinity to their
cognate partner, the single-residue limitation of swapna
significantly slows the process. Further, in computational studies
aimed at understanding the role of specific nucleotide sequences
in protein−DNA interactions, the need to mutate several
nucleotides at once highlights the inefficiency of the swapna
command for large-scale modifications. These examples under-
score the need for more advanced tools and methods that can
efficiently handle multiple nucleotide mutations while preserv-
ing the structural integrity of the nucleic acid molecules.
We introduce CHIMERA_NA, a tool that utilizes the UCSF

Chimera swapna command to generate mutated structures of
nucleic acids or their complexes in a high-throughput and user-
specific manner. For instance, consider DNA bound to a drug
where the DNA tetrameric segment interacts with the drug
molecule. CHIMERA_NA can generate a comprehensive
library of 256 possible DNA−drug complexes within seconds,
which serve as initial coordinates for further computational
exploration. This allows the user to evaluate the specificity of the
drug for each DNA tetramer segment of the DNA by utilizing
the generated DNA−drug complex models as starting points for
conducting molecular dynamics (MD) simulations followed by
energy estimations. In this way, CHIMERA_NA enables users

to scan through all structural possibilities, a task that would
otherwise be impossible by using the limited complexes available
in structural repositories. CHIMERA_NA can generate all
structural combinations of DNA dimers, trimers, tetramers, and
their complexes while performing multiple mutations on a
provided DNA structure or complex. The tool can also create
multiple mutations on RNA/RNA complexes for exploring
structural, conformational, or binding proclivities of mutated
RNA molecules. To use CHIMERA_NA, the user first executes
the CHIMERA_NA.sh script while supplying the residue IDs
and chain IDs where mutations are to be performed along with
the information on required mutations and the directory where
the output PDBs should be placed. Thereafter, the user specifies
the PDB code information (if available), which the script fetches
from the RCSB PDB,20 or provides the location of the file in the
local directory. Depending on the input, whether all
combinations of mutations are required or a single mutant
structure is desired, the output will be a CHIMERA_NA.py
code. This code is then directly executed using the Chimera
visualizer, generating all of the desired structures within seconds
at the user-specified directory. CHIMERA_NA thus offers a
powerful and efficient solution for generating and exploring a
wide array of nucleic acid mutations, facilitating advanced
computational studies of nucleic acid structures and their
interactions and beyond. The overall CHIMERA_NA pipeline
is outlined in Figure 1.

■ RESULTS AND DISCUSSION
The CHIMERA_NA tool was demonstrated using several case
studies where reference structures were sourced from the RCSB
PDB Web server20 to generate initial coordinates of mutants in
PDB format. The following cases illustrate its application.

Case 1. To assess the selectivity of an intercalator molecule
for DNA, it is essential to evaluate its binding to all 16 possible
dinucleotide base pair steps at the intercalation site. Exper-
imental structures for all 16 steps are challenging to obtain.
However, using CHIMERA_NA, all 16 complexes can be
generated as initial coordinates for computational studies,
enabling meaningful conclusions. The crystal structure of
proflavine bound to a DNA hexamer duplex (PDB ID: 3FT6)
was used, where proflavine intercalates at the intercalation site
formed by residue IDs 1 and 2 of chain A and residue IDs 6 and 5
of chain B, respectively.21 CHIMERA_NA can be utilized to
generate all 16 drug−DNA complexes (the overlay is shown in
Figure 2).

Case 2. Zinc finger (ZF) proteins typically bind to three base
pairs of double-stranded DNA.22 To investigate the specificity
and selectivity of a ZF protein, it is crucial to study its binding to
all 64 possible DNA triplets. Generating initial coordinates for
all 64 protein−DNA complexes is challenging. Using

Figure 1.CHIMERA_NA pipeline to generate mutant PDBs utilizing a
reference PDB.
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CHIMERA_NA, initial coordinates for these systems can be
generated within seconds. The crystal structure of a zinc finger
(Zif268) complexed with DNA (PDB ID: 1ZAA) was utilized,
with a specific focus on the central trinucleotide region (TGG;
residue IDs 5 to 7 of chain A with residue IDs 8 to 6 of chain
B).23 CHIMERA_NA generated all combinations, as shown in
Figure 2.

Case 3. For a DNA−drug complex, where the drug binds to a
tetrameric region of the DNA (minor groove), it is important to
investigate drug interactions with all tetramer combinations to
understand specificity/selectivity. The crystal structure of
berenil complexed with d(CGCAAATTTGCG) (PDB ID:
1D63) was used, with berenil recognizing the central AATT
region (residue IDs 5−8 of chain A and residue IDs 17−20 of
chain B).24 CHIMERA_NA generated all 256 possible mutants
of the berenil−DNA complex, as shown in Figure 2.

Case 4. RNA hairpin folding stability is dependent on loop
composition.25 Studying this can enhance our understanding of
RNA folding, which is crucial for RNA function and RNA-
targeted drug discovery. CHIMERA_NA can generate initial
coordinates for multiple mutations, as defined by the user. The
HIV-1 RNA A-rich hairpin loop (PDB ID: 1BVJ) is stabilized by
a noncanonical G-A pair and a U-turn motif.26 For example, to
investigate the effect of switching the G-A base pair (residue IDs
10 and 15 of chain A) to an A-G base pair on the stability of the
hairpin loop, CHIMERA_NA can be utilized to generate the
initial structure of the mutant, as shown in Figure 2.

Case 5. Analyzing key residues in protein−DNA recognition
is fundamental to understanding the overall recognition
mechanism. For example, basic region leucine zipper (bZIP)
proteins form multiple types of contacts (salt bridges, hydrogen
bonds, water-mediated hydrogen bonds, and van der Waals) for
DNA recognition.27 For the leucine zipper−DNA complex
(PDB ID: 1YSA), Asn235 binds to DNA residue IDs 7 and 8 of
chain A, and Arg243 binds to DNA residue ID 32.28 One can
swap these DNA bases with their complementary bases using
CHIMERA_NA to generate modified system coordinates to
study how these hydrogen bonds contribute to protein−DNA
binding (Figure 2).
Case 1 to Case 5 demonstrate only a few applications of the

CHIMERA_NA tool. The approach can be utilized to perform
any user-specific structural manipulations in nucleic acids and
their complexes.

Flowchart. The execution of CHIMERA_NA can be
explained in three steps. In step 1 (selection), the user can
select the desired operation. In step 2 (input description),
depending on the selection in step 1, the user is required to
provide several details, such as residue IDs, chain IDs, number of
desired mutations, and types of mutations. In the final step (step
3: execution), the output python script (CHIMERA_NA.py)
with reference PDB information is directly processed by using
CHIMERA software to generate the mutant PDBs. The step-by-
step process is demonstrated in Figure 3.
Each step (step 1 to step 3) of CHIMERA_NA is equipped

with detailed explanations of all required inputs/arguments,

Figure 2. Input and output structures for Case 1 to Case 5 generated using the CHIMERA_NA approach. The site of interest is displayed in stick
representation, while the rest of the molecule is shown in cartoon representation. Water molecules and ions of crystallization are removed for clarity.
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facilitating user-friendly execution without the need for a
separate tutorial document. The application of CHIMERA_NA
extends beyond Case 1 to Case 5, demonstrating multifaceted
capabilities in altering any nucleic acid structure or its
complexes. For example, the approach can be utilized to initiate
computational studies on aptamer design and optimization,
understanding protein−RNA recognition, and investigating
nucleic acid sequence-dependent metal ion binding. Overall,
CHIMERA_NA is an excellent tool to generate initial
coordinates for nucleic acid-based research. However, at
present, it restricts mutations to nucleotide substitutions only,
disallowing the insertion or deletion of nucleotide units. When a
mutation is introduced, such as a base pair mismatch in double-
helical DNA, additional steric clashes and close contacts may
arise in the generated DNA mutant structure. In such instances,
local refinement using force fields is recommended. Further-
more, in such cases, it is also anticipated that the glycosidic

torsion angle of the mutated residue may require manual
adjustment to restore stacking interactions with adjacent
residues.
When the CHIMERA_NA.sh script is edited in a Windows

environment and then transferred to a Unix/Linux environment,
the different line-ending formats can cause processing issues due
to carriage returns. Supplementary Note 1 provides several
methods to resolve this issue. Additionally, for structures where
the chain ID is not present, particularly in modeled structures or
those generated by docking protocols, the mutations may not be
directly achievable using the CHIMERA_NA code. To address
this, missing chain IDs can be added to the input PDB file as
discussed in Supplementary Note 2.

■ CONCLUSIONS
DNA and RNA are crucial biomolecules for sustaining life on
earth. DNA, with its double-helical structure, encodes the

Figure 3. Step-by-step procedure of executing CHIMERA_NA to generate the structures of mutants.
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genetic instructions necessary for the growth, development, and
functioning of all living organisms.4 It serves as a blueprint for
the synthesis of proteins, which are vital for cellular structure,
function, and regulation.8,9 RNA, on the other hand, acts as a
messenger molecule, translating the genetic information stored
in DNA into functional proteins through the process of
transcription and translation.2,6 Beyond their roles in heredity
and protein synthesis, DNA and RNA are involved in amyriad of
cellular processes, including DNA replication, repair, and
recombination, as well as gene regulation and signal trans-
duction.1

Computational studies on nucleic acids have been thoroughly
conducted to understand their structure and interactions with
other molecules.29−45 Although nucleic acid research is of
paramount importance, the limited availability of experimentally
characterized nucleic acid structures in structural repositories
presents a significant challenge for thoroughly exploring their
properties. To address this, we introduce CHIMERA_NA, a
valuable tool for researchers interested in exploring the structure
and dynamics of nucleic acids and their complexes in terms of
predicting the effects of mutations on structure and complex
stability and function. CHIMERA_NA is a user-friendly
approach that leverages the capabilities of UCSF Chimera
software for customizable mutagenesis of nucleic acids and their
complexes to generate the initial coordinates of mutated
structures/complexes for further computational exploration
and hence helps us scan through beyond the structural
repositories for studying DNA/RNA intrinsic structural proper-
ties, their dynamic properties, and nucleic acid interactions with
other molecules. We demonstrate the utility of CHIMERA_NA
by systematically mutating DNA−drug complexes, DNA−
protein complexes, and RNA structure to generate the initial
coordinates of the mutants; however, the approach is not limited
to these cases and can be utilized to explore any nucleic acid
structures/complexes. Overall, CHIMERA_NA enables re-
searchers to perform systematic structural analysis and
hypothesis-driven mutational studies, thereby advancing our
understanding of nucleic acids and facilitating rational drug
design efforts.
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