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Hepatocyte Nuclear Factor 4 Alpha (HNF4a) is a master transcription factor

mainly expressed in the liver, kidney, intestine and endocrine pancreas. It

regulates multiple target genes involved in embryonic development and

metabolism. HNF4a-related diseases include non-alcoholic fatty liver disease

(NAFLD), obesity, hypertension, hyperlipidemia, metabolic syndrome and

diabetes mellitus. Recently, HNF4a has been emerging as a key player in a

variety of cancers. In this review, we summarized the role and mechanism of

HNF4a in different types of cancers, especially in liver and colorectal cancer,

aiming to provide additional guidance for intervention of these diseases.
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Introduction

HNF4a is a critical transcription factor (TF) during development. Its silencing and

dysfunction could lead to stunted development in gastrula formation (1), liver (2) and

kidney (3). Interestingly, enforcing expression of HNF4a, in cooperation with Forkhead

Box Protein A3 (FOXA3) and Hepatocyte Nuclear Factor 1-Alpha (HNF1a), could even

reverse the hepatocellular carcinoma (HCC) cells into normal hepatocyte-like cells (4).

Furthermore, HNF4a binds to different gene clusters between undifferentiated state and

differentiated state during embryonic development (5), which may be a reason why

HNF4a has opposite functions in different types of malignancies.

Another vital role of HNF4a is the regulation of metabolic homeostasis. Most

HNF4a-related diseases have abnormal insulin secretion such as occurrence of

diabetes mellitus (including Type I and Type II diabetes mellitus), while the
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underlying molecular mechanism remains elusive (6, 7). It

has been shown that HNF4a interacts with Circadian

Locomoter Output Cycles Protein Kaput (CLOCK)/BMAL1

to regulate a series of metabolic genes involved in lipid,

glucose and amino acid homeostasis. It was known that the

circadian rhythm of metabolism was controlled by HNF4a
through repression of transcriptional activity of CLOCK/

BMAL1 (8). Knockout of BMAL1 attenuated the genome-

wide binding of HNF4a in the l iver poss ib ly via

transcriptional downregulation of HNF4a (9). In addition,

HNF4a regulated energy metabolism and inflammation

through recruiting glucocorticoid receptors (10).

Similarly, HNF4a has been shown to promote glycolysis,

glucose uptake, lactic acid production and ATP levels in

neuroblastoma cells, and the underlying mechanism involved

hexokinase 2 (HK2) and Solute Carrier Family 2 Member 1

(SLC2A1) and the heterogeneous nuclear ribonucleoprotein U

(hnRNPU) (11). In pancreatic cancer, HNF4a deletion led to a

glycolytic energy metabolism transition from typical pancreatic

adenocarcinoma to squamous pancreatic cancer, in which

Fructose-Bisphosphate Aldolase A (ALDOA), Hexokinase 1

(HK), and Glycogen Synthase Kinase 3 Beta (GSK3b) genes are
upregulated. The downstreamWingless-Type MMTV Integration

Site Family, Member 7A (WNT7A) and Protein Kinase AMP-

Activated Catalytic Subunit Alpha 1 (AMPK) signal activation

further led to drug resistance in squamous pancreatic cancer (12).

Here, we review the role and the mechanism of HNF4a in

various cancers, try to emphasize the importance of HNF4a in

tumorigenesis and look forward to helping with the treatment

and prevention of cancer.
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The expression of HNF4a in
different tumors

HNF4a has been demonstrated to be a tumor suppressor in

certain types of tumors but act as an oncogene in other forms of

cancers. We also analyzed the expression levels of HNF4a in

different tumors from the TCGA database and found that

HNF4a is upregulated in most gastrointestinal tumor tissues

when compared to their matched normal tissues, including

colon and rectal adenocarcinoma, esophageal cancer, stomach

cancer and pancreatic cancer. However, HNF4a expression level

is downregulated in cholangiocarcinoma and kidney

chromophobe tissues compared to their normal counterparts

(Figure 1). Although we did not see significant change of HNF4a
expression in HCC and prostate cancer (Figure 1), HNF4a plays

an important role in HCC and prostate cancer (see below).
HNF4a function in
hepatocellular carcinoma

The important role of HNF4a in development and

metabolism, especially in liver tissues, led to the initial

research focusing on HNF4a in liver cancer. HNF4a was

shown to play an inhibitory role in the development of liver

cancer, and was significantly correlated with genes related to

drug absorption, distribution, metabolism and excretion in

patients with liver cancer (13). Mutations in the Catenin Beta

1 (CTNNB1) exon 3 region were detected in 54 of 59 samples

(92%) of pediatric hepatoblastoma; In such tumors, Wnt
frontiersin.org
FIGURE 1

HNF4a expression levels in different types of cancer tissues and their matched normal counterparts. *indicates p<0.05. The raw data are from
http://gepia2.cancer-pku.cn.
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signaling and cell cycle pathways are usually upregulated.

Moreover, in more malignant genotypes, HNF4a/CEBPa
(CCAAT Enhancer Binding Protein Alpha) binding regions of

the genome is highly methylated, and HNF4a/CEBPa
transcriptional activity is inhibited (14).

HCC associated with hepatitis B virus (HBV) showed that

E2F Transcription Factor 1(E2F1) acts as an active UR

(upstream regulator), to positively regulate cell cycle and DNA

replication, while HNF4a and HNF1a function as inhibitor

URs. In alcoholic HCC, Erb-B2 Receptor Tyrosine Kinase 2

(ERBB2) is activated, while HNF4a and Nuclear Transcriptional

Regulator Protein 1(NUPR1 are inhibited) (15).

Taniguchi, H. et al. provided evidence that the HNF4a gene

mutations G79C, F83C and M125I (Zn DNA domain) are loss-

of-function mutations that would lead to decreased expression of

HNF1a and Apolipoprotein B (ApoB) genes and increased risk

of liver tumor (16). HNF1a and HNF4a had positive feedback

regulation, mutations of Y122C, R229Q and V259F in the

POUC domain of HNF1a inhibited its activity and disrupted

the binding to the HNF4a promoter, resulting in down-

regulation of HNF4a and other HNF1a target genes, as well

as disruption of HNF4a-HNF1a transcriptional network, thus

triggering the development of HCC (17). In addition, Lysine

Demethylase 8(KDM8) is a potential tumor suppressor

downregulated in HCC and is a downstream target of HNF4a
signaling (18). Furthermore, Mitochondrial Amidoxime

Reducing Component 2 (MARC2)-HNF4a forms a positive

feedback loop to inhibit the progression of HCC (19).

The expression of hydroxysteroid 17-b dehydrogenase 6

(HSD17B6) in HCC is lower than that in the normal liver and

is associated with HCC stage and grade. HNF4a has been shown

to bind to the enhancer and promoter regions of the HSD17B6

gene to activate its transcription, and the methylation of the

HSD17B6 promoter negatively regulates its expression even in

the presence of HNF4a (20).

Accumulating evidence indicates that ferroptosis is closely

associated with liver cancer. Zhang, X. et al. showed that HNF4a
is a controller of ferroptosis down-regulated factors (FDF),

which inhibits iron death by affecting the synthesis of GSH. In

response to ferroptosis, dissociation of histone acetyltransferase

Lysine Acetyltransferase 2B (KAT2B) blocks the binding of

HNF4a to the FDF promoter (21).

For HNF4a-based targeting therapeutics in HCC, HNF4a
and HNF1a have been used to inhibit HCC cell proliferation

and eliminate tumor-specific features. Takashima, Y et al.

showed that the combined transduction of three liver TFs:

HNF4a, HNF1a and FOXA3 could stably inhibit HCC cell

proliferation and tumor stem cell renewal (22). Oligo-fucoidan, a

sulfated polysaccharide, inhibited HCC growth by binding to the

Asialoglycoprotein Receptor (ASGR) which led to Signal

Transducer And Activator of Transcription 3 (STAT3)

phosphorylation, and then p-STAT3 induced the transcription

of the HNF4a (23). The mRNA of HNF4a encapsulated by lipid
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nanoparticles can reduce the liver damage (fibrosis and

cirrhosis) in various mouse models. Paraoxonasel is a direct

target of HNF4a and participates in the weakening of liver

fibrosis mediated by HNF4a (24).

In conclusion, HNF4a maintains homeostasis of liver, and

the mutations of HNF4a or epigenetic modifications of

promoter regions of its targeting genes lead to the loss of

function of HNF4a. Elevated expression of HNF4a has a good

prognosis in patients with HCC. In the progression of liver

cancer,HNF4a is regulated by factors such as STAT3 and

KAT2B, and function as tumor suppressor through HSD17B6,

HNF1a, FOXAs, MARC2. Some HCC phenotypes can even be

reversed by overexpression of HNF4a.
Interestingly, not all studies support the point that HNF4a

inhibits liver cancer. In a recent study on the effect of SNPs in

liver cancer, the rs73613962 (T > G) site at the Protein Arginine

Methyltransferase 7 (PRMT7) gene has allele-specific enhancer

activity. HNF4a preferentially binds to this enhancer region

with the risk allele G to activate PRMT7 transcription, and

elevated PRMT7 promotes malignant phenotypes of HCC

through inhibition of the p53 signaling cascade (25). Another

study revealed that HNF4a bound to the -1409 to -1401 region

of the circRNA_104075 promoter to induce its expression.

Upregulated circRNA_104075 increased the expression of Yes1

Associated Transcriptional Regulator (YAP1), a target of mir-

582-3p, by acting as a sponge of mir-582-3p, ultimately

promoting the initiation of liver cancer (26).
HNF4a functions in colorectal cancer

HNF4a also plays a pivotal role in CRC through regulation of

several major oncogenic pathways. In 2009, genomic-wide

association scanning on 2361 cases of ulcerative colitis and 5417

control cases revealed that HNF4a was related to the progression

of ulcerative colitis (27). The Cancer Genome Atlas (TCGA)

analysis of colon and rectal tumors showed that HNF4a,
TOMM34 (outer mitochondrial membrane translocation

enzyme 34) and SRC (non-receptor tyrosine kinase) were

overexpressed in colorectal cancer (28).

Expression of P1-/P2-promoter-driven nuclear HNF4a is

significantly correlated with cytoplasmic b -catenin in colitis-

associated tumor and sporadic CRC. Depletion of HNF4a reduces

b -catenin expression (29). HNF4g, a paralog of HNF4a, and
Nuclear Receptor Subfamily 1 Group F Member 3 (RORC) along

with HNF4a are also up-regulated in CRC tissues (30). Due to the

compensatory role of HNF4g in intestinal tissues, ablation of

HNF4a did not cause changes in HDL level in serum or

lipoprotein gene expression in ileum (31). Furthermore,

transcription factors such as Heat Shock Transcription Factor 1

(HSF1) and Double-Strand-Break Repair Protein Rad21 Homolog

(RAD21) play a regulatory role with HNF4a in colorectal cancer

metastasis (32). In addition, HNF4a was identified as a positive
frontiersin.org
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regulator of oxidoreductase related genes that involved in

regulation of ROS level. Knockdown of HNF4a increases and

ectopic expression of HNF4a reduces ROS production in CRC

cells. Both HNF4a and oxidoreductase related genes are

overexpressed in colorectal cancers (33). It has also been found

that Nuclear Factor Kappa B Subunit 1 (NF-kB) regulates

transcriptional activation of Carboxylesterase 1 (CES1) through

HNF4a in invasive CRC (34). These findings suggest that HNF4a
functions as an oncogene in CRC.

Contrary to the conclusion above, the expression of HNF4a
in colon cancer leads to the decreased expression of oncogenic

factors Lysine Demethylase 1 (ALSD1), SET Domain Containing

1A, Histone Lysine Methyltransferase (SETD1A), Protein

Arginine Methyltransferase 1 (PRMT1), FOXM1, Protein

Tyrosine Kinase 2 (FAK) and Snail Family Transcriptional

Repressor 1(SNAI1), and inhibits the tumor-formation of

HCT116 cells (35).

To sum up, HNF4a is a key player in CRCwhile the underlying

mechanism is largely unknown. Further investigation of the role

and the specific mechanism of HNF4a in the development and

progression of CRC is of great significance for establishing HNF4a
as a therapeutic target in CRC.
HNF4a functions in gastric cancer

HNF4a promotes gastrointestinal adenocarcinoma

proliferation and survival in a genealogy-specific manner through

transcriptional activation of many downstream targets, including

HNF1a and interleukin signaling factors (36). The promoter and

three distal enhancers of HNF4a are activated by four key

transcription factors, ELF3, GATA-Binding Factor 4 (GATA 4),

GATA6, and Kruppel Like Factor 5 (KLF5).

HNF4a is highly expressed in both primary gastric cancer and

metastasis from gastric cancer to mammary gland, but not in

breast cancer, which should be a good marker to distinguish

primary and metastatic gastric cancer from breast cancer (37).

The same conclusion was confirmed by Saad, DZ. HNF4a was

overexpressed in 22 of 23 cases of primary gastric adenocarcinoma

and in 15 of 16 cases of metastatic gastric adenocarcinoma, but

not in 25 cases of primary breast cancer and 17 cases of metastatic

breast cancer, suggesting HNF4a as a valuable biomarker (38).

Moreover, HNF4a binds to Mucin 5AC, Oligomeric Mucus/Gel-

Forming (MUC5AC) promoter and transcriptionally induces

MUC5AC expression. Thus, HNF4a correlates with MUC5AC

mucin expression during stomach development and in GC

cells (39).

Furthermore, different HNF4a subtypes derived from two

different promoters (P1 and P2) determine the malignancy

degree in gastric cancer. Overexpression of P1-HNF4a rather

than P2-HNF4a induces tumor growth, and Chemokine Ligand

15 (CCL15) was a direct target of P1-HNF4a in GC (40). In

addition, X Inactive Specific Transcript (XIST), a long-strand
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non-coding RNA, increases enrichment of HNF4a in the

promoter region of EPH Receptor A1 (EPHA1), contributing

to the deterioration of GC (41).

In conclusion, HNF4a plays a role as a promoter in GC, but

underlying mechanism remains elusive, and P1-HNF4a subtype

could drive a more malignant phenotype than P2-HNF4a in GC.
HNF4a functions in other cancers

Apart from HCC, CRC, and GC, HNF4a has been shown to

have significant role in many other cancer types.
Lung cancer

Activation of HNF4a in lung cancer leads to higher lung

cancer grade and shorter survival (42). HNF4a has also been

found to be elevated in lung adenocarcinoma (43) and induce

mucin MUC3 expression in Kirsten Rat Sarcoma Viral Oncogene

Homolog (KRAS) mutated lung mucinous adenocarcinoma (44).

In addition, HNF4a recognizes the SNP site RS401681, which can

interact with Telomerase Reverse Transcriptase (TERT) promoter

to increase lung cancer risks (45).
Pancreatic cancer

Although the TCGA database showed that HNF4a
expression level was elevated in pancreatic cancer tissues,

Camolotto’s results demonstrated that HNF4a inhibited

tumor growth and promoted epithelial development through

directly inhibiting expression of Sine Oculis Homeobox

Homolog (SIX) 4 and SIX1, two markers of mesodermal/

neuronal lineage expressed in basal-like subtypes (46). KRAS

(G12D) -driven pancreatic tumors develop after GATA6

deletion, which is accompanied by the loss of HNF1a and

HNF4a (47).
Prostate cancer

It has been revealed that HNF4a-mediated AMPK/mTOR

pathway promotes prostate cancer progression (48). A previous

study showed that selenium-binding protein 1(SBP1) inhibits

prostate cancer growth by reducing oxygen consumption and

increasing the activation AMPK, and that HNF4a binds to the

promoter of SBP1 to restrain SBP1 transcription (49). In addition,

exposure to bisphenol A (BPA) caused prostate preneoplasia,

HNF4a-regulated gene networks were altered by BPA, which

include nuclear factor-kB, ERK1/2 and insulin-related signaling

(50). However, one report indicated HNF4a as a tumor suppressor

of prostate cancer by promoting p21-driven senescence (51).
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Renal cell carcinoma

HNF4a function as a tumor suppressor in clear cell renal cell

carcinoma (ccRCC). HNF4a has been shown to regulate two

metabolic enzymes ABAT and ALDH6A1 leading to inhibition

of cell proliferation and migration, and impaired lactate

production (52). In addition, HNF4a restrains the

development of renal cell carcinoma by transcriptional

activation of NR_023387 (53) and inhibition of E- cadherin

(54). Moreover, ALDH2 can enhance anthracycline sensitivity of

RCC and activates the transcription of HNF4a (55), and HNF4a
also increased the chemosensitivity of RCC cells to oxaliplatin

and 5-FU (56).
Cervical, bladder, esophageal and
breast cancer

There are few reports about the roles of HNF4a in these

tumors. In cervical cancer, HNF4a inhibits the tumorigenic

potential in vivo and induces the tumor cell G0/G1 arrest

through suppression of the Wnt/b-catenin pathway (57). A

recent study showed that expression of HNF4a reduced cell

proliferation and enhanced cisplatin sensitivity by activation of

ALDH6A transcription in bladder cancer (58) and triggered

malignant transformation in esophageal carcinoma (59). In

addition, upregulation of HNF4a under hypoxia contributes to

adriamycin resistance in breast cancer (60).
Conclusions and future perspectives

The important role of HNF4a in development and

metabolism also directly reflect the tumor process. However, the

regulation of HNF4a in tumor is not only dependent on

metabolic and developmental pathways. In HCC, HNF4a has

been demonstrated to inhibit malignant phenotype, while the

effect of HNF4a in colon cancer is quite opposite. In addition, a

few studies have shown that overexpression of HNF4a promoted

the development of gastric and lung cancer and inhibited the

development of pancreatic ductal carcinoma. Sporadic studies

have shown that HNF4a played a certain regulatory role in all

types of tumors. Further investigations of the role of the of

HNF4a in different tumor types will greatly enhance the
Frontiers in Oncology 05
understanding HNF4a biological function and also will be

important for development of HNF4a-based therapeutics.
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