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ABSTRACT
Constraining the timing of morphological innovations within xiphosurid evolution is
central for understanding when and how such a long-lived group exploited vacant
ecological niches over the majority of the Phanerozoic. To expand the knowledge
on the evolution of select xiphosurid forms, we reconsider the four Australian taxa:
Austrolimulus fletcheri, Dubbolimulus peetae, Tasmaniolimulus patersoni, and Victal-
imulus mcqueeni. In revisiting these taxa, we determine that, contrary to previous
suggestion, T. patersoni arose after the Permian and the origin of over-developed genal
spine structures within Austrolimulidae is exclusive to the Triassic. To increase the
availability of morphological data pertaining to these unique forms, we also examined
the holotypes of the four xiphosurids using synchrotron radiation X-ray tomography
(SRXT). Such non-destructive, in situ imaging of palaeontological specimens can aid
in the identification of novel morphological data by obviating the need for potentially
extensive preparation of fossils from the surrounding rock matrix. This is particularly
important for rare and/or delicate holotypes. Here, SRXT was used to emphasize A.
fletcheri and T. patersoni cardiac lobe morphologies and illustrate aspects of the V.
mcqueeni thoracetronic doublure, appendage impressions, andmoveable spine notches.
Unfortunately, the strongly compacted D. peetae precluded the identification of any
internal structures, but appendage impressions were observed. The application of
computational fluid dynamics to high-resolution 3D reconstructions are proposed to
understand the hydrodynamic properties of divergent genal spine morphologies of
austrolimulid xiphosurids.

Subjects Biodiversity, Evolutionary Studies, Paleontology, Zoology
Keywords Euchelicerate, Xiphosurida, Austrolimulidae, Australia,
Synchrotron radiation X-ray tomography

INTRODUCTION
The increasing availability of three-dimensional (3D) imaging techniques in the preceding
two decades has revolutionised the acquisition of morphological data from both biological
(Hita Garcia et al., 2017; Parapar et al., 2017; Landschoff et al., 2018; Marcondes Machado,
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Passos & Giribet, 2019; Raymond et al., 2019) and palaeontological specimens (Sutton,
2008; Pardo & Anderson, 2016; Liu, Rühr & Wesener, 2017; Liu et al., 2019; Forel, Poulet-
Crovisier & Korat, 2021). Traditional lab-based micro-computed tomography (CT), along
with more sophisticated synchrotron radiation X-ray tomography (SRXT) and neutron
micro-tomography (NCT) have permitted non-destructive visualisation of previously
unknown and inaccessible morphological features for taxa across all of Metazoa (Donoghue
et al., 2006; Tafforeau et al., 2006; Sutton, 2008; Metscher, 2009; Motchurova-Dekova &
Harper, 2010; Faulwetter et al., 2013; Faulwetter et al., 2014; Herrera et al., 2020; Snyder et
al., 2020). This precludes the need for physical dissection and/or preparation of specimens,
which is relevant when describing structures from rare or fragile material (e.g., Metscher,
2009; Haszprunar et al., 2011; Deans et al., 2012; Beutel et al., 2019; Willsch et al., 2020;
MacDougall et al., 2021; Stillwell et al., 2020). In palaeontology, 3D data has been used
widely in the visualisation of fossils preserved in amber (Lak et al., 2008; Perrichot et al.,
2008; Riedel et al., 2012; Xing et al., 2016a; Xing et al., 2016b; Xing et al., 2018; Daza et al.,
2020; Bolet et al., 2021) and also in the examination of fossils that are still surrounded in
their original rock matrix (Moreau et al., 2014; Schwarzhans et al., 2018; Reid et al., 2019;
Mayr et al., 2020).

Research into fossil arthropods has benefitted greatly from the availability of non-
destructive 3D imaging techniques (Deans et al., 2012; Liu et al., 2016; Liu et al., 2020;
Hegna, Martin & Darroch, 2017; Wesener, 2019; Zhai et al., 2019a; Zhai et al., 2019b; Liu
et al., 2020), particularly the diverse array of insects preserved within resins (Tafforeau et
al., 2006; Lak et al., 2008; Pohl et al., 2010; Henderickx, Tafforeau & Soriano, 2012; Riedel et
al., 2012). In stark contrast, extinct members of Xiphosurida (i.e., horseshoe crabs) have
received comparatively limited 3D examination. The anatomy of two extant xiphosurids,
the American horseshoe crab—Limulus polyphemus (Linnaeus, 1758)—and the mangrove
horseshoe crab—Carcinoscorpius rotundicauda (Latreille, 1802)—has been documented
using micro-CT (Göpel & Wirkner, 2015; Bicknell et al., 2018a; Bicknell et al., 2018b;
Bicknell et al., 2021b; Bicknell, Melzer & Schmidt, 2021). Magnetic resonance imaging
has also been used in studies of the Japanese horseshoe crab—Tachypleus tridentatus
(Leach, 1819) (Kutara, Une & Fujita, 2019; Yuen, Kwok & Kim, 2019). However, as Bicknell
& Pates (2020) highlighted, there are over 80 extinct xiphosurids that have not been
documented or rendered in 3D and most 3D data collected from fossil xiphosurids have
been surface scans (Schimpf et al., 2017), with other applications including stereo imaging
(Haug et al., 2012; Haug & Rötzer, 2018; Haug & Haug, 2020). A recent study combined
CT and computed laminography (Zuber et al., 2017) to image Limulitella Størmer, 1952
from the Winterswijk quarry complex, Middle Triassic (Anisian) Vossenfeld Formation,
Netherlands (Klompmaker & Fraaije, 2011; Klein, 2012; Sander et al., 2016; Zuber et al.,
2017). These techniques revealed morphological information that was not visible due to
the compression and preservation of the specimen. However, no other fossil xiphosurids
have been examined using comparable methods. Here we address this lack of data by
presenting the first application of SRXT to holotypes of four Australian xiphosurids. In
doing so, we also reconsider the temporal range of these four taxa. This revision uncovers
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a younger age for one genus, pushing the record of Austrolimulidae in Australia to the
Triassic.

METHODS
We examined the four species of Xiphosurida known from Australia using SRXT:
Austrolimulus fletcheri Riek, 1955 from the Hawkesbury Sandstone (Middle Triassic,
Anisian), New South Wales (NSW); Dubbolimulus peetae Pickett, 1984 from the Napperby
Formation (Middle Triassic, Anisian), NSW; Tasmaniolimulus patersoni Bicknell, 2019
from the Jackey Shale (Early Triassic, Induan), Tasmania; and Victalimulus mcqueeni Riek
& Gill, 1971 from Koonwarra Fossil Bed (Early Cretaceous, Aptian), Victoria. All four
species fall within the xiphosurid groups Limulidae and Austrolimulidae (Bicknell, 2019;
Bicknell et al., 2021a; Lamsdell, 2021). Given advances in the stratigraphic literature since
the initial descriptions of these four forms, we conducted a literature review and present a
thorough geological contextualisation for each taxon.

Non-destructive X-ray microtomographic measurements were conducted using the
Imaging and Medical Beamline at the Australian Nuclear Science and Technology
Organisation’s (ANSTO) Australian Synchrotron, Clayton, Victoria, Australia.

A monochromatic beam energy of 70 keV was used for Dubbolimulus peetae and
Victalimulus mcqueeni, with a sample-to-detector distance of 500 mm. X-rays were
converted to visible photons and detected using the ‘‘Ruby detector’’, a 20 µm thick
Gadox/CsI(Tl)/CdWO4 scintillator screen coupled with a PCO.edge sCMOS camera
(16-bit, 2,560× 2,160 pixels) and a Nikon Makro Planar 50 mm lens to achieve a pixel size
of 24.8× 24.8 µm. A total of 1800 equal angle shadow-radiographs were obtained (i.e., one
radiograph every 0.10◦) with an exposure length of 0.070 s each as the samples were
continuously rotated 180◦ about their vertical axes. Due to the restricted beam height and
field-of-view, this radiograph capture procedure was repeated after lowering the specimen
with respect to the beam after a full rotation. This produced a series of overlapping vertical
radiographs capturing the full height of each specimen. These were then stitched together
into a single set of radiographs prior to reconstruction into 3D volumes. For V. mcqueeni
the reconstructed data was binned to voxels of 49.6 µm for visualisation. Tasmaniolimulus
patersoni and Austrolimulus fletcheri were similarly scanned with a pixel size of 40.29 ×
40.29 µm. An incident monochromatic beam energy of 80 keV was used for T. patersoni
and a broad range of higher energy X-rays (pink beam, peak energy of 220 keV) was used
for A. fletcheri due to the high attenuation of available monochromatic X-rays.

The raw 16-bit radiographs were normalised relative to the beam calibration files,
stitched using the in-house software IMBL Stitch, and reconstructed with CSIRO’s X-
TRACT (Gureyev et al., 2011) software available on Australian Synchrotron Computing
Infrastructure (ASCI). The filtered-back projection reconstruction method was used to
form a 16-bit, 3D volume image of the sample.

The reconstructed slices for each fossil were imported into Mimics version 23.0
(Materialise, Leuven, Belgium) and digitally prepared. Any artefacts in the tomographic
slices were removed using the ‘Segmenting’ tool and the remaining components (fossil
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and matrix) were segmented out and converted to .STL files in Mimics, and imported
into Geomagic Studio (3D Systems, North Carolina, USA) to be smoothed. The smoothed
.STL files were used to generate 3D PDFs using Terta4D (Adobe Systems; see Figs. S1–
S4 found at 10.17605/OSF.IO/AT528). Lighting used in the 3D PDFs was Computer-
Aided Design optimised to showcase features prominently and without shadowing.
Raw radiograph data associated with this research has been uploaded to MorphoSource
(https://www.morphosource.org/projects/000380648). Photographs of each specimen were
taken under LED lighting either by the authors or by collection managers for overall
comparison to the 3D reconstructions. A note here must be made to the use of stereo-
photographs. This imaging technique has effectively been used to illustrate fossil arthropods
(Haug et al., 2009; Haug, Martin & Haug, 2015; Haug, Müller & Haug, 2019; Haug, 2020)
and particularly fossil xiphosurids (Haug et al., 2012; Haug & Rötzer, 2018; Haug & Haug,
2020). This has been especially informative when specimens are dorsoventrally compressed
andmay have revealedmore structures than the LED lighting photography conducted here.
However, as the focus of this research was on the synchrotron scanning and digitisation
of the holotypes, we did not apply this method here. Nonetheless, future work on fossil
xiphosurid anatomy should consider gathering stereo images for comparative purposes.

Three-dimensional models can also be produced using photogrammetry. This method
is particularly useful for illustrating overall specimen morphology and models are cost-
effective to produce (Falkingham, 2012; Cunningham, 2021). However, photogrammetry
cannot be used to gather data on internal structures—one of the main focuses here. As
such, we did not explore the application here. Regardless, photogrammetry should be
considered for future research interested in overall 3D morphology of horseshoe crabs.

Geological context
The oldest Australian xiphosurid, Tasmaniolimulus patersoni, was found in the Jackey Shale
of the Upper Parmeener Supergroup, Tasmania (Bicknell, 2019). This formation is largely
composed of cross-bedded quartz and feldspathic sandstones, laminated dark grey shales
and thin coal lenses (Pike, 1973). Stratigraphically, the fossil was located near the very top
of the formation,∼3 m below the base of the overlying Ross Formation, exposed alongside
a cliff on the Poatina Highway (41◦48′05′′S, 146◦53′06′′E; Ewington, Clarke & Banks, 1989;
Bicknell, 2019). Based on the lithology, the unit likely represents deposition of lake and river
sediments in a non-marine swamp with limited coastal influence (Banks, 1973; Ewington,
Clarke & Banks, 1989). While the Jackey Shale at the stratigraphic level of the collection
locality lacks age-diagnostic fossils, palynomorphs from other, temporally contiguous
sites can be assigned to the Protohaploxypinus microcorpus Zone, equivalent to upper
APP6 (see Price, 1997) and restricted to the Griesbachian substage, early Induan (Early
Triassic) based on previous studies in the Sydney Basin (Laurie et al., 2016; Mays et al.,
2020). This contradicts previous interpretations of latest Permian that used now outdated
chronostratigraphic ages for this palynomorph zone. An Early Triassic age is further
supported by the vertebrate fauna and macro- and microflora of the Protohaploxypinus
samoilovichii Zone from the overlying Ross Formation which pertains to the younger
Smithian substage of the Olenekian (Early Triassic; Forsyth, 1984). The presence of
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abundant latest Permian macroflora at stratigraphic levels below the level of T. patersoni
in the Jackey Shale does suggest that, at least at some locations, the formation does extend
into the latest Permian (Ewington, Clarke & Banks, 1989). Nonetheless, given the high
stratigraphic position of T. patersoni, it appears more likely that this specimen is of Early
Triassic age.

Slightly younger is Dubbolimulus peetae, which was collected from the Napperby
Formation (previously the ‘‘Ballimore Formation’’) of the Gunnedah Basin in central New
South Wales (Pickett, 1984). The only known specimen, with an associated counterpart,
was found just south of Western Plains Zoo, Dubbo (at approximately 32◦17′30.8′′S
148◦34′35.8′′E). The Napperby Formation consists of white, fine–medium grain, quartz-
rich, ferruginous sandstone with occasional cross bedding. Thin horizons of grey to
red-brown shale and minor conglomerate lenses are interbedded with this sandstone.
The stratigraphic horizon within which the specimen was found is a red-brown, slightly
micaceous shale. This lithology indicates a high-energy braided river system or lacustrine
deposit (Tadros, 1993), possibly part of the same Triassic delta system that continues into
the Sydney Basin to the east. The finer grained shale horizons likely represent lower-energy
conditions which presumably occurred in quiet, cut-off river channels or small ponds. The
possible presence of acritarchs (McMinn, unpublished data, 1982; Early Permian-Early
Jurassic palynology of DM Mirrie DDH 1, northwest of Dunedoo. Geological Survey of
New South Wales, Report GS1982/289) suggest the unit may have experienced a slight
coastal influence occasionally. A diverse macroflora assemblage has been described from
both the fossil site itself (Pickett, 1984) and a nearby locality (Holmes, 1982) which broadly
correlate to the Dicroidium zuberi Zone (Helby, 1973; Helby, Morgan & Partridge, 1987;
Retallack, 1977; Retallack, 1980; Helby, Morgan & Partridge, 1987) of the Anisian (earliest
Middle Triassic) in the Sydney Basin. Palynomorphs from core within the Dubbo area, at
Mirrie DOH I (McMinn, unpublished data, 1982; Early Permian-Early Jurassic palynology
of DM Mirrie DDH 1, northwest of Dunedoo. Geological Survey of New South Wales,
Report GS1982/289) and Pibbon DOH 1 (McMinn, unpublished data, 1984; Palynology
of DM Pibbon DDH 1, Goulburn River-Binnaway area. Geological Survey of New South
Wales, Report 84/4, GS1984/052), support this age interpretation with placement in the
Aratrisporites parvispinosus Zone which correlates to the middle to upper Dicroidium
zuberi Zone (Young & Laurie, 1966). A middle D. zuberi Zone stratigraphic position, which
indicates an earliest Anisian age, is most likely given palynomorphs from other locations
in the Gunnedah Basin, which suggest an age range between the upper Aratrisporites
tenuispinosus Zone and lower Aratrisporites parvispinosus Zone.

Of a similar age is Austrolimulus fletcheri, from Beacon Hill Quarry, near the suburb of
Brookvale, Sydney, New South Wales (Riek, 1955). The exact co-ordinates of the original
collection site are unknown, but are considered to be 33◦45′11.2′′S, 151◦15′55.5′′E; the
location of the original quarry. The specimen originates from a 8 m thick shale lens in the
Hawkesbury Sandstone. This lens mostly consists of numerous thin, recessive, grey-red
mudrock laminations with little bioturbation (Webby, 1970) and small amounts of rippling
(Herbert, 1983). Overall, the Hawkesbury Sandstone was likely formed in a vast coastal
floodplain made up of high energy braided rivers, scour channels, lakes, and sand dunes
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(Conaghan, 1980 and references therein). Shale lenses, like those at theA. fletcheri site, likely
represent lower-energy regimes consisting of shallow water bodies disconnected from a
main river channel as isolated shallow pools of water (Herbert, 1980; Herbert, 1997; Rust
& Jones, 1987). None of the diverse fossil fauna and flora found at Brookvale (see Bicknell
& Smith, 2021 for a recent overview) are diagnostic for relative age estimation. However,
the Hawkesbury Sandstone is well constrained within the Aratrisporites parvispinosus Zone
and upper Dicroidium zuberi Zone based on palynomorphs and macroflora (Helby, 1973;
Retallack, 1977; Retallack, 1980;Helby, Morgan & Partridge, 1987). Similar to the Napperby
Formation, this places it within the Anisian (earliest Middle Triassic), likely the earliest
Anisian. Recent high-precision U-Pb CA-TIMS obtained from the Garie Formation, which
underlies the Newport Formation and succeeding Hawkesbury Sandstone, is dated to the
latest Olenekian (248.23 ± 0.13 Ma and 247.87 ± 0.11 Ma; Metcalfe et al., 2015). This
further supports an Anisian age for the Hawkesbury Sandstone as there is an unconformity
in the Sydney Basin between Newport Formation andHawkesbury Sandstone (Helby, 1973;
Herbert, 1980).

Victalimulus mcqueeni from Koonwarra Fossil Bed of the Strzelecki Group (Riek & Gill,
1971), is the youngest xiphosurid known from Australia. A single partial specimen was
found at a road cutting along the South Gippsland Highway, approximately 2.4 km
east of Koonwarra (38◦33′48.9′′S 145◦57′33.9′′E). The unit at this location consists
of a thick (∼7–8 m) lower and upper feldspathic sandstone bracketing a grey-green,
fossiliferous mudstone (Waldman, 1971; Jell & Roberts, 1986). The mudstone is made up
of extremely fine alternating layers of a clay- and silt-dominated matrix. A freshwater
lacustrine environment was originally suggested for the Koonwarra Fossil Bed, with
the finely laminated mudstones representing a rhythmic varve formed under freezing
conditions (Waldman, 1971; Waldman, 1973; Waldman, 1984). However, the highly
diverse fossil fauna and flora (see overview in Poropat et al., 2018), instead suggests a
cold, but not freezing, swamp or a lacustrine environment with seasonal flooding causing
overbank-type deposits (Douglas & Williams, 1982; Jell & Roberts, 1986). Presence of the
palynomorphs Clavatipollenite hughesii Couper, 1957 and Foraminisporis asymmetricus
Dettmann, 1963 from the Koonwarra Fossil Bed, and absence of other palynomorphs from
younger zones, indicate an age within the Upper Cyclosporites hughesii subzone (Jell &
Roberts, 1986; Seegets-Villiers & Wagstaff, 2016; Korasidis & Wagstaff, 2020; Wagstaff et al.,
2020). This places the unit entirely within the Aptian Stage (Early Cretaceous). Fission
track dating of volcanoclastic sediments in the Koonwarra Fossil Beds suggests an age
of 118 ± 5–115 ± 6 Ma, which correlates to the mid-Aptian (Gleadow & Duddy, 1980;
Lindsay, 1982).

RESULTS
The reconstructed tomographic volumes emphasized morphological information that was
less evident under visible wavelengths. The density of thematrix surroundingAustrolimulus
fletcheri precluded the unambiguous identification of many internal structures (Fig. 1).
However, the cardiac lobe can be more readily distinguished in the reconstructed volume
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and more depth is observed than exposed on the dorsal surface of the fossil (Fig. 1C).
Furthermore, the composition of the genal spines is less dense than the prosoma, suggesting
a limited portion of the spine was less sclerotised (Fig. 1D). Dubbolimulus peetae shows no
evidence of preserved internal structures. The limited record of anatomical features reflects
the strong dorsoventral compression of the specimen (Fig. 2). However, examination of
the surface reconstruction reveals impression of the walking legs. These structures are also
observed under LED light (Fig. 2A). The cardiac lobe of Tasmaniolimulus patersoni is the
most prominent feature visible in the reconstruction (Fig. 3). This structure is observed
at different slices in the reconstruction, illustrating the pronounced nature of the cardiac
lobe. Finally, the reconstruction of Victalimulus mcqueeni reveals the most anatomical data
of the four specimens. There is clear evidence for the thoracetronic doublure, fixed spines,
moveable spine notches, and appendage impressions, as noted by Riek & Gill (1971) (Fig.
4). The cardiac lobe is not as pronounced as in A. fletcheri and T. patersoni, reflecting the
more compressed nature of V. mcqueeni.

DISCUSSION
Age of Tasmaniolimulus patersoni
The revised earliest Triassic age of Tasmaniolimulus patersoni has important implications
for the timing of morphological innovation within Austrolimulidae. Tasmaniolimulus
patersoni was originally considered to be of latest Permian age (Ewington, Clarke & Banks,
1989; Lerner, Lucas & Lockley, 2017; Bicknell, 2019; Lamsdell, 2020). This age indicated
that the first appearance of hypertrophied genal spines in Austrolimulidae was before the
end-Permian extinction (Bicknell, Naugolnykh & Brougham, 2020). However, the revised
date shifts the first appearance of this trait to the earliest Triassic. Furthermore, T. patersoni
is now either the oldest Triassic austrolimulid, or contemporaneous with Vaderlimulus
tricki Lerner, Lucas & Lockley, 2017 and Psammolimulus gottingensis Lange, 1923—taxa that
all have overdeveloped genal spinemorphologies (Meischner, 1962; Lerner, Lucas & Lockley,
2017; Bicknell, Hecker & Heyng, 2021).

Comments on application of synchrotron tomography to the study of
fossil xiphosurids
The SRXT examination of the Australian xiphosurid fossils did not reveal extensive
novel anatomy, nor traces of soft tissues. The aforementioned specimens were preserved
primarily in sand- and siltstones which limits the preservation potential of fine, delicate
structures. This is in contrast to the tomographic and laminographic reconstructions of
the xiphosurid described by Zuber et al. (2017) and which was preserved in fine grained,
Muschelkalk-type limestones. These sediments tend to preserve soft-bodied anatomical
details in exceptional detail (Vía, De Villata & Esteban Cerdá, 1977; Briggs & Gall, 1990;
Cartañài Martí, 1994; Klug, Hagdorn & Montenari, 2005). Nonetheless, non-destructive
three-dimensional imaging using SRXT will likely continue to play a role in anatomical
studies of fossil xiphosurids, following the rapid adoption of this imaging modality
across palaeontology. Furthermore, NCT is being used more commonly in palaeontology,
owing to the ability of neutrons to penetrate through typically radiopaque minerals
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Figure 1 Austrolimulus fletcheri from the Hawkesbury Sandstone (Middle Triassic, Anisian).
AM F38275 counterpart of holotype. (A) Specimen under LED light. (B) 3D reconstruction
of specimen, see Fig. S1. (C) X-ray tomographic slice showing pronounced cardiac lobe (white
arrows). (D) X-ray tomographic slice showing difference in density between prosoma (red dotted
line) and hypertrophied genal spine (blue lines). Abbreviation: cl, cardiac lobe. Image credit:
(A) Joshua White. 3D PDF found at 10.17605/OSF.IO/AT528. Raw reconstructed slices found at
10.17602/M2/M380652.

Full-size DOI: 10.7717/peerj.13326/fig-1

such as iron pyrite, a high sensitivity to hydrogenous material, and thus to residual
organic remains, (Gee et al., 2019; Gee, Bevitt & Reisz, 2019; Na et al., 2021; Smith et al.,
2021; Bazanna et al., 2021), and to increasing availability of high-quality neutron imaging

Bicknell et al. (2022), PeerJ, DOI 10.7717/peerj.13326 8/26

https://peerj.com
https://osf.io/at528/
http://dx.doi.org/10.17605/OSF.IO/AT528
http://dx.doi.org/10.17602/M2/M380652
https://doi.org/10.7717/peerj.13326/fig-1
http://dx.doi.org/10.7717/peerj.13326


Figure 2 Dubbolimulus peetae from the Napperby Formation (Middle Triassic, Anisian). MMF 27693,
holotype. (A) Specimen under LED light. (B) 3D reconstruction of specimen showing appendage impres-
sions (white arrows), see Fig. S2. Abbreviation: ap, appendage impression. Image credit: (A) David Barnes.
Image in (A) reproduced from Bicknell & Pates (2020) under a CC BY 4.0 license. 3D PDF found at 10.
17605/OSF.IO/AT528. Raw reconstructed slices found at 10.17602/M2/M396665.

Full-size DOI: 10.7717/peerj.13326/fig-2

facilities at nuclear research reactors and spallation neutron sources around the world
(see https://www.isnr.de/index.php/facilities/user-facilities). Finally, techniques that can
more readily distinguish areas with very small differences in radiopacity, such as phase-
contrast enhanced imaging, show promise for more detailed examination of muscles
and other internal structures in suitably well-preserved specimens. Any, or all of these
approaches could be applied to the study of specimens of Mesolimulus walchi (Desmarest,
1822) from the Nusplingen Lithographic Limestone (Upper Jurassic, Kimmeridgian),
Germany, that have muscle traces preserved under the prosoma (Briggs et al., 2005).
Muscle traces have also been described from specimens of Euproops danae from the Upper
Pennsylvanian (Virgilian) Lawrence Formation, Kansas (Feldman et al., 1993; Babcock &
Merriam, 2000; Bicknell et al., 2022b). Further examination of the Lawrence Formation
specimens would determine if the muscles exhibit moldic preservation—as is common
for Mazon Creek fossils (Clements, Purnell & Gabbott, 2019; Bicknell et al., 2021c)—or if
there are additional, unexpressed anatomical features. The collection of novel soft anatomy
from these and other fossil xiphosurids are vitally important in presenting and revising
hypotheses regarding homology with extant xiphosurids (sensu Briggs et al., 2005; Bicknell
et al., 2022b) and resolving conflicts between phylogenetic hypotheses (e.g., Ballesteros
& Sharma, 2019; Bicknell, Lustri & Brougham, 2019; Bicknell, Naugolnykh & Brougham,
2020; Lamsdell, 2020). More broadly, this same approach can be applied to the as-of-yet
unnamed xiphosuran specimens from the Fezouata Shale Konservat -Lagerstätte (Lower
Ordovician, Morocco; Van Roy et al., 2010), as previous micro-CT imagery of material
from this deposits has yielded useful results and allowed for specimens to be differentiated
in 3D (Kouraiss et al., 2019).
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Figure 3 Tasmaniolimulus patersoni from the Jackey Shale (Early Triassic, Induan). UTGD 123979,
holotype. (A) Specimen under LED light. (B, C) 3D reconstruction of specimen, see Fig. S3. (B) Dorsal
view. (C) Oblique view. (D, E) X-ray tomographic slices showing pronounced cardiac lobe (white arrows).
(A) Coated in ammonium chloride sublimate and image converted to greyscale. Abbreviation: cl, cardiac
lobe. Image credit: (A) Russell Bicknell. 3D PDF found at 10.17605/OSF.IO/AT528. Raw reconstructed
slices found at 10.17602/M2/M396670.

Full-size DOI: 10.7717/peerj.13326/fig-3

Three-dimensional reconstructions are increasingly used in computational fluid
dynamics (CFD) to study the hydrodynamic properties of extinct aquatic taxa (Rahman
et al., 2015a; Darroch et al., 2017; Rahman, 2017; Gibson et al., 2019; Ferrón et al., 2020;
Hebdon, Ritterbush & Choi, 2020; Gibson et al., 2021; Song et al., 2021). The majority of
CFD studies have focused on enigmatic Ediacaran taxa (Rahman et al., 2015a; Rahman,
2017; Gibson et al., 2019), echinoderms (Rahman et al., 2015b; Rahman et al., 2020; Waters
et al., 2017), ammonoids (Hebdon, Ritterbush & Choi, 2020), and vertebrate groups
(Dec, 2019; Troelsen et al., 2019; Ferrón et al., 2020; Ferrón et al., 2021). While fossil
arthropods have received comparatively less attention than the aforementioned groups (e.g.,
Pates et al., 2021; Song et al., 2021), CFD studies have modelled lift and drag experienced
by modern xiphosurids (Bicknell & Pates, 2019; Davis, Hoover & Miller, 2019). Extending
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Figure 4 Victalimulus mcqueeni from the Koonwarra Fossil Bed (Early Cretaceous, Aptian).
NMV P22410B, holotype. (A) Specimen under LED light. (B) 3D reconstruction of specimen, see
Fig. S4. (C) X-ray tomographic slice showing cardiac lobe (white arrows). (D) X-ray tomographic
slice showing walking leg impressions (white arrows). (E) X-ray tomographic slice showing fixed
spines and moveable spine notches (white arrows) and thoracetronic doublure (black arrow).
Abbreviations: cl, cardiac lobe; sn, spine notches; td, thoracetronic doublure; wl, walking leg impression.
Image credit: (A) Frank Holmes. Image in (A) reproduced from Bicknell & Pates (2020) under
a CC BY 4.0 license. 3D PDF found at 10.17605/OSF.IO/AT528. Raw reconstructed slices found at
10.17602/M2/M392556.

Full-size DOI: 10.7717/peerj.13326/fig-4

CFD studies to fossil xiphosurids will facilitate comparative studies of the hydrodynamic
properties of the carapaces of extinct members of the clade, in addition to elucidating
the effects of bizarre morphologies, such as the hypertrophied genal spines, on fluid flow.
Such spines have been hypothesised to represent an adaptation to movement through
unidirectional fluid flow in primarily freshwater or marginal marine environments
(Lamsdell, 2016; Lamsdell, 2021; Bicknell & Pates, 2019; Bicknell & Shcherbakov, 2021;
Bicknell et al., 2022a); CFD provides the most compelling method for evaluating the
likelihood of this hypothesis. Due to compression of the fossils (consider Dubbolimulus
peetae) CFD models of compressed xiphosurids would need to be retro-deformed, likely
using modern forms as a proxy for inflation, to account for taphonomic alteration.
However, there are specimens, such as Crenatolimulus paluxyensis Feldmann et al., 2011
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and Tachypleus decheni (Zincken, 1862), that have maintained their three-dimensionality
(Bicknell et al., 2021a). Such specimens may be ideal for scanning and immediate CFD
analysis.

Palaeontological and biological collections house a wealth of specimens with academic
and historic value. Digitisation of holotype specimens is a salient direction for recording
and transferring fundamental anatomical information. These records are traditionally
conducted by taking photographs or making line drawings. However, two-dimensional
data and views cannot (by definition) display all characteristics needed for modern
taxonomic and phylogenetic studies (Mathys et al., 2015; Bicknell et al., 2018a). As such,
researchers often need to visit collections to examine specimens in person. This process can
be prohibitive for logistic, cost, and policy reasons, to name a few. This complication can be
circumvented by producing scans of taxonomically important and unique specimens. Such
data is becoming a means of transferring important anatomical data to researchers across
the globe and provide interested individuals with another medium with which to examine
unique material (Hühne, 2018; Shi, Westeen & Rabosky, 2018; Kouraiss et al., 2019).

CONCLUSION
Reconsidering the four Australian xiphosurids here, we have highlighted the rise of
Austrolimulidae in the Gondwanan record began just after the end-Permian extinction.
This timing also suggests that, globally, the development of hypertrophied spines
within non-belinurid xiphosurids began after the end-Permian. We demonstrate that
limited novel anatomical data were obtained for Austrolimulus fletcheri, Dubbolimulus
peetae, Tasmaniolimulus patersoni, and Victalimulus mcqueeni using SRXT, reflecting
the preservation of these fossils in sand- and siltstones. Future directions include
examining similar fossils with NCT, an additional method that achieves an alternative
and complementary contrast to X-ray CT, and may resolve features that conventional
lab-based- and synchrotron X-rays are unable to reveal. Future applications of these scan
data include informing reconstructions needed for computational fluid dynamic analyses;
a direction that may uncover the morpho-functional use of overdeveloped spines common
to Australian xiphosurids.
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