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Abstract: The increasing rate of oral squamous cell carcinoma (OSCC) and the undesirable side effects
of anticancer agents have enhanced the demand for the development of efficient, detectable, and
targeted anticancer systems. Saponins are a diverse family of natural glycosides that have recently
been evaluated as an effective compound for the targeted therapy of squamous cell carcinoma. Due
to their porous nature and stable structure, metal–organic frameworks (MOFs) are a well-known
substance form for various biological applications, such as drug delivery. In this study, we fabricated
a novel hybrid, highly porous and low-toxic saponin-loaded nanostructure by modifying graphene
oxide (GO)/reduced GO (rGO) with aluminum fumarate (AlFu) as MOF core–shell nanocomposite.
The characterization of the nanostructures was investigated by FTIR, TEM, EDX, FESEM, and
BET. MTT assay was used to investigate the anticancer activity of these compounds on OSCC
and PDL normal dental cells. The effect of the nanocomposites on OSCC was then investigated
by studying apoptosis and necrosis using flow cytometry. The GO/rGO was decorated with a
saponin–AlFu mixture to further investigate cytotoxicity. The results of the MTT assay showed
that PDL cells treated with AlFu–GO–saponin at a concentration of 250 µg/mL had a viability of
74.46 ± 16.02%, while OSCC cells treated with this sample at a similar concentration had a viability
of only 38.35 ± 19.9%. The anticancer effect of this nanostructure on OSCC was clearly demonstrated.
Moreover, the number of apoptotic cells in the AlFu–GO–saponin and AlFu–rGO–saponin groups
was 10.98 ± 2.36%–26.90 ± 3.24% and 15.9 ± 4.08%–29.88 ± 0.41%, respectively, compared with
2.52 ± 0.78%–1.31 ± 0.62% in the untreated group. This significant increase in apoptotic effect
observed with AlFu–rGO–saponin was also reflected in the significant anticancer effect of saponin-
loaded nanostructures. Therefore, this study suggests that an effective saponin delivery system
protocol for the precise design and fabrication of anticancer nanostructures for OSCC therapy should
be performed prior to in vivo evaluations.

Keywords: aluminum fumarate; saponin; squamous cell carcinoma cancer; graphene oxide

1. Introduction

Oral squamous cell carcinoma (OSCC) is the most common oral neoplasm, accounting
for more than 90% of all oral malignancies and 38% of head and neck cancers. Despite
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improved treatment strategies, morbidity and mortality rates for OSCC have not changed
significantly over the past 30 years. The mortality and morbidity rates are 6.6/100,000
and 3.1/100,000, respectively, for males and 2.9/100,000 and 1.4/100,000, respectively, for
women. OSCC is also increasingly common in young white people aged 18 to 44 years,
especially white women. Patients with OSCC typically have a 5-year survival rate of 40% to
50%. The 2021 National Comprehensive Cancer System guidelines for non-nasopharyngeal
malignancies list the following procedures for treating OSCC after surgery. Cisplatin,
carboplatin, doxorubicin, and 5-fluorouracil account for the majority of systemic treatment.
A nanoplatform can serve as a drug delivery system (DDS) and an imaging agent that can
be detected in the body by fluorescence emission [1–4]. A DDS should overcome drug
resistance, provide improved local drug delivery systems that concentrate the drug at the
tumor site, such as in poorly vascularized regions, and minimize the risk of damage to
adjacent normal or healthy tissue. Specifically, nanomaterials have a large surface area
and small size that enable them to penetrate human cell membranes and enhance the
biodistribution of anticancer drugs in targeted areas. In addition, the microenvironment,
including extracellular matrix, fibrosis, and pH, can alter the properties of nanoparticles
and influence their interaction with the cell membrane and ultimately their intracellular
fate. For NPs targeting tumor cells, the tumor microenvironment (TME) can significantly
affect cell fate [5–7]. Saponins are a class of amphipathic glycosides found in various
plant species [8,9]. The potent effect of saponins on cancer cells is of great interest to the
pharmaceutical industry and drug delivery [10,11]. By altering cell cycle proteins such as
cyclins, cyclin-dependent kinases, and checkpoint proteins, these compounds have shown
promising anticancer potential that can stop the spread of cancer cells [11–13]. Saponins
are a diverse family of natural surfactants found in many plants. In addition, saponin
molecules consist of a hydrophobic region called the aglycone, which is linked to one
or more oligosaccharide chains (sugars) that form the hydrophilic part of the molecule.
Most saponins have two sugar chains (bidesmosidic saponins), a few have one sugar chain
(monodesmosidic saponin), and in rare cases, there are three sugar chains. The combination
of a hydrophobic aglycone backbone and hydrophilic sugar molecules makes the saponins
highly amphipathic and gives them foaming and emulsifying properties in aqueous solu-
tions [14]. Microcapsules of saponins can assume many shapes and structures, depending
on plant origin, temperature, pH, and electrolyte concentration [13–15]. According to
their aglycone counterparts, saponins are divided into triterpenoid saponins and steroidal
saponins [16–18]. The difference between the two groups is that the triterpenoid saponins
contain 30 C atoms, while the steroidal saponins have 27 C atoms [19–21]. The saponin
from Quillaja bark was the type of saponin used in this study. Quillaja bark saponin is
mainly composed of a triterpenoid saponin with anticancer properties known as quillic
acid-type aglycone [20–22]. Metal–organic frameworks (MOFs) are used in various fields,
including gas storage and separation, molecular sieves, sensing, and catalysis. Due to
their outstanding properties, MOFs are a well-known substance form for various biolog-
ical applications, such as drug delivery and biosensors. They are porous materials with
a high degree of organization, consisting of metallic coordination centers connected by
organic linkers. Aluminum fumarate and zeolitic imidazolate frameworks (AlFu and
ZIFs) have recently attracted much attention due to their exceptional surface area and
porosity. These compounds typically contain imidazolate derivatives and tetrahedrally
coordinated metal ions (M = Zn2+, Co2+, Cd2+, Mg2+) [23–32]. The porous MOFs often
exhibit high physiological stability and considerable potential for in situ and post-synthetic
functionalization with specific biomolecules, either on metals or organic ligands [33–35].
Immobilization of enzyme–MOF composites on permeable flexible membranes is an ef-
fective way to produce bioactive substrates. MOFs are excellent hosts for adsorption and
interaction of short peptides, antibodies, and nucleic acids. MOF films are, therefore, ideal
for maintaining cell activity both in vitro and in nature. In addition, MOFs can be used
to fabricate a variety of structures with highly tunable pore size (typically 0.4–6 nm) and
surface area (500–4500 m2/g) through the use of different metal groups and numerous or-
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ganic compounds. Controlling the penetration of the framework can lead to different MOF
configurations, porosities, and functionalities [36–42]. By changing the efficient parameters
of the synthesis processes or by applying other methods, the size of the particles can also
be determined. They have a fixed pore space that can accommodate guest molecules by
changing the cell volume or the arrangement of the subnetworks. AlFu, for example, has a
modified porosity character under the right pressure, or can adsorb larger guest molecules
via linker rotation [43–50]. MOFs are an excellent material for simulating the mechanical
and physical properties of real tissue because they have fascinating chemical and structural
properties [44–57]. AlFu, graphene oxide (GO), and reduced graphene oxide (rGO) have
emerged as excellent nanomaterials for the development of hybrid and multifunctional
materials due to their potential. GO is characterized in this field by high drug loading,
enhanced permeability and retention (EPR), pH sensitivity, and large specific surface area.
Therefore, they can be integrated into various delivery systems for cancer therapies. The
EPR effect leads to an increase in permeability. As a result, the nanocarriers can penetrate
capillaries or leukocytes due to their tiny size (20–200 nm) and eventually concentrate
in the intercellular space of the tumor. According to some studies, GO can be used as a
nanocarrier for the loading and delivery of anticancer drugs [58] such as methotrexate,
doxorubicin, camptothecin [59,60], and SN−38 [61], which are commonly prescribed. In
addition, loading rates of more than 200% have been reported for doxorubicin/nanoscale
graphene oxide (DOX/NGO) [62]. Although the stability of GO in aqueous solution after
loading with hydrophobic agents is not optimal, improvements are needed. In addition,
large oxygen-containing groups at the edges or surfaces provide high chemical reactivity
and modification potential for ease of preparation. Polyethylene glycol (PEG) has been
widely used to functionalize rGO to increase its stability in aqueous solutions and biocom-
patibility [63,64]. In this study, a well-ordered AlFu–doped GO/rGO was used to efficiently
deliver the saponin as a natural anticancer agent into the PDL and OSCC. Therefore, we
fabricated a novel hybrid, highly porous and low-toxic saponin-loaded nanostructure by
modifying graphene oxide (GO)/reduced GO (rGO) with aluminum fumarate (AlFu) as
MOF core–shell nanocomposite and then loaded saponin on their surfaces. Two in vitro
biological assays, including MTT assay and apoptotic evaluation, were performed to inves-
tigate the anticancer effect of these compounds on OSCC and PDL normal dental cells. The
effect of the nanocomposites on OSCC was then investigated by studying apoptosis and
necrosis by flow cytometry.

2. Results and Discussion
2.1. Characterization of the Developed Adsorbent

Figure 1 shows how the FTIR ranges of GO, rGO, AlFu, AlFu–GO, and AlFu–rGO
can be combined. Figure 1 shows how the required graphite sources were successfully
used to produce and exfoliate GO. In this case, the vibrations of a p-disubstituted phenyl
bundle (v (C–H) bending in the plane), the twisting of C=C from unoxidized sp2 carbon
bonds, the C=O stretching vibration (sp3 hybridization), and hydroxyl (C–OH) helpful
bundles were seen in the FTIR range of 1035.70, 1577.36, 1716.29, and 3117.08 cm−1. In
addition to the comparison with the fundamental and strongly pronounced combs, the
helpful C–O (epoxy) bundles (1199.56 cm−1), C=C double bond carbon (1567.58 cm−1), and
C=O stretching vibration (1731.50 cm−1), as well as the intense C–H band at (2963.43 cm−1),
were also investigated in the FTIR range of rGO. [34]. The peak associated with the
hydroxyl bundles disappeared, the intensity of the C=O functional group at (1724 cm−1)
decreased, and the concentration of the C=C-related peaks increased in this region, securing
and strengthening the grip for the successful reduction of graphene oxide. The results
of the FTIR investigation showed that both GO and rGO nanosheets were successfully
synthesized. As for AlFu, the fingerprint of Al–OH supporting bundles showed peaks
in the range of 483.56–1240 cm−1. Other peaks in the FTIR spectrum of AlFu are due to
the symmetric (Vs) or hilter-kilter (Vas) COO-extending COOs. There is also a prominent
peak with a wavelength of 3385 cm−1, and C–O and C=O are seen at wavelengths of
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1110.65 cm−1 and 1723.17 cm−1, respectively. In addition, the spectra of AlFu–GO/AlFu–
rGO showed peaks at 1420.15/140.98 and 1608.19/1604.23, as well as 1120.9/1121.14 and
1721.03/1722.12 cm−1, which are comparable to the FTIR range of AlFu when compared
with the symmetric (Vs) and asymmetric (Vas) COO-expansions of AlFu–GO and AlFu–
rGO. In addition to the C–O and C=O groups seen at wavelengths of 1121.23 cm−1 and
1722.16 cm−1, hydroxyl functional groups were also found to vibrate at wavelengths
of 3385.16 cm−1 and 3420.32 cm−1, respectively [33]. The combination of AlFu and its
predicted composites with GO and rGO nanoflakes is supported by these data and is in
perfect agreement with the results of the FTIR investigation, as can be seen in Figure 1.
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Figure 1. FTIR evaluation of AlFu, AlFu−GO, AlFu−rGO, GO, and rGO with saponin.

The morphology of the nanocomposites was analyzed using FESEM. The outlines of the
flawless GO, rGO, and AlFu nanocomposites without saponin are shown in Figure 2a1–c1,
and the nanocomposites with saponin are shown in Figure 2a2–c2. Figure 2d1,d2,e1,e2 show
a sheet-like randomly assembled slender folded layer structure for GO and rGO pure and
without saponin. Figure 2a1,a2 show a layer-by-layer extended hexagonal shape in FESEM
images of pure AlFu and saponin. In addition, FESEM analysis was used to investigate the
sizes and shapes of the fabricated samples. Figure 2 shows this fact. As mentioned earlier,
GO has a thickness range of 9–10 nm, while rGO has a thickness range of 10–16.22 nm. In
addition, the FESEM images of AlFu, AlFu– GO, and AlFu–rGO pure and with saponin can
be seen in Figure 2a1–c2, which show the morphology and estimated permeability of the
generated nanomaterials. As can be seen from the images, octahedral AlFu nanoparticles
were uniformly distributed on the surfaces of the GO and rGO flakes and enveloped the AlFu
nanoparticles throughout GO. The rGO nanosheets were uniformly distributed similar to
the smooth AlFu. These results, together with those from the XRD study, provide evidence
for the decoration/interaction of AlFu with GO and rGO nanosheets, the exfoliation of GO
and rGO nanosheets, and the arrangement of AlFu. The EDX mapping results for GO and
rGO are also shown in Figure 2. Both GO and rGO appeared mainly as carbon and oxygen,
while phosphorus and nitrogen were scattered randomly throughout their structures. These
results demonstrate the presence of aluminum in the AlFu structure, which is crucial for the
efflux and sensitivity of GO MOFs. In Figure 2a,b, AlFu and rGO appear as well-defoliated
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single-layer graphene droplets, which is consistent with the previously obtained data and
confirms the mixture of GO and rGO. Moreover, TEM images of AlFu, AlFu–GO, and AlFu–
rGO can be seen independently in Figure 3c–e. The rGO, GO, and AlFu–rGO structures show
a two-dimensional wrinkled layer. This structure is formed by exfoliation and re-exfoliation
processes. In this TEM study, rGO shows a thin and flexible morphology. The AlFu–GO
and AlFu–rGO MOFs nanocomposite particles are shown in Figure 3d,e. The results of TEM
investigation support the contact and dispersion of AlFu with and over graphene nanosheets
according to the FESEM studies.
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Figure 2. Morphology of (a1) AlFu (a2) AlFu–saponin, (b1) AlFu–GO, (b2) AlFu–GO–saponin,
(c1) AlFu–rGO, (c2) AlFu–rGO–saponin, (d1) GO, (d2) GO–saponin, (e1) rGO, and (e2) rGO–saponin,
through FESEM and EDX analysis of (a) GO, (b) rGO, (c) AlFu, (d) AlFu–GO, and (e) AlFu–rGO.



Pharmaceuticals 2022, 15, 1137 8 of 22

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 9 of 25  

 

 

 

Figure 3. TEM images of (a) GO, (b) rGO, (c) AlFu, (d) AlFu–GO, and (e) AlFu–
rGO. 

The main specific surface area of the fabricated nanomaterials was 
identified by BET analysis. AlFu in this example had a single point 
surface area of 1011.56 m2/g (with a p/p° of 0.200666237), while its BET 
surface area, Langmuir surface area, t-plot microspore area, and t-plot 
outer area were 973.39, 1283.45, 869.29, and 104.09 m2/g, respectively. It 
was also found that the total surface area of pores between 17 and 3000 
m2/g for BJH adsorption and desorption was 66.42/74.37 m2/g. AlFu 
possessed pores that were typically 22.97 nm wide and had a spacing of 
nearly 130.16 nm for BJH adsorption and desorption, respectively. AlFu 
has a single point giving a pore volume of 0.559 cm3/g (for pores less than 
717.828 wide at a p/p° of 0.972282541), a microspore volume of 0.403996 
cm3/g, and a BJH adsorption/desorption aggregate volume of the pores of 

(a) (b) 

(c) (d) 

(e) 

Figure 3. TEM images of (a) GO, (b) rGO, (c) AlFu, (d) AlFu–GO, and (e) AlFu–rGO.

The main specific surface area of the fabricated nanomaterials was identified by BET
analysis. AlFu in this example had a single point surface area of 1011.56 m2/g (with a
p/p◦ of 0.200666237), while its BET surface area, Langmuir surface area, t-plot microspore
area, and t-plot outer area were 973.39, 1283.45, 869.29, and 104.09 m2/g, respectively.
It was also found that the total surface area of pores between 17 and 3000 m2/g for BJH
adsorption and desorption was 66.42/74.37 m2/g. AlFu possessed pores that were typically
22.97 nm wide and had a spacing of nearly 130.16 nm for BJH adsorption and desorption,
respectively. AlFu has a single point giving a pore volume of 0.559 cm3/g (for pores less
than 717.828 wide at a p/p◦ of 0.972282541), a microspore volume of 0.403996 cm3/g, and
a BJH adsorption/desorption aggregate volume of the pores of 0.216161/0.219537 cm3/g,
according to the primary pore volume assessment. In addition, the GO was tuned with an
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AlFu MOF, creating a 2D nanostructure with a suitable surface area. In this case, AlFu–GO
had a pore estimate of 24.92 and had a specific single point surface area, BET surface
zone, and Langmuir surface area of about 951.69, 917.79, and 1211.08 cm3/g, respectively.
Similar to AlFu and AlFu–GO, the AlFu–rGO composite also exhibits a large surface
zone, with individual surface areas, pore volumes, and raw pore diameters of 951.88
m2/g, 0.6069 cm3/g, and 2.5503 nm, respectively. The isotherms of nitrogen sorption and
desorption of the AlFu MOF are shown in Figure 4a. The common specific surface area
of the generated nanoparticles was identified by BET analysis. At a p/p◦ of 0.200666237,
the single point surface area of AlFu was 1011.56 m2/g, while the area of BET surface,
Langmuir surface, t-plot micropore area, and t-plot outer area were 973.39, 1283.45, 869.29,
and 104.09 m2/g, respectively. In addition, the total surface area of the pores between 17
and 3000 m2/g was determined to be 66.42/74.37 m2/g for BJH adsorption and desorption,
respectively. In terms of pore size, AlFu appears to have an average pore width of 22.97
and an average pore spacing for BJH adsorption/desorption of 130.16/118.07. According
to preliminary pore volume measurements, AlFu comprises a single point that has a pore
volume of 0.559 cm3/g (for pores less than 717.828 Å in diameter at a p/p◦ of 0.972282541), a
micropore volume of 0.403996 cm3/g, and a BJH adsorption/desorption aggregate volume
of 0.216161/0.219537 cm3/g. This fantastic information shows the dominant surface area
of AlFu MOF, which makes it ideal for absorbing waste and toxins from various media.
Alignment of GO with AlFu MOF also led to the formation of a 2D nanostructure with
a substantially increased surface area. In this case, AlFu–GO has a single-point-specific
surface area, BET surface zone, and Langmuir surface zone of nearly 951.69, 917.79, and
1211.08 m2/g, respectively, with a pore size of 24.92 A. The AlFu–rGO composites, such as
AlFu and AlFu–GO, had high surface area with 951.88 m2/g, 0.6069 cm3/g and 2.5503 nm
for the surface area, respectively, which affects the pore volume and coarse pore spacing. In
this research, we investigated that AlFu MOF has a dominant surface area, which is ideal for
absorbing waste and toxins from various media. As mentioned before, AlFu–GO or AlFu–
rGO has a much larger surface area than AlFu, and we assume that the graphene surface
area increases the total surface area of the composite, which can increase the absorption
of the system. There are some methods to control the surface area of graphene that we
can investigate in future research. Figure 4 shows a diagram of the AlFu MOF nitrogen
sorption and desorption isotherms. As mentioned earlier, the crystal structure of AlFu
MOF consists of a chain of molecular oxygen bonded to a chain of aluminum connected by
fumarate linkers. The unique properties of AlFu MOF include that it has a permanently
porous 3D structure of Al(OH)(O2C CH CH CO2) with square channels [56]. AlFu MOF is
shown in more detail in Figure 5.
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2.2. Biological Studies Results

Recently, studies have been conducted on the anticancer and antibacterial effects of
saponin [11,65–67]. In one study, saponin extracted from the seeds of Madhuca longifolia
was used to clean the dental canal. The toxicity of the saponin was studied in the presence
of PDL cells. The results showed that the saponin extract had a viability of 60 to 70%
at concentrations of 300 µg/mL and 400 µg/mL. In contrast, sodium hypochlorite, a
common substance used for dental floss, had a viability of only 22% [68]. MOFs are
lattice structures of metal ions and organic ligands that exhibit good biocompatibility and
complete decomposition due to their large pore surface area, adjustable pore diameter,
high drug loading, stable and sustained drug release, and good biocompatibility. In vivo,
they are considered as drug carriers [56]. In one study, a hybrid of reduced graphene
oxide and hydroxyapatite (rGO/HA) was synthesized to produce a scaffold material for
bone tissue regeneration and implantation. In addition to the hybrid substance, this study
also investigated the toxicity of GO on PDL cells. The results showed that GO was not
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toxic, and at a concentration of 20 µg/mL, viability increased by 110% [69]. In a study
of the combination of chemotherapy and photothermal therapy, an anticancer drug was
loaded into GO stabilized with poloxamer 188. The results of the toxicity of GO on SCC-7
cells showed only 10% toxicity at the highest concentration of 10 µg/mL [70]. In another
study, a ceramic nanocomposite of reduced graphene oxide (rGO) anchored with copper
oxide was prepared by phytochemical route to investigate the antibacterial activity and
anticancer properties. According to the MTT results, reduced graphene oxide (rGO) has
a toxicity of less than 30% on SCC-9 cancer cells up to 150 µg/mL [71]. The synthesized
nanocarriers AlFu, GO, and rGO and their hybrid compounds (AlFu–GO) and (AlFu–rGO)
were investigated. The results showed low cytotoxicity and excellent biocompatibility. In
addition, the low toxicity of nanocarriers to normal cells is evident in all the above studies.
Figure 6 shows the schematic of AlFu (MOF)/GO/rGO with saponin on PDL cell line. The
results show that the rGO sample without and with saponin has no significant toxicity
on PDL cells at all concentrations. Among the investigated nanocarriers after rGO and
rGO–saponin, the AlFu–GO–saponin nanocarrier showed low toxicity to PDL cells and
viability of 91 ± 18.33% at a concentration of 25 µg/mL. The saponin without nanocarrier
has only 53.01 ± 11.27% viability at the lowest concentration. According to the results of
the MTT assay, PDL cells treated with AlFu–GO–saponin at a concentration of 250 µg/mL
had a viability of 74.46 ± 16.02%, whereas OSCC cells treated with this sample at a similar
concentration had a viability of only 38.35 ± 19.9%. The toxic effect of this compound
on OSCC cells is clearly visible. The synthesized MOF nanocarriers with large surface
area, controllable pore diameter, and high biocompatibility are very suitable for biological
applications such as drug delivery (see Figure 7).
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Figure 7. Comparison of drug toxicity and effect of AlFu (MOF)/GO/rGO with saponin on PDL cells
and viability of OSCC. MTT assay results of nanoparticles (MOFs) (a), nanoparticles (MOFs) with
saponin (b), and anticancer drugs (c) on PDL cells. MTT assay results of nanoparticles (MOFs), (d)
nanoparticles (MOFs) with saponin (e), and anticancer drugs (f) on OSCC cells.
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2.3. Comparison of the Toxicity of Nanocarriers with Saponin

The cell viability of PDL in the presence of AlFu is about 69.55 ± 15.7% at the highest
concentration and about 95.53 ± 11.08% at the lowest concentration, indicating that this
nanocarrier has very low toxicity to PDL cells. When saponin was combined with the
AlFu–GO nanocarrier, the saponin could penetrate well into the structure of the nanocarrier,
so the viability of PDL cells treated with AlFu–GO–saponin increased significantly. The via-
bility of the AlFu–saponin sample at a concentration of 25 µg/mL was 68.66 ± 19.39%. The
viability of saponin alone on PDL cells is 14.17 ± 8.92% at the highest concentration, and
when saponin was combined with GO, the viability increased to 30.9 ± 17.5%. In the case
of rGO, the viability of cells from PDL, similar to GO, was increased at all concentrations
when it was combined with saponin, showing that the combination of this sample with the
saponin has very low toxicity, in addition to the non-toxicity of rGO. The nanocarrier AlFu–
GO is not as toxic as the previous three samples. Even at high concentrations, it induced the
cell induction, and when the reduced concentration decreased the cell induction, the cell
viability reached about 91.98 ± 21.63% when saponin was combined with AlFu–GO. When
the saponin is incorporated into nanocarrier compounds, the toxicity of the saponin is
significantly reduced. PDL cells treated with pure saponin at a concentration of 250 µg/mL
had a viability of only 18.63 ± 8.42%, while the AlFu–GO–saponin sample at the same
concentration had a viability of 74.46 ± 16.02%. In the aforementioned sample, viability
increased to 91.84 ± 20.88% at a concentration of 25 µg/mL. PDL cells treated with an
AlFu–rGO sample at a concentration of 1000 µg/mL had a viability of 60.62 ± 17.58%. As
the concentration decreased, cell viability increased sharply and reached 104.72 ± 20.93%
at a concentration of 25 µg/mL. When this sample was combined with saponin at a concen-
tration of 25 µg/mL, a viability of 85.62 ± 18% was observed. In contrast, the viability of
saponin alone at a concentration of 25 µg/mL was only about 53.01 ± 11.27%. According
to the results, the AlFu–rGO nanocarrier reduced saponin toxicity at all concentrations (see
Figure 7).

Figure 7 shows the percentage of viability of OSCC cells after 24 h of exposure to
nanocarriers. At the highest concentrations, the toxicity of nanocarriers AlFu, GO, rGO,
AlFu–GO, and AlFu–rGO is 77.6 ± 14.2%, 119.86 ± 22.64%, 78.08 ± 9.66%, 84.47 ± 13.02%,
and 81.05 ± 19.44%, respectively. For the combination of AlFu carrier and saponin, cell
viability of only 27.62 ± 9.11% was observed at a concentration of 1000 µg/mL. In the
above sample, the viability of OSCC cells increased slightly with decreasing saponin
concentration. Thus, at a concentration of 100 µg/mL, only 52.75 ± 7.48% viability was
observed. The viability of the GO–saponin and rGO–saponin samples at a concentration
of 500 µg/mL was 43.6 ± 12.91% and 64.15 ± 18.21%, respectively. The saponin sample
alone at the same concentration has a viability of 19.17 ± 18.5%. After combining saponin
with the above nanocarriers, the reduction of saponin toxicity is clearly visible. The
saponin was combined with AlFu–GO nanocarrier, and the saponin was well placed in the
structure of the nanocarrier, so the viability of PDL cells treated with AlFu–GO–saponin
was significantly increased. According to the results of OSCC cells treated with AlFu–GO–
saponin at a concentration of 1000 µg/mL, only 25.57 ± 8.04% viability was observed. As
the concentration decreased, the bioavailability increased to 83.02 ± 22.29%. In addition,
similar to the previous sample, the saponin compound AlFu–rGO exhibits high toxicity
to cancer cells: at a concentration of 1000 µg/mL, the viability was 23.51 ± 13.12%, at
a concentration of 100 µg/mL, 50 ± 13.78% of the cells were killed, and at a minimum
concentration, a viability of 84.01 ± 19.96% was observed. The viability of PDL cells treated
with the anticancer drugs doxorubicin-cisplatin-carboplatin-5-fluorouracil and the natural
product saponin at a concentration of 1000 µg/mL was 53.86 ± 9.31%, 36.85 ± 20.1%,
28.09 ± 16.71%, 42.52 ± 14.59%, and 14.17 ± 8.92%, respectively. Viability increased
with decreasing concentration, so that at a concentration of 25 µg/mL, the viability of
the three drugs doxorubicin, cisplatin, and carboplatin increased to more than 90%. The
highest toxicity at this concentration is associated with saponin, where the viability is
only 53.01 ± 11.27%. Next, the viability of OSCC cells treated with the above anticancer
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drugs and saponin was examined. The results show that at a concentration of 1000 µg/mL,
toxicity of about 60% was observed with all drugs. The highest degree of toxicity is
associated with the saponin sample, such that half of the cells were killed at a concentration
of 25 µg/mL. Due to the high toxicity of anticancer drugs to normal cells, it is necessary to
use nanocarriers to reduce the side effects. The saponin used in this study is a nonionic
amphiphilic saponin of natural origin. Previous studies have investigated the anticancer
and antibacterial effects of the five drugs mentioned above [72–75]. In more recent studies,
the effect of platycodin D, a type of triterpene saponin derived from Platycodon grandiflorum,
on the growth and invasion of human oral cancer cells was investigated. According to the
results, platycodin D at a concentration of 80 µM had no significant effect on the viability
of SCC 4-SCC 9 cells after 24 h. However, 48 and 72 h after treatment, platycodin D at
concentrations of 20 and 80 µM caused significant inhibition of cancer cells [76]. In another
study, cold atomic plasma (CAP) was examined in vitro for reactive oxygen species (ROS)
at the oral cavity cancer site induced by cisplatin, and the toxicity of cisplatin on SCC cells
was also investigated. MTT results showed that cisplatin at a concentration of 30 µM had a
viability of about 20% [74].

2.4. Flow Cytometric Detection

After treatment of PDL and OSCC cell lines with different nanostructures, the apop-
totic effect was determined by flow cytometry (Figure 8). The concentration of nanos-
tructures in each group was set at 1000 µg/mL. As shown in Table 1, the control group
(untreated cells) had a minimal effect on apoptosis of PDL (2.52 ± 0.78% of total cells) and
OSCC cells (1.31 ± 0.62% of total cells). In the AlFu–GO–saponin and AlFu–rGO–saponin
groups, apoptotic cells were increased to 10.98 ± 2.36%–26.90 ± 3.24% and 15.9 ± 4.08%–
29.88 ± 0.41%, respectively. In addition, the apoptotic cells in saponin, AlFu–GO, and
AlFu–rGO groups were 14.96 ± 3.04%–22.75 ± 1.28%, 15.69 ± 3.93%–17.19 ± 2.26%, and
16.60 ± 2.54%–17.17 ± 2.80%, respectively. This significant increase in apoptotic effect
observed with AlFu–rGO–saponin is also evident when compared to the nanostructures
alone; thus, the nanoparticles alone have a lower effect than the combination therapy.

Table 1. Comparison of early apoptotic, late apoptotic, and cumulative apoptotic cell populations of
PDL and OSCC cell lines in each treatment group.

Compound Early Apoptosis (%) Late Apoptosis (%) Cumulative Apoptosis (%)

PDL cell line OSCC cell line PDL cell line OSCC cell line PDL cell line OSCC cell line

control 1.20 ± 0.45 0.35 ± 0.81 1.32 ± 0.08 0195 ± 0.31 2.52 ± 0.78 1.31 ± 0.62

saponin 11.51 ± 0.14 9.95 ± 1.05 3.45 ± 0.41 12.80 ± 2.57 14.96 ± 3.04 22.75 ± 1.28

AlFu–GO 6.9 ± 3.39 5.69 ± 1.85 8.79 ± 0.74 11.5 ± 1.33 15.69 ± 3.93 17.19 ± 2.26

AlFu–rGO 5.35 ± 0.58 7.66 ± 0.96 11.25 ± 3.12 9.51 ± 0.51 16.60 ± 2.54 17.17 ± 2.80

AlFu–GO–
saponin 3.85 ± 0.07 11.30 ± 0.07 7.13 ± 1.57 15.60 ± 0.16 10.98 ± 2.36 26.90 ± 3.24

AlFu–rGO–
saponin 4.7 ± 1.90 16.29 ± 3.48 11.2 ± 1.43 13.59 ± 2.11 15.9 ± 4.08 29.88 ± 0.41
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Figure 8. Apoptotic percent of PDL (a) and OSCC (b) cell lines after exposure to different nanostruc-
tures using flow cytometry. Annexin V+/7-AAD+ (late apoptotic), 7-AAD+ (necrotic), and Annexin
V/7-AAD (live) cells in each treatment group. The groups are control (I), saponin (II), AlFu–GO (III),
AlFu–rGO (IV), AlFu–GO–saponin (V), and AlFu–rGO–saponin (VI).
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3. Materials and Method

Periodontal ligament fibroblasts (PDLs) were purchased from the Sivan (Shiraz, Iran)
company. The OSCC, was purchased from (Shayan Pars Cell Bank, Shiraz, Iran). DMEM
culture medium, trypsin, fetal bovine serum (FBS), phosphate buffer solution, and MTT
solutions were all purchased from BIO-IDEA (Iran). The commercial saponin used in
this article was “Saponin from Quillaja bark” purchased from Sigma Aldrich (Darmstadt,
Germany, CAS number: 8047-15-2). The characterization of the nanostructures were
investigated using different analytical techniques. The FTIR tensor II Bruker (Berlin,
Germany), AlFu and its derivatives were registered in the present case. Mira 3 Tescan
(Kohoutovice, Czech Republic) and Hitachi H-800 TEM (Tokyo, Japan) were used for field
emission scanning electron microscopy (EDX and FESEM) to evaluate the morphology and
average particle size, respectively. Surface SA-3100 was used in conjunction with a pore
analyzer (Beckman Coulter, Brea, CA, USA) to determine the specific surface area of the
adsorbent developed and the average pore size.

3.1. Preparation of GO and rGO

The modified Hummer’s method was used to prepare GO. First, 2 L of H2SO4 were
poured into a round-bottom flask and stirred simultaneously at a temperature of 50 ◦C with
a rotation of 300 rpm. In the next step, 50 g KMNO4 was added to the H2SO4 in the flask.
Then, 10 g of graphite was slowly added to the stirring suspension. In the next step, 110 mL
of H3PO4 was added to the above suspension and the suspension was stirred at 50 ◦C and
500 rpm for 72 h. Then, the suspension was transferred to an ice-cooled Erlenmeyer flask
under vacuum (ice-cooled Erlenmeyer flask). In the next step, 10 mL of H2O2 was slowly
added to the suspension, and the Erlenmeyer flask was filled with deionized water under
vacuum. Then, the suspension was kept constant for 48 h to separate the fillers. Finally,
the desired suspension was filtered, and to remove the metal ions, the remaining fillers
were washed on filter paper with HCl solution. To neutralize the pH, the suspension was
also washed with deionized water. In the final step, the material was dried in a heating
oven at 80 ◦C for 1 h and then stored in a moisture-reduction chamber for 48 h. To reduce
GO, the hot zone of a tube furnace is filled with fine dry powder of GO nanosheets. Ar
gas is then continuously introduced into the tube while the temperature is increased by
5 ◦C per minute until it reaches a temperature of about 350 ◦C. Therefore, the GO should
be kept at the above temperature for 30 min to eliminate the oxygen domains and shorten
the gap. After the tube reached room temperature (RT), the exfoliated GO powder was
collected and stored in the desiccator for further use. First, 50 mg of the resulting solid was
sonicated in 500 mL of water in a continuous supersonic bath for 0.5 h. Because the material
is highly fragmented when the tip is inserted directly into the medium, bath sonication
is preferable to advanced sonication. A total of 250 mg of GO was gradually separated
from the rest of the solution with vigorous shaking. Different reduction times (0.5 to 3 h)
at a reduction temperature of 95 ◦C were investigated. To remove the excess of AC, the
resulting black precipitates were washed for 0.5 h with distilled water at a rate of 3000
activities. The resulting suspension was divided into two equal parts and centrifuged at
1000 rpm for 0.5 h to produce a homogenized GO suspension (Figure 9). It was possible to
use this suspension to produce rGO. Finally, rGO powder was prepared overnight and the
precipitated material was dried at 80 degrees Celsius [28]. It was studied how GO dissolves.
It illustrates how the primary chemical species changed over time at temperatures ranging
from 1200 K to 3000 K. The degradation of GO at temperatures from 1200 K to 3000 K shows
the great influence temperature has on the distribution of byproducts. At low temperatures,
there are hardly any degradation products, which shows that GO is rarely decomposed.
H2O and H2 are produced only in traces [77] (see Figure 9a,b).
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3.2. Synthesis of AlFu, AlFu–GO, and rGO Hybrid Materials

AlFu MOF was prepared using the previously described technique with hydrothermal
processes [50]. A round-bottom flask containing 32 mL DI and 7.59 g Al2 (SO4)3–18H2O was
heated at 60 ◦C for one hour over some exotherm (labeled solution A). Then, 1.913 g NaOH
was suspended in 38.5 mL deionized water (DI) and 2.59 g fumaric acid (C4H4O4) was
added dropwise. Stirring was then performed until a homogeneous suspension (designated
solution B) was formed. To precipitate the white AlFu precipitate, solution B was gradually
added dropwise to solution A at 60 ◦C. The combination was then stirred at 500 rpm
for two hours. To remove any solvent still in the AlFu MOF and to bring the pH of the
supernatant solution to 7.0, the unreacted reagents were washed five to six times with
deionized water. The materials were then dried at 100 ◦C for 12 h in a vacuum oven.
AlFu–GO and AlFu–rGO hybrids were prepared by dispersing a certain amount of GO and
rGO powder in the initial water of solution A (32 mL DI) at 200 W for one hour. The same
AlFu procedure was then used to synthesize AlFu–GO and AlFu–rGO in the presence of
GO and rGO suspensions, and the efficacy of the prepared AlFu, AlFu–GO, and AlFu–rGO
against OSCC was investigated. The four anticancer drugs used in the control groups were
cisplatin, carboplatin, doxorubicin, and 5-fluorouracil (see Figure 9c).

3.3. Toxicity Evaluation

In this study, OSCC and PDL cell lines were used to evaluate cytotoxicity in vitro.
Experiments with the cells were performed in triplicate. In this study, DMEM was
used as cell culture medium supplemented with 10% fetal bovine serum (FBS) and 5%
penicillin–streptomycin. Cells were cultured at 37 ◦C in a humidified environment with 5%
CO2 gas before experimental evaluation. Subsequently, a 3-(4,5-dimethylthiazol-2yl)-2,5-
diphenyltetrazolium bromide (MTT) assay [77] was performed to evaluate the cytotoxicity
of the AlFu–GO hybrid composite against OSCC and PDL. For this purpose, the cultured
cells were seeded on 96-well plates with approximately 2000 cells per well. In the first phase,
OSCC and PDL were incubated for 24 h, followed by treatment of the cells with AlFu–GO
and AlFu–rGO by saponins at a concentration range of 25, 100, 250, 500, and 1000 µg/mL.
Cells were then incubated at 37 ◦C and 5% CO2 for 24 h. A 5 mg/mL MTT stock solution
was then prepared using PBS. This stock solution was then diluted with DMEM medium
without phenol to a concentration of 0.5 mg/mL (1 mL MTT stock solution (5 mg/mL) +
9 mL phenol-free DMEM). After aspirating the old medium from each well, 30 µL of the
diluted DMEM–MTT solution was added to each well. The plates were incubated at 37
◦C and 5% CO2 for 3 h. Then, 100 µL of DMSO was added to the wells to dissolve the
insoluble formazan crystals. Finally, the microplate reader (BioTEK Power Wave XS2) was
used to determine the absorbance of the respective solutions at the main wavelengths of
570 nm and the reference wavelengths of 630 nm. In this paper, the reference wavelength
was subtracted from the original wavelength (A570–A630) in the calculations. Therefore,
the reference wavelength was used to exclude some factors such as precipitated proteins or
cell debris in the wells.

Viability (%) =
At − Ab
Ac − Ab

× 100

where At corresponds to adsorption in each test well, Ab corresponds to adsorption in the
blank well (this well includes media + MTT + DMSO; no cells are cultured in this well),
and Ac corresponds to adsorption in the control well.

3.4. Flow Cytometric Detection of Apoptosis/Necrosis

The extent of apoptosis in OSCC and PDL cells after treatment was determined by
staining with APC-annexin V and 7-AAD (BioLegend, London, UK), because the nanopar-
ticles were shown not to interact with these channels. The medium and detached cells
were stained with 50 µL APC-Annexin V (2.5 µL/mL annexin binding buffer) for 30 min
after being exposed to the tested compounds for 24 h. Cells were labeled and then washed
three times with annexin-binding buffer before being placed again in a staining solution
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containing 2.5 µL/mL 7-AAD. The FACSCanto II flow cytometer from BD Biosciences,
San Jose, California, USA, was then used to analyze the cells (10,000 events per treatment).
FlowJo 10 and GraphPad Prism 7 software programs were used to analyze the data (gating
strategy). The cells treated with 10 µL of DMSO served as a control group in this assay
(e.g., untreated group).

3.5. Statistical Analysis

The biological studies, e.g., MTT assay and apoptotic assay, were performed in tripli-
cate for each study group. Data were compared by one-way analysis of variance (ANOVA)
followed by Tukey post hoc test (SPSS software, IBM version 23, IBM Corp., Armonk, N.Y.,
USA). The significance level was set at a p-value ≤ 0.05.

4. Conclusions

We explored the concept in this study using the development of AlFu MOF and
the resulting crossover nanocomposites with GO and rGO nanosheets. In this case, the
fabricated specimens were accurately characterized, showing that they were successfully
synthesized and exhibited a fine crystalline structure. According to the results of the
conducted studies, AlFu, AlFu–GO, and AlFu–rGO exhibit a predominant porosity in
the high beta surface area of about 973.39, 917.79, and 951.88 m2/g, respectively. This
property makes them ideal candidates for highly efficient and precise biotherapeutic
applications. Saponin and AlFu can work better than routine and basic drugs, such
as doxorubicin, cisplatin, carboplatin, and 5-fluorouracil, in areas of PDL cells, which
significantly reduces their side effects and improves their anticancer performance. In
conclusion, this study proposes an orderly protocol for the precise development and
production of anticancer agents for OSCC cancer, which should be performed prior to
in vivo and in vitro evaluations to achieve maximum performance with the fewest side
effects. In addition, evaluation of efficacy and safety of new anticancer drugs is critical and
should be studied before the drug is forwarded for further analysis.
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