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Introduction: Although most stroke survivors show some spontaneous neurological

recovery from motor impairments of the most-affected leg, the contribution of this

leg to standing balance control remains often poor. Consequently, it is unclear how

spontaneous processes of neurological recovery contributes to early improvements in

standing balance.

Objective: We aim to investigate (1) the time course of recovery of quiet stance balance

control in the first 12 weeks poststroke and (2) how clinically observed improvements of

lower limb motor impairments longitudinally relate to this limb’s relative contribution to

balance control.

Methods and Analysis: In this prospective longitudinal study, a cohort of 60 adults

will be recruited within the first 3 weeks after a first-ever hemispheric stroke and

mild-to-severe motor impairments. Individual recovery trajectories will be investigated

by means of repeated measurements scheduled at 3, 5, 8, and 12 weeks poststroke.

The Fugl-Meyer Motor Assessment and Motricity Index of the lower limb serve as

clinical measures of motor impairments at the hemiplegic side. As soon as subjects

are able to stand independently, bilateral posturography during quietly standing will be

measured. First, the obtained center-of-pressure (COP) trajectories at each foot will

be used for synchronization and contribution measures that establish (a-)symmetries

between lower limbs. Second, the COP underneath both feet combined will be

used to estimate overall stability. Random coefficient analyses will be used to model

time-dependent changes in these measures and, subsequently, a hybrid model will

be used to investigate longitudinal associations with improved motor impairments.
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Discussion: The current study aims to investigate how stroke survivors “re-learn”

to maintain standing balance as an integral part of daily life activities. The knowledge

gained through this study may contribute to recommending treatment strategies for early

stroke rehabilitation targeting behavioral restitution of the most-affected leg or learning

to compensate with the less-affected leg.

Keywords: stroke recovery, motor recovery, force plate analysis, longitudinal regression analysis, standing

balance, prospective longitudinal cohort study

INTRODUCTION

Background
Stroke is a major cause for acquired serious disability in adults
worldwide (1). It is well known that stroke affects standing
balance, for example posturographic studies revealed that stroke
survivors show increased body sway reflected by center-of-
pressure (COP) movements (2–5). Recovering the ability to
maintain standing balance is seen as a prerequisite for regaining
walking independence (6), and residual deficits are associated
with limited community ambulation (7, 8) and falls (9–11).
Accordingly, falls remain a major problem with approximately
50 to 70% of community-dwelling stroke survivors experiencing
a fall recently after being discharged home from rehabilitation
facilities (9, 10, 12). As such, deficient standing balance control
may contribute to chronic disability and fall-related injury
resulting in greater economic costs due to the need of care (13)
and poor quality of life (14).

Improving stroke rehabilitation services requires a profound
understanding about the behavioral changes underlying impaired
as well as improved balance control execution, together with the
time windows in which they develop. This may enable clinicians
to define appropriate treatment targets and rehabilitation goals
early onwards. From this perspective, particularly explorative
longitudinal research with repeated measurements early in time
is warranted to distinguish between behavioral restitution and
compensation when control of standing balance is restored (15,
16). As stroke recovery is a complex process that likely involves
both spontaneous and learning-dependent mechanisms (17, 18),
this research should be based on a commonly shared framework
for classifying and using uniform terminology.

The WHO’s international classification of function, disability
and health (ICF) model may serve as such framework by
categorizing the consequences of stroke in terms of body
functions, activities and participation (17, 19). Following the
ICF, we will discuss available literature and, subsequently, the
design of an ongoing observational study into the time course
and mechanisms underlying standing balance recovery. For this
purpose, we distinguish between recovery of motor impairments
of the most-affected lower limb (i.e., ICF level of body functions)
and an improved ability to maintain standing balance as an
integral part of daily life activities (i.e., ICF level of activities).

Time Course of Lower Limb Recovery
Unfortunately, only few longitudinal studies have been designed
to investigate prospectively the time course of recovery of lower

limb function (20–23) and activities (24–26) early after stroke.
These studies suggest that recovery of motor impairments, such
as synergy-dependency (20, 22, 23) and weakness (21, 23), mainly
occurs in the first 5 weeks and levels off between 8 to 12 weeks
poststroke (20–22). However, most survivors experience residual
impairments in dissociating voluntary foot and leg movements
from intra-limb synergies (27, 28) and muscle strength (23)
which is associated with a decreased contribution of this leg to
standing balance control (29–32). These early time-dependent
changes remain poorly understood, but can be conceptualized as
spontaneous neurological recovery as reflected by the passage of
time (23).

Similar regularities in recovery patterns of activities involving
the lower limbs have been shown. Likewise, most improvements
in walking (6, 24–26) and other daily life activities (21, 23)
were seen in the first weeks and regaining standing balance
is found imperative to such recovery (6). One might suggest
that spontaneous neurological recovery is associated with, if not
determinant for these rapid improvements. This would mean
that the ability to complete these tasks is restored with the
same movement repertoire, or quality, the patient had before
the stroke (i.e., behavioral restitution) (18, 19, 33). However,
previous longitudinal research is largely limited to outcomes
showing the mere accomplishment on these tasks. As these
measures are unable to discriminate how the task is performed
(19, 34, 35), little has been learned so far about the time course
of recovery regarding qualitative aspects of movement when
standing balance is restored.

Mechanisms Underlying Recovery of Standing

Balance Control
As recently suggested (28), a number of severely affected subjects
fail to show neurological recovery (28), leaving them entirely
dependent on learning to use alternative ways to maintain their
standing balance (i.e., behavioral compensation). However, even
“well-recovered” patients with near normal clinical scores may
show a disproportional reliance on the less-affected leg to balance
control (31, 36). This is illustrated bymore recent posturographic
studies showing that bilateral COP displacements at the feet
separately, as a reflection of the anticipatory modulation of ankle
muscle activity aiming tominimize body sway (37, 38), are poorly
synchronized (32, 39) and unequal (29–31, 40, 41) as compared
to healthy controls. It seems that neurological recovery, even
if occurring, is rarely complete and an even larger portion of
survivors may depend on using compensation strategies to deal
with residual impairments.
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In favor of this notion, few longitudinal studies did show
that standing balance improves in many patients without any
concomitant improvements in anticipatory control of most-
affected leg muscles in response to rapid arm movements (34,
42) or without restitution of symmetric exertion of corrective
COP movements during unperturbed, quiet stance (2, 30, 40).
However, these studies did unfortunately not start in the first
weeks and assessed subjects at only few arbitrarily chosen
time-points, leaving longitudinal associations with neurological
recovery entirely underexplored.

As it remains unknown how stroke survivors “re-learn”
to maintain standing balance in the early recovery phase
when motor functions at the hemiplegic side improve, there
is a need for early-started longitudinal research incorporating
sensitive measures of task performance next to clinical scales.
These studies may eventually progress our understanding of
how spontaneous neurological recovery contributes to the re-
acquisition of bipedal balance skills early after stroke onset.

Objectives
In the current manuscript, we describe an observational cohort
study that aims to prospectively investigate the time course
of recovery of quiet stance balance control in the first 12
weeks after a first-ever hemispheric stroke. The relatively
low functional demands of this condition (as compared to
perturbed stance or walking) enables us to describe the process
of balance skill re-acquisition even in more-severely impaired
subjects and in the time window of spontaneous neurological
recovery. Simultaneously, we will clinically observe the time
course of recovery of lower limb motor impairments to
investigate longitudinal associations with this leg’s contribution
to balance control.

The pre-defined research questions and hypotheses are:

• What is the time course of recovery in the first 12 weeks
poststroke in terms of balance control (a-)symmetries and
overall stability during quiet stance? (i.e., project A).

First, we hypothesize that improvements in balance control
symmetries toward values seen in healthy controls, as
assessed through bilateral posturography (i.e., between-
limb synchronization and contribution measures of corrective
COP movements), are restricted to the first 5 weeks poststroke.
Second, we hypothesize that an improved ability to maintain a
stable standing position following traditional posturographic
measures of body sway (i.e., stance stability) may develop beyond
the time window and up until 12 weeks poststroke. As such,
these later changes are hypothesized to reflect compensatory
body stabilization exerted through the less-affected leg.

• How are improvements inmuscle synergies and ankle strength
of the most-affected leg longitudinally associated with this leg’s
contribution to quiet stance balance control in the first 12
weeks poststroke? (i.e., project B).

First, we hypothesize that clinical improvements in muscle
synergies (i.e., Fugl-Meyer Motor Assessment) and strength (i.e.,
Motricity Index) at the hemiplegic side aremainly seen within the
first 5 weeks poststroke, in accordance with previous longitudinal

studies investigating time-dependent change (20, 23). Second,
we hypothesize to find within this time window longitudinal
associations between recovery on these scales and improved
between-limb symmetry in balance control. This means that
clinically observed improvements in motor impairments relate
over the first weeks to an improved ability of this leg to contribute
to corrective COP movements while standing quietly.

METHODS

The protocols of prospective repeated-measurement studies
from which participants will be recruited for this longitudinal
investigation are registered online (ClinicalTrials.gov Identifier:
NCT03728036; NCT03727919). These studies are designed and
executed in adherence to the STROBE statements and were
approved by the local Ethics Committee of the Antwerp
University Hospital (Edegem, Belgium) in accordance with the
declaration of Helsinki (main ethics committee protocol number:
18/25/305; Belgium trial registration number: B300201837010).
The responsible ethics committees of all other involved clinical
sites were asked for advice and additional approval before the
study started.

Participants
In total, this study will include a cohort of 60 patients after a first-
ever hemispheric stroke of ischemic or hemorrhagic cause within,
at most, 3 years of recruitment. This cohort will be recruited from
the stroke units at the University Hospital Antwerp (Edegem,
Antwerp, Belgium), the GZA Hospital campus St Augustinus
(Wilrijk, Antwerp, Belgium) and the General Hospital Geel
(Antwerp, Belgium). All cooperating hospitals are located in the
larger Antwerp region in Flanders, Belgium. Stroke survivors will
be screened and asked to participate as soon as possible and
within the first 3 weeks after stroke onset. Only survivors who are,
or will be admitted to one of the involved rehabilitation facilities
(RevArte, Edegem, Antwerp, Belgium or the rehabilitation
hospital Geel, Geel, Antwerp, Belgium) for inpatient treatment
(eventually followed by outpatient treatment) are considered for
inclusion, as the repeated measurements will be performed there.
In addition, ten middle-aged (i.e., 45 to 65 years) healthy adults
(gender equally distributed) with no known musculoskeletal or
neurological injury or illness that may affect balance control
will be recruited to serve as controls for the interpretation of
posturographic measures of quiet stance balance control.

Before entry, an information brochure about the study’s aim,
content and potential risks, together with information about
the investigators is provided to each prospective subject (and
if adequate to her/his family). If the subject feels sufficiently
informed and agrees to participate, an informed consent is signed
and eligibility is determined according to the following criteria.

Inclusion Criteria
• A first-ever, CT- or MRI-confirmed, supra-tentorial stroke in

the anterior or middle cerebral arteria territory of ischemic or
hemorrhagic cause;

• Impaired motor functions of the lower limb, defined as a score
of> 0 on the NIHSS item 6 (i.e., at least “drift of the leg within
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5 s without a fall”) within 3 days after stroke onset (or self-
reported if data is missing), and a MI-LE score of ≤ 91 (i.e., at
least “movement against resistance but weaker” in one item) at
the moment of inclusion;

• Age between 18 and 90 years;
• Sufficient motivation to participate.

Exclusion Criteria
• Dependent in daily life activities before stroke onset, defined

as a pre-morbid Functional Ambulation Category score of <4
and a modified Rankin Scale score of >1;

• Having a preexisting orthopedic or neurological condition that
affects motor functions of the lower limbs and/or standing
balance control;

• Severe cognitive or communication deficits that may hinder
informed consent and execution of the study;

• Not Dutch, German or English speaking prior to the
stroke incident.

Design
The current recovery study is a non-interventional observational
study meaning that no systematic interventions are applied next
to usual care. For the duration of inpatient rehabilitation, this
consists of 30- to 60-min sessions of physical and occupational
therapy each workday following local guidelines.

After eligible subjects are included within the first 3 weeks
poststroke, serial measurements will be scheduled at 3, 5, 8,
and 12 weeks poststroke. Clinical evaluations are performed by
the same assessor for each participant to decrease the effect of
inter-rater variability when measuring within-subject change. In
total, two physical therapists are available for clinical testing
who underwent a training period to standardize assessment
procedures prior to the study start. As soon as subjects are
able to stand independently barefoot over at least 30 seconds,
bilateral posturography will be performed during a standardized
quiet stance task. For this purpose, either two separate force-
plates (Type OR 6-7, AMTI, MA, US; measurement frequency
1 kHz) arranged in a side-by-side configuration as part of a
stationary movement analysis laboratory (M²OCEAN, University
Hospital Antwerp, Edegem, Belgium) or a portable pressure-
plate system (0.5m footscan 3D, RS Scan, Belgium; measurement
frequency 500Hz) will be used. This provides the advantage of
executing this study in multiple (clinical) settings to facilitate
recruitment and continuous data acquisition. Importantly,
repeated within-subject measurements are always performed
with the same equipment and these measurements are performed
by a trained physiotherapist who is educated in using the
measuring instruments.

Data Collection and Processing
During the uptake procedure, the participant’s demographics
including sex and age together with information about the stroke
lesion in terms of type (i.e., infarct or bleeding) and side (i.e., left
or right hemisphere affected) is collected. Length of stay in the
rehabilitation hospital and discharge destination will be recorded
throughout the study.

Before each balance assessment, the subject’s body weight and
length is measured. Next, the subject’s bare feet will be positioned
in parallel with a 8.4 cm heel-to-heel distance and in a 9◦ toe-
out angle on the measuring plate (40). Manual support will be
provided during standing up until the subject feels comfortable to
stand independently. Now, the subject is instructed to maintain
this position for 40 s with the arms alongside the trunk and the
eyes open. They are asked to look straight ahead at a visual target
at an approximately 2-meter distance. Subjects are encouraged
to adopt a spontaneous, stable posture rather than standing as
symmetric as possible. Three trials will be performed and if the
subject got distracted, lost balance or moved the arms or head in
a way that is not related to balance, the trial is excluded.

From each eligible trial, the first 10 s will be removed to
prevent the influence of starting effects. Previously it was
shown that 30 s quiet stance registration yield excellent test-
retest reliability (43). Limb-specific COP trajectories will be
calculated based on raw force components and low-pass filtered
using a zero-lag, second-order Butterworth filter with a 10Hz
cutoff frequency. For the calculation of synchronization and
contribution measures, these trajectories will be split into an
anteroposterior (AP) and mediolateral (ML) signal based on the
orientation of the feet by rotating the reference system. The
COP underneath both feet combined will be used to estimate
overall stance stability. For this purpose, we focus on velocity
parameters as these are shown to have greatest reliability (44, 45)
which has been confirmed for bilateral posturography in stroke
survivors (46). These studies also show that usually two to three
trials are sufficient to reach reliable data (45, 46) which is of
relevance for this project since instability is pronounced early
after stroke allowing to acquire only few standing attempts.
All data processing (and parameter calculation, as documented
below) will be done by using custom-made Matlab scripts (The
MathWorks Inc., MA, USA).

Outcomes
Poststroke recovery is a complex matter and the inconsistent
use of terminology in the literature creates opportunities for
confusion. Therefore, we first define the chosen outcome
variables following the ICF framework (see Figure 1) and
differentiate between dependent and independent variables for
subsequent analyses.

Independent Variables of Outcome
The main independent variables for modeling longitudinal
associations with balance control measures (i.e., project B) are
time-dependent, or dynamic, and situated on the ICF level of
body functions (see Table 1). On this level, recovery means the
restitution of rudimental functions of movement execution (19,
35), such as synergy-dependency and strength which we define
as follows.

Dynamic Variables
Although different definitions and constructs of muscle synergies
exists in the literature (47), we refer to synergies as the clinical
phenomenon of “pathological intra-limb synergies” meaning the
loss of independent joint control leading to the emergence of
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FIGURE 1 | ICF model. The upper panel provides an overview of ICF items that are required for (i.e., level of body functions, colored green) and dependent on (i.e.,

level of activities, colored yellow, and participation, colored red) standing balance control. The items that are directly assessed in the current study are highlight in bolt.

In the lower panel metrics corresponding to these items of interest are provided. The color-coding indicates that metrics of quality of task performance and task

accomplishment are both primarily situated on the level of activities, whereas the first indicates how movement execution functions (i.e., level of body functions) are

assembled to execute a balance task. Contrary, task accomplishment means if a subjects is successful in maintaining standing balance, irrespective of the underlying

control strategy, as a determinant of independence in daily life activities and participation (i.e., level of participation).

stereotypical flexor and extensor movements (48) (i.e., ICF item
b760 “Control of voluntary movement functions”). As such,
muscle synergies are defined as an “increased co-activation
between muscles in the paretic limb that can be elicited
voluntarily” (48). Second, muscle strength is defined as the
ability to produce a “maximum voluntary force or torque”
through a muscle or muscle group contraction around a single
joint (i.e., ICF item b730 “Muscle power functions”) (49). The
following standardized clinical scales will be used to address
these functions.

• Fugl Meyer motor assessment–lower extremity (FMA-LE):
Muscle synergies will be assessed by means of scores on
the FMA-LE, ranging from 0 (i.e., unable to move the
limb or evoke tendon reflexes) to 34 points (i.e., able to
selectively flex the knee and ankle joint in standing and
normal reflexes). This scale has been reported to have
excellent inter-rater [Pearson’s r = 0.96 (50); ICC = 0.91,
0.97–1.0 95% CI (51)] and intra-rater reliability [ICC = 0.99,
0.91–1.0 95% CI (51)] when assessed in stroke survivors.
Moreover, we use the standardization method of See et al. (52)
to improve scoring consistency.

• Motricity Index–lower extremity (MI-LE): Muscle strength
in hip flexion, knee extension and ankle dorsiflexion direction
will be assessed with the MI-LE. Active range of motion and
force against manual resistance will be compared between
both sides and evaluated with scores varying between 0 (i.e.,
no voluntary muscle contraction) and 33 points (i.e., full
movement against gravity and equal strength) for each item.
This scale has shown excellent intra-rater [ICC = 0.93, 0.84–
0.97 95% CI (53); Spearman’s rho = 0.87 (54)] and inter-rater
reliability [Spearman’s rho= 0.87 (54)] in stroke survivors.

Fixed Variables
Fixed, or time-dependent variables that are hypothesized to be
potential confounders will be used as additional covariates. This
includes the subject’s age and gender at inclusion, as well as their
Body Mass Index (BMI) (see Table 1). Body weight is serially
assessed at each occasion and if significant fluctuations are seen
over time, the BMI may be added as a dynamic variable. In
addition, the stroke type and side will be added. Lastly, the
used equipment for serial subject-specific measurements will be
evaluated as a potential confounder.
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TABLE 1 | Measurements per assessment occasion.

Domain/measure Measurement occasions (time poststroke)

<3 weeks

(i.e., inclusion)

3 weeks 5 weeks 8 weeks 12 weeks

Uptake procedure

Informed consent X

Independent variables: Potential covariates/confounders

Demographics:

Gender (m/f/x), Age (years)

X

Lesion characteristics:

Type (infarct/bleeding), Side

(left/right hemisphere)

X

Anthropometrics:

Body Height (mm), Body

Weight (kg)*

X X* X* X* X*

Other:

Equipment

(force-plates/pressure-plate)

X

Independent variables: Body functions level-Lower limb motor impairments

Fugl Meyer

assessment–lower extremity

X X X X

Motricity Index–lower

extremity

X X X X

Dependent variables: Activity level-Quality of task performance

Between-limb

synchronization

X X X X

Dynamic control asymmetry X X X X

Dependent variables: Activity level-Task accomplishment

Berg Balance

Scale–standing

unsupported item

X X X X

Stance stability X X X X

A scheme of the obtained metrics and items per assessment occasion is presented. Note, body weight (as marked with a *) is the only potential additional covariate that is considered

time-dependent and is therefore assessed at each follow-up occasion.

Dependent Variables of Outcome
Dependent variables of outcome will be investigated in this study
on the time course of recovery (i.e., project A) and longitudinal
associations (i.e., project B). These outcomes are situated on
the ICF level of activities where recovery comprises a general
improvement in the ability to execute purposeful movements in a
task context (19, 35). In the current study, the task of maintaining
a quiet standing posture (i.e., ICF item d4154) will be evaluated
which is defined as “the ability to control the body’s center-of-
mass relative to the base of support in fairly predictable and
non-changing conditions” (55). For this purpose, we use and
distinguish metrics addressing the quality of performance from
those showing the mere accomplishment on this task.

Quality of Task Performance
Quality of task performance is “defined through a direct
comparison of a patient’s motor execution of a task [. . . ] to able-
bodied control subjects” (35). This means that the closer the
movement matches those seen in controls, the better the quality.
With regard to standing balance, quality of performance is best
reflected by measures that establish the (a-)symmetry between
the most- and less-affected side considering that healthy balance

control is characterized by equal output generated through the
legs in the form of corrective COP movements (39, 56, 57).
For this purpose, synchronization and contribution measures
will be calculated that show how well both limbs act together
(32, 39, 56) and are equally involved (31, 57) in maintaining
standing balance. As COP in the ML direction is less meaningful
for bipedal balance control (56), we focus on the sagittal plane.

• Between-limb synchronization: Between-limb
synchronization is a measure of the temporal structure
and similarity between bilateral COP (39, 56). For this
purpose, the mean position is subtracted from left and
right AP COP trajectories and, next, a cross-correlation at
zero-phase leg on a frame-by-frame basis is calculated. This
measure therefore shows how well COP displacements are
alike, or synchronized.

• Dynamic control asymmetry (DCA): DCA is a symmetry
index of the root mean square (RMS) of the AP COP
velocities for each leg separately (31, 57). A score of zero
indicates equal contribution of both legs to balance control
and positive or negative values indicating a relatively larger
involvement of the less- or most-affected leg, respectively. We
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use the following equation: Symmetry index: 2x (RMSCOPAP
velocity less-affected - RMS COP AP velocity most-affected) /
(RMS COP AP velocity less-affected + RMS COP AP velocity
most-affected).

Task Accomplishment
Metrics on task accomplishment are designed to show if a patient
re-acquired the ability to complete the task irrespective of the
underlying control strategy.With regard to standing balance, this
is exemplified first by the level of independence following clinical
scales and second by (traditional) posturographic measures of
body sway that show how well a subject can stabilize their center-
of-mass within the base of support. Therefore, these outcome
variables will be used to address the process of regaining and
optimizing the ability to maintain standing balance.

• Berg Balance Scale - standing unsupported item (BBS-s):
The BBS-s assesses the ability to maintain assesses the ability
to maintain a quiet standing posture without using the arms
or support by another person. A score is assigned based on
the level of independence needed to complete this task, where
a score of 0 indicates no standing ability and a score varying
between 1 and 4 indicate independent stance over 30 s to
2min. The BBS has been reported to have excellent internal
consistency as reported by a systematic review (58).

• Stance stability: To investigate overall stability when subjects
attempt to stand quietly, we will calculate the root mean
square (RMS) velocity of the net COP (i.e., combining two
feet together without correction for feet orientation) in AP and
ML direction. As the position of the net COP and the vertical
representation of the body’s center-of-mass correlate (59) these
metrics reflect the ability to stand with minimal body sway.

Data Analysis
Descriptive Analysis
Subject’s demographics at baseline together with lesion
characteristics will be descriptively analyzed. The length of
stay in the inpatient rehabilitation facility and discharge
destination will be reported. In addition, adherence to the study
protocol will be illustrated by reporting the number of subjects
leaving the study prematurely and reasons for dropping out
entirely or missing assessments. We will use the BBS-s to show
how soon subjects recovered standing balance and were able to
participate in posturographic assessments.

Statistical Analysis

Project A
In project A, we aim to investigate time-dependent changes
in metrics of quiet stance balance control. To estimate how
each parameter is changing as a function of time poststroke,
we use a random coefficient analysis (or mixed model analysis)
with “time” of measurements as the main fixed effect (JMP
Pro, version 15). Additionally, “time” will be entered as an
independent covariate in form of an subject-specific slope (i.e.,
the interaction term “participant∗time”) to adjust for dependency
of repeated observations. However, the greatest advantage of this
method is its flexibility in dealing with missing values. The latter
may result from subjects being unable to stand at first occasions,

being unavailable due to hospital discharge or transfers, or by no
longer corresponding to eligibility criteria for example due to a
recurrent stroke or other sudden medical condition (potentially)
affecting outcome variables.Moreover, the value on the addressed
metric at 3 weeks poststroke will be added to account for inter-
subjects variability.

In addition, fixed covariates that are hypothesized to be
potential confounders will be entered in the model. This
includes “gender,” “age” and “BMI” considering their influence on
standing balance control. [i.e., females and elderly tend to show
greater body sway (60) and obesity is associated with instability
(61)]. Second, stroke “side” and “type” will be added, as right-
sided lesions typically result in greater balance deficits (62) and
subjects with hemorrhagic strokes may display delayed recovery
(63). Lastly, “equipment” is added as a potential confounder
considering technical variations in measuring instruments.

Statistical analysis of the difference in each measure of quiet
stance balance control between subjects and healthy controls will
be performed using theMann-Whitney U test for eachmeasuring
system separately.

Project B
After describing the recovery time course, we aim to investigate
longitudinal associations between motor impairments in terms
of leg muscle synergies (i.e., FMA-LE) and ankle strength (i.e.,
ankle item of the MI-LE) serving as independent variables, and
the DCA which is the dependent variable. First, we analyze the
pattern of neurological recovery following these clinical scales by
using similar methods as outlined above. Second, we will apply a
recently discussed hybrid model (64) to investigate longitudinal
associations over the first 12 weeks poststroke. This method has
the advantage of disentangling the between- and within-subject
effects of this relation.

The between-subjects covariate score is determined as the
individual average value over time of the independent variables
which reveals the association irrespective of the development
over time. On the other hand, the within-subject covariate is
calculated as the observed value at each time point minus the
individual average (i.e., deviation score). By this, we can estimate
whether longitudinal changes of the dependent and independent
variables within a subject are associated, i.e., are increasing scores
on the FMA-LE orMI-LE ankle item related to changes following
the DCA. Similar covariates will be entered in the model and
tested on significance.

For all statistical tests, the likelihood ratio test will be used
to examine the need to enter random effects into the model
and the Wald test will be used to obtain P-values for regression
coefficients in the final model. A 2-tailed significance level of 0.05
will be used for all analyses.

Sample Size Justification
To the best of our knowledge, this is the first study to
prospectively investigate changes in the variables over time early
after stroke. This certainly limits the effectiveness of a sample
size determination based on a power analysis. Therefore, we
determine and justify our sample size of n = 60 based on
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recruitment (2.2 participants/month) and drop-out (15%) rates
as seen during the first year of recruitment. Considering that we
will include notmore than 3 to 4 (main) covariates in our random
coefficient and hybridmodels, wemeet the “rule of thumb” saying
that 10 subjects per variable are sufficient to perform bivariate
and multivariate regression analyses.

Trial Status
Participant recruitment began in January 2019 in the University
Hospital Antwerp and the RevArte rehabilitation hospital, in the
GZA Sint-Augustinus hospital in April 2019 with a temporal
suspension of recruitment in all involved sites between March
and September 2020 due to Covid-19 measures. In response, an
additional partnership with the General Hospital Geel in January
2021 was set-up. By now (October 2021), 52 stroke survivors were
recruited indicating feasibility of reaching the desired sample size
within the proposed recruitment period.

DISCUSSION

In this manuscript, we describe the design of an ongoing
observational study with repeated measurements in time. This
study aims to prospectively investigate individual recovery
trajectories in a cohort of 60 mild-to-severely impaired subjects
early after a first-ever, ischemic or hemorrhagic hemispheric
stroke. Bilateral posturography will be used to measure
balance control (a-) symmetries and overall stability during a
quiet stance task to investigate the time course of recovery
following these posturographic measures within subjects (i.e.,
project A) and, subsequently, longitudinal associations with
recovery of lower limb motor impairments (i.e., project B).
The knowledge gained through this study may contribute to
our understanding of how progress of time as a reflection
of spontaneous recovery contributes to regaining standing
balance control through the most-affected leg, as well as
dependency on compensatory stabilization exerted through the
less-affected leg.

Time Course of Lower Limb Recovery
Recent upper limb recovery studies (65, 66) attest to the
effectiveness of incorporating sensitive and specific task
performance measures into longitudinal research. Based on
repeated kinematic measures of a reaching task, it was shown
that recovery of movement quality with the hemiplegic arm
plateaus in most patients over the first 5 weeks poststroke
(65, 66). This suggests that further task improvements are most
likely explained on the basis of compensatory mechanisms, such
as increased trunk movements to assist arm and hand transport
(19). If assuming that neurological recovery regarding the upper
and lower limb develops in parallel, as suggested by previous
clinical research (20, 22, 23), a similar distinct time window of
behavioral restitution of standing balance control through the
most-affected leg might be expected.

Previous posturographic studies already showed that the DCA
shows little tendency to diminish over inpatient rehabilitation
(40) resulting in a poor contribution of the most-affected leg to

balance control (29, 31, 32, 41). Acknowledging that recovery
of standing balance may extend far beyond the first weeks, e.g.,
improvements are seen in response to specific training even in
the chronic stage (67), it seems that learning to compensate with
the intact leg drives the reacquisition of functional balance skills
after stroke. In favor of this notion, few longitudinal studies
report consistent improvements over the first months in timed
muscle activation with the less-affected leg to effectively correct
balance after perturbations (34, 42, 68). Simultaneous changes
at the hemiplegic side are often absent (34, 42, 68). However,
how progress of time contributes to the relative involvement
of the most-affected limb to balance control and, consequently,
when such compensation need to emerge has hardly been
investigated early after stroke. Thismakes project A of the current
study unique.

Mechanisms Underlying Recovery of
Standing Balance Control
When standing, even smallest movements of the body must be
corrected to avoid excessive sway and eventually a fall. As such,
fine motor control is demanded for effective balance control.
However, balance-related leg muscle activation is often disturbed
after stroke. Abnormal intra-limb coordination patterns (68, 69)
and delayed muscle onset (34, 42, 68) characterize reactive
balance control through the hemiplegic leg, and inter-limb
muscle activity about the ankle joints is poorly synchronized
(11, 32, 39) and unequal exerted (2, 29–31, 40) during
unperturbed stance. What determines poor muscle control as
seen during balancing tasks is unknown, but may involve
synergy-dependency (30, 31).

Already in 1951, Twitchell showed based on meticulous
clinical observations that regaining control over the hemiplegic
limb goes through synergy-dependent stages (48). This is
later confirmed by longitudinal studies (20, 22, 23) showing
progressively increasing scores on the FMA-LE over the first
weeks poststroke. One might suspect a relationship between
such clinical gains and an improved ability to execute functional
movements with this leg, but this has been investigated cross-
sectionally only with regard to standing balance (30–32).
Although a relation was suggested, it is considered weak (31, 32).
It was recently even shown that patients with near normal scores
on the FMA-LE may show considerable control asymmetries
(31). Although speculative, one may suggest that subtle fine
motor control impairments go undetected by these scales, while it
remains entirely unknown how this relation develops early after
stroke. Since this knowledge has implications for rehabilitation
practice, project B can be regarded as being innovative and of
clinical relevance.

Clinical and Scientific Significance
It is important for rehabilitation clinicians to distinguish
improved standing balance resulting from behavioral restitution
of the most-affected limb and compensatory stabilization
through the less-affected limb. Historical treatment concepts
strive to restore normal movement patterns (70), and even
recent therapies such as feedback-based balance training involve
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teaching patients to stand as symmetric as possible (71).
This might be questioned acknowledging that many stroke
survivors seem unable to restore symmetric balance control
strategies (31, 40). These patients may even benefit from some
asymmetric loading to make corrective COP movements at the
less-affected side more effective (57). From this perspective, the
knowledge gained through this study may further direct how
stroke survivors should be trained early onwards. This may
eventually result in faster reaching of independence in daily life
activities to enable patients to engage as early as possible in
more intensive, semi-supervised therapies (72) and supported
discharge (73).

However, implications may go far beyond clinical
rehabilitation practice alone. An improved understanding
of recovery that distinguishes behavioral restitution from
compensation will contribute to the design of rehabilitation
devices as well as development of sensitive measurements of
quality of movement. The latter will improve future trial design
regarding the choice of outcome measures (16). Specifically,
addressing effectiveness of novel behavioral and pharmacological
treatments based on such measures is warranted (35). Moreover,
interpretation of neuroimaging may greatly benefit from
this knowledge. Current literature argues the importance
of knowledge about the associations between behavioral
improvements and changes in brain activity and connectivity
(35), yet the neural correlates of behavioral restitution remain so
far unknown.

Study Limitations
The study described in the current report also has some
limitations. Although the number of participants that will be
included in the current study is greater as compared to previous
prospective balance recovery studies (30, 34, 40, 42, 68) [with
ranges between n = 13 (68) and n = 37 (40)], the desired
sample size is limited. Second, since we use one specific balance
condition it is not possible to determine whether results can
be generalized to other balance tasks. Recent literature suggests
that increasing challenges may reduce the degree of asymmetry
in bipedal balance control (74) and balancing in everyday life
environments requires rather reactive control skills (11). The
results may therefore not fully capture the upper boundary of
neurological recovery at the hemiplegic side and translation
to dynamic balance conditions remains unknown. However,
incorporating more-challenging paradigms may lead to a greater

amount of missing values since many subacute patients with
hemiparesis are not able to safely withstand perturbations when
standing (34, 42) or perform dynamic tasks such as walking (75)
until several weeks after stroke. Third, repeated measurements
were performed with either force-plates or a mobile pressure-
plate system. This enables us to perform measures in various
(clinical) settings and recruit more broadly. However, while both
systems can extract bilateral COP profiles, technical variations
differ. To control for this, focus lies on within-subjects time
series analyses and, additionally, we will add “equipment” as a
covariate to our regression models. Fourth, measurements are
restricted to the first 12 weeks. Yet, it might be of interest to

further continue measurements acknowledging that few studies
revealed that about 15% of survivors improve (76) and 25%
will deteriorate beyond the first 6 months (77). Lastly, the study
did not monitor the type and amount of therapy provided to
each participant and we are unable to correct for these factors.
The lack of using uniform guidelines for stroke rehabilitation
in Flanders, Belgium could lead to differences in how subjects
are treated in cooperating facilities. Moreover, mildly-affected
subjects may be discharged earlier and receive less intensive
outpatient therapy afterwards. However, evidence that current
rehabilitation interventions impact neurological recovery is still
lacking so far (17, 78), particularly if provided as part of standard
care which is shown to be low-dosed (79, 80). Since usual care
has not been systematically modified, differences in rehabilitation
treatment are expected to have a limited impact on outcomes of
the current study.
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