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Mutations of K-ras oncogene in human adrenal tumours
in Taiwan
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Summary Recently, we have found a high frequency of p53 gene mutations in human functional adrenal tumours. As the tumorigenesis is a
multigene defect, we believe that other oncogenes may also be involved in the initiation or progression of adrenal tumours. Using the single-
strand conformational polymorphism (SSCP) method, we chose the ras oncogenes as the target in this screening procedure because their
high mutation rates were detected in thyroid tumours. For the ras oncogenes analysed, exon 1 to exon 2 of H-ras and K-ras genes in the
tumour tissues of 13 Conn's syndrome, two adrenal Cushing's syndrome, two non-functional adrenal tumours, one adrenocortical hyperplasia
and eight phaeochromocytomas and its paired adjacent normal adrenal tissues were amplified and sequenced. No mutations were detected
in the H-ras gene. But mutations of the K-ras gene were detected in 46% (6 of 13) of Conn's syndrome; the hot spots were located at codon
15, 16, 18 and 31, which were different from those previously found in other tumours (codon 12, 13 and 61). Northern blot analysis with
1.1 kb K-ras cDNA revealed that K-ras mRNA was more than tenfold over-expressed in four of Conn's syndrome, one case of Cushing's
syndrome and one case of adrenocortical hyperplasia. The mutation sites and mutation type were not found in other tissues, which confered
that this was highly related to adrenocortical tumours. Yet, the correlation between K-ras oncogene and adrenocortical tumours needs to be
clarified by further studies.
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Many proto-oncogenes encode proteins that transmit signals that
regulate normal cell growth (Cantly et al, 1991). Specific muta-
tions convert these genes into oncogenes (Mark, 1989). Although
some frequently targeted oncogenes are common to many different
tumour cell types, others are uniquely mutated in particular forms
of neoplasm (Barbacid, 1987).

Endocrine neoplasms are the major causes of endocrine disease in
human beings. All endocrine organs, such as pituitary gland, thyroid
gland, parathyroid gland, adrenal gland, pancreas and gonads, are
known to possess the possibility to develop neoplasms. Little is
known about genetic changes that confer endocrine neoplasms. In
1989, Landis et al (1989) found that 43% pituitary GH-secreting
tumours had G-protein mutations. Mutations of ras oncogenes, PTC
oncogenes, G-protein and p53 tumour-suppressor genes had been
reported in the human thyroid tumours (Eng et al, 1995). There were
few studies concerning the oncogenes and the tumour-suppressor
genes in the tumorigenesis of functional adrenal tumours. In 1990,
Lyon et al found that 3 of 11 adrenal tumours had G-protein muta-
tions. In 1989, Lemoine et al had reported that activation of ras
oncogenes occurred at a very high frequency (80%) in a small series
of human thyroid follicular carcinomas. A variety of human
tumours has been studied for ras gene mutations to date (Bos,
1989). However, little is known about the prevalence or significance
of activated ras oncogene in adrenal tumours. Recently, we found a
high rate of p53 gene mutation in the functional adrenal tumours
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Table 1
studied

Sex, age, clinical diagnosis, pathology and tumour size of patients

Patient Sex Age Diagnosis Pathology Tumour size
number

1 F 38 PA CA 1.5x1.2x0.5
2 M 59 PA CA 2.3x2.3x2.7
3 F 43 PA CA 2.5x2.0x0.7
4 M 27 PA CA 2.7x1.8x2.0
5 M 36 PA CA 1.1x1.0x1.0
6 M 63 PA CA 5.5x4.7x3.4
7 F 42 PA CA 1.6x1.5x0.9
8 F 33 PA CA 2.0x2.0x0.5
9 M 41 PA CA 1.8x1.5x0.9
10 M 44 PA CA 6.5x3.5x3.6
11 M 43 PA CA 2.0x1.5x1.2
12 M 59 PA CA 2.2x1.2x1.2
13 F 37 PA CA 2.2x1.9x0.6
14 F 21 CS CA 3.0x2.7x2.7
15 F 35 CS CA 4.0x3.5x2.5
16 M 59 NFA CA 4.5x4.0x4.0
17 F 49 NFA CA 4.2x3.6x4.0
18 F 40 PA CH
19 M 53 Phaeochromocytoma 5.2 x 3.3 x 5.0
20 F 36 Phaeochromocytoma* 8.6 x 5.4 x 3.7
21 F 30 Phaeochromocytoma 5.6 x 4.0 x 5.0
22 F 49 Phaeochromocytoma 9.8 x 9.0 x 9.0
23 M 36 Phaeochromocytoma 6.0 x 4.0 x 4.0
24 F 41 Phaeochromocytoma 5.0 x 5.0 x 3.5
25 F 47 Phaeochromocytoma 6.4 x 5.5 x 7.0
26 F 49 Phaeochromocytoma 8.4 x 5.5 x 4.0

PA, primary aldosteronism; CS, Cushing's syndrome; NFA, non-functioning
adrenal tumour; CA, adrenocortical adenoma; CH, adrenocortical
hyperplasia; *Malignant, with liver metastases.
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Figure 1 PCR-SSCP analysis of K-ras mutations in human adrenal neoplasms. Representative samples including cases 1-6 and 10-22 are shown for a 128-
bp fragment of exon 1 containing codon 12 and 13 (A), and cases 3-11 are shown for a 111 -bp fragment of exon 2 containing codon 61 (B). An electrophoretic
mobility shift of the bands differs between the tumour (T) and its paired normal tissues (N), representing a different conformer of the fragment and suggesting
the presence of mutations in this fragment. No electrophoretic mobility shift over the samples tested suggests normal conformations over these samples. P is
the positive control of K-ras codon 12 mutant derived from SW480 human colon adenocarcinoma cell line

(Lin et al, 1994; 1996). As the tumorigenesis is a multigene defect
(Knudson, 1989), we believe that other oncogenes may also be
involved in the initiation or progression of adrenal tumours, espe-

cially the ras oncogenes. As the ras p21 protein is involved in signal
transduction, activated ras oncogenes would likely be involved in
simultaneous stimulation of cell growth as well as hormone
synthesis and secretion. Hence, we took the H-ras and K-ras genes

of 26 collected cases with functional adrenal tumours, including
adrenocortical tumours and adrenomedullary phaeochromocytoma
as the first target genes analysed. We also collected two non-func-
tional adrenal tumours as a control, which were not easy to get
because they were not easy to find. The control specimens were too
few in number to be of any significance; however, they can provide
a foundation for functional adrenal tumour study. To clarify the role
of the ras oncogene in the tumorigenesis of human functional
adrenal tumours, we performed molecular studies in 26 adrenal
tumour tissues. The Northern blot analysis with K-ras cDNA
demonstrated that four cases of Conn's syndrome, one case of

Cushing's syndrome and one case of phaeochromocytoma had K-
ras mRNA overexpression in the tumour cells. Using polymerase
chain reaction single-strand conformational polymorphism (PCR-
SSCP), cloning and sequencing, a high frequency of K-ras gene

mutations was found in adrenocortical tumours.

MATERIALS AND METHODS

Patients and tissues

Twenty-six adrenal tumours and their remnant non-tumorous
adrenal tissues were obtained from patients who underwent
surgery for adrenal lesions. These included 13 patients with
primary aldosteronism due to unilateral cortical adenoma, two
patients with adrenal Cushing's syndrome with a single adreno-
cortical adenoma, one patient with adrenocortical hyperplasia,
eight patients with adrenal phaeochromocytoma, and two patients
with non-functional adrenal tumour. The clinical data and the
tumour sizes are listed in the Table 1.
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Figure 3 RNA blot analysis of the K-ras transcripts in adrenal tumours and
paired normal adrenal tissues. Twenty micrograms of total RNA were
electrophoresed, blotted and hybridized to a 32P-labelled 0.4 kb Stu l-EcoRl
fragment of K-ras cDNA and rehybridized with a 700-bp Pstl fragment of
0-actin probe to correct for differences in loading (A). The signals on the
autoradiographs were scanned with a Molecular Dynamic computing laser
densitometer and MD ImageQuant software release version 3.0 (B)
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Figure 2 Nucleotide sequencing analysis of the K-ras gene mutations in
human adrenal neoplasms. Each mutation in tumour cells (T) shown is
matched to a normal adjacent adrenal gland (N). The codon at which the
mutation occurs is indicated. Each sequence is shown 5' (bottom) to 3' (top).
Arrows point to bands corresponding to mutated basepairs. (A) Sequencing of
the reverse strand shows a point mutation at codon 19 in tumour cells of case
2 resulting in a change in the encoding amino acid from leucine to serine.
(B) Three point mutations at codon 15, 16 and 18 in tumour cells of case 10
result in a change in the encoding amino acids from glycine to threonine at
codon 15, and from alanine to valine at codon 16. (C) Sequencing gel shows
a point mutation at codon 31 in tumour cells of case 10 results in a change in
the encoding amino acid from glutamate to glutamine

DNA extraction

Genomic DNA was extracted from adrenal tumours and the paired
adjacent normal adrenal gland tissues by proteinase-K (Stratagene,
La Jolla, CA, USA) digestion and then phenol-chloroform extrac-
tion according to Sambrook's method (Sambrook et al, 1989).

PCR-SSCP analysis

To search the mutations of the K-ras gene using PCR-SSCP
analysis, two sets of primers including codon 12, 13 and 61 were

used and are described below: 5'-CTGGTTCGGCCCAATGACG-
GAATATAAGCTGGTG-3' (forward) and 5'-CTCGCTCGCC-
CACGCCAGGCTCACCTCTAT-3' (reverse) for codon 12 and 13
of H-ras gene, which amplify a 148-bp PCR product of codon 1-7;
5'-CTGGTTCGGCCCACTACCGGAAGCAGGTGGTCA-3'
(forward) and 5'-CTCGCTCGCCCACGCATGTACTGGTCCC-
GCAT-3' (reverse) for codon 61 of the H-ras gene, which amplify
a 127-bp PCR product of codon 38-73; 5'-ATGACTGAA-
TATAAACTTGT-3' (forward) and 5'-CTCTATTGTTGGATCA-
TATT-3' (reverse) for codon 12 and 13 of the K-ras gene, which
amplify a 128-bp PCR product of codon 1-37; 5'-TTCC-
TACAGGAAGCAAGTAG-3' (forward) and 5'-CACAAA-
GAAAGCCCTCCCCA-3' (reverse) for codon 61 of K-ras
gene, which amplify a 11 1-bp PCR product of codon 38-81. The
reaction mixture contained 50 pmol of each primer, 2.5 U of Taq
DNA polymerase (Boehringer Mannheim), 100 mmol L-1 each of
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Figure 4 The K-ras mRNA expression in tumour tissues and normal adrenal gland tissues were compared after RNA blot analysis. The results were analysed
by detecting signal strength using densitometer scan autoradiographs. The bars represent the signal strength in tumour tissues/the signal strength in normal
tissues. The numbers represent the case number

deoxy-NTP, [a 32P] deoxy-CTP (3000 Ci mmol-'; 10 mCi ml-';
New England Nuclear Research Products, Boston, MA, USA),
1.5 mmol 1-1 magnesium chloride, 50 mmol 1-1 potassium chloride,
10 mmol 1-1 Tris-HCl (pH 8.3), and gelatin at 10 jg ml-'. A
programmable thermal cycler (PTC-100, MJ Research,
Watertown, MA, USA) was used to perform 40 cycles of denatura-
tion for 30 s each at 94°C and annealing for 30 s at 55°C with an

extension for an additional 1 min at 72°C. The final extension time
was 7 min at 72°C. The PCR products were analysed in 8%
denatured polyacrylamide gel.

Cloning and sequencing analysis

Amplified DNA was desalted and primers were removed by gel
filtration with CL-6B Sepharose spin column (Pharmacia LKB
Biotechnology, Sweden) and ethanol precipitation. The purified
DNA was inserted into pDIRECT vector (Clontech Laboratories,
Palo Alto, CA, USA). This material was the template for dideoxy
sequencing using MultiPol DNA Sequencing System (Clontech).
[ox-35S] Deoxy-ATP (New England Nuclear Research Products) was

used to label sequencing reactions. Plasmid DNA was prepared
from isolated colonies using the alkaline lysis method. Double-
stranded plasmid DNA was sequenced using T7 and T3 promotor
sequences as sequencing primers. The accuracy of our sequencing

data was confirmed by analysis of ten independent clones.

Northern blotting

Twenty micrograms of total RNA was denatured with 6.5%
formaldehyde. The gels were blotted onto a nitrocellulose
membrane (Schleicher and Schuell, Dassel, Germany). The filters
were hybridized with a random primed, 32P-labelled, 0.4 kb
StuI-EcoRI fragment of K-ras cDNA (Capon et al, 1983). The

hybridized filters were then washed in 30 mmol 1-' sodium chloride,
3 mmol 1-1 sodium citrate, and 0.1% sodium dodecyl sulphate (at
65°C) and autoradiographed. The membrane was rehybridized with
a 700-bp PstI fragment of f-actin probe to correct for differences in
loading. The signals on the autoradiography were scanned with a

Molecular Dynamics (Sunnyvale, CA, USA) computing laser
densitometer and MD ImageQuant software release version 3.22.

RESULTS

A total of 13 primary aldosteronism, two Cushing's syndrome, one

adrenocortical hyperplasia, two non-functional adrenal tumours
and eight adrenal medullary phaeochromocytomas were selected
for analysis. Age, sex and tumour size of all patients analysed are

summarized in Table 1. There were 12 men and 14 women, with
an age range of 27-63 years. Twenty-four of 26 patients with
tumours clinically classified as functioning had detectable
hormonal abnormalities; two had no detectable hormonal abnor-
mality classified as non-functioning.

Twenty-six adrenal neoplasms were screened for the presence
of activated H-ras and K-ras genes. Seven out of 16 functional
adrenocortical adenomas showed an apparent electrophoretic
mobility shift of the K-ras gene analysed between the tumour and
its paired adjacent normal tissue (Figure 1); no electrophoretic
mobility shift was found in the eight phaeochromocytomas and
two non-functioning adrenal adenomas. An electrophoretic
mobility shift between the tumour and its paired normal tissue is
characteristic of a mutation. Six out of seven such differences were

detected in exon 1 of the K-ras gene containing codon 12 and
codon 13 (Figure 1A) and one was detected in exon 2 of the K-ras
gene containing codon 61 (Figure 1B). Furthermore, the results
from SSCP analysis demonstrated that the K-ras gene mutant
types were monoallelic in all cases that showed a normal band and
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Table 2 Results of H-ras and K-ras alterations in 26 cases with adrenal tumour

Patient K-ras H-ras

SSCP Codon base Amino acid Overexpression SSCP Codon Amino-acid
(ratio) base

1 + 15GGC-*ACA Gly-*Thr +(4.0) - N
16AAG-oGAG Lys-4Glu

2 + 19TTG-*TCG Leu-*Ser +(5.6) - N
3 + 15GGC-*AGC Gly-*Ser -(1.8) - N

16AAG--AAA Lys-*Lys
4 - N -(1.4) - N
5 - N -(1.2) - N
6 - N -(0.9) - N
7 - N -(0.9) - N
8 + 60GGT-TGT Gly-*Cys -(1.1) - N
9 - N -(1.1) - N
10 + 15GGC-*ACG Gly-4Thr +(7.5) - N

16AAG-*AAA Lys-*Lys
18GCC-*GTC Ala-Val
31 GAA-*CAA Glu-*Gln

11 - N -(0.9) - N
12 + 15GGC-*ACG Gly-*Thr +(12.0) - N

1 6AAG-AAA Lys-4Lys
18GCC-*GTC Ala-Val
31 GAA-MCAA Glu-*Gln

13 - N -(0.8) - N
14 - N -(1.2) - N
15 + 15GGC-*ACA Gly-Thr +(13.0) - N

16AAG-*GAG Lys-4Glu
16 - N -(0.9) - N
17 - N -(1.2) - N
18 - N +(8.2) - N
19 - N -(1.3) - N
20 - N -(1.2) - N
21 - N -(1.3) - N
22 - N -(1.1) - N
23 - N -(0.9) - N
24 - N -(0.9) - N
25 - N -(1.2) - N
26 - N -(1.1) - N

+, Mobility shift; -, negative; N, normal.

a mobility shift band, except for case 8. With the positive control
of SW480 cell line, any mutations at K-ras codon 12 would be
detected. None of the 26 adrenal tumours was found to have DNA
movements and distance change in the H-ras gene SSCP analysis
(data not shown). To detect the type of mutations, a 128-bp frag-
ment of exon 1 region and a 111 -bp fragment of the exon 2 region
of the K-ras gene were cloned from tumour specimens and
sequenced. For accuracy, we performed bidirectional sequencing
for ten individual clones using T3 and T7 primers. Comparison of
the nucleotide sequences of these tumour specimens with their
paired adjacent normal tissues and the wild-type sequence of
human K-ras genes revealed a substitution from leucine to serine
at codon 19 in case 2 (Figure 2A), and from glycine to cysteine at
codon 60 in case 8. Cases 1, 3 and 15 contained two K-ras gene
mutations: one at codon 15 and the other at codon 16. Four point
mutations of the K-ras gene were identified in case 10 and case 12,
including substitution from glycine to threonine at codon 15; silent
mutation at codon 16; substitution from alanine to valine at codon
18; and substitution from glutamate to glutamine at codon 31
(Figure 2B and C). Northern blot analysis with a K-ras cDNA
provided evidence of quantitative K-ras mRNA overexpression in
6 of 16 adrenocortical adenomas (Figures 3 and 4). In the six

cases, there were two cases (case 12 and 15) that showed a 10-20
times increase in K-ras mRNA overexpression compared with that
in the paired remnant adrenal gland. These results are summarized
in Table 2.

DISCUSSION

The activation of ras genes has been implicated in transformation in
vitro and tumorigenesis in vivo (Barbacid, 1987; Vogel et al, 1988;
Mikako et al, 1992), but the role of these genes in the sequential
events leading to the acquisition of the transformed phenotype is
unclear. The ras-encoded proteins in mammalian cells are approxi-
mately 21 000 daltons (p21), bind guanine nucleotides and are local-
ized to the inner face of the plasma membrane (Sigal et al, 1986).
Three members of the cellular ras gene family have been identified:
H-ras, K-ras and N-ras (Hall, 1990). Oncogenic ras proteins differ
from their normal homologues by a single amino acid substitution,
usually at positions 12, 13 and 61. It has been proposed that the defi-
ciency in GTPase activity of the ras oncogenic protein could result in
the derangement of normal regulatory mechanisms that control cell
proliferation (Gibbs et al, 1985; Der et al, 1986; Bos, 1989). In 1991,
Moley et al had analysed ten adrenal tumours from patients with
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phaeochromocytoma and Moul et al (1993) had examined eight
adrenal carcinomas, six phaeochromocytomas, two adrenal tumours,
one aldosteronoma, two fresh phaeochromocytomas and one fresh
benign adrenal gland (1993) for activating mutations at the 12, 13
and 61 codons of N-ras, H-ras and K-ras. There were no definite
mutations detected at codon 12, 13 or 61 of the N-, H- and K-ras
genes. A few cases of adrenal cortical tumours have been analysed
and the functional character of the tumours have never been
discussed. As the N-ras gene was most frequently activated in
human myeloid leukaemia (Barbacid, 1990), we chose the H-ras and
K-ras genes as the first target analysed. In the present study, no H-
ras gene mutations were found in the 26 cases with adrenal tumours;
we deduced that the H-ras oncogene has little to do with the tumori-
genesis of functional adrenal tumours. But in the K-ras oncogene
investigation it was confirmed that 6 out of 13 cases with Conn's
syndrome had obvious K-ras oncogene mutations, and the mutation
rate was high at 46%. The mutation sites were not located on the hot
spots on codon 12, 13 and 61 as has been established already, but
they were, however, accumulated on codon 15, codon 16, codon 18
and codon 31. The mutation types in those cases were found to be
monoallelic. Their mutation sites have not been reported in previous
studies of K-ras gene mutation. The results of bidirectional
sequencing of ten individual clones confirmed that these sites were
mutated in the adrenal tumour specimens we collected. However,
Sigal et al (1986) found p21 protein Lysl6 was the decision site of
the GTP/GDP-binding site. If Lys-16 is replaced by Asn, the affinity
between GTP and GDP will decrease 100 times, without affecting
GTP/GDP-binding specificity. In 1989, Power et al (1989) designed
a mutant p21 protein with Ala instead of Gly-15 for studying the
characters of the p21 protein. The results showed that this alteration
could also affect the normal functions of the p21 protein. In addition,
in 1992 Shirouzu et al (1992), in further studies of the mutation of
the p21 protein Glu-31 replaced by Lys, found that this mutation
could interfere in the signal transduction activity of the p21 protein
by interfering the co-operation of the p21 protein and GAP (GTPase
activating protein). Over-expression of K-ras mRNA occurs in
approximately 37.5% (6 of 16 cases tested) of functional adrenocor-
tical adenomas and predominantly occurred with the presence of
mutations in the K-ras gene. This phenomenon was also found in
mouse adrenocortical tumour cells (Schwab et al, 1983; George et al
1984; George et al, 1985). The phenomenon of over-expression of
K-ras mRNA has been investigated by Schwab et al. (1993) in
mouse models. They suggested that the overexpression of K-ras
mRNA might be caused by K-ras gene amplification. We believe
that the overexpression of K-ras mRNA found in our samples of
human adrenal tumours may be for the same reason.
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