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Abstract
Scalable assessments of biodiversity are required to successfully and adaptively man-
age coastal ecosystems. Assessments must account for habitat variations at multiple 
spatial scales, including the small scales (<100 m) at which biotic and abiotic habitat 
components structure the distribution of fauna, including fishes. Associated chal-
lenges include achieving consistent habitat descriptions and upscaling from in situ-
monitored stations to larger scales.

We developed a methodology for (a) determining habitat types consistent across 
scales within large management units, (b) characterizing heterogeneities within each 
habitat, and (c) predicting habitat from new survey data. It relies on clustering tech-
niques and supervised classification rules and was applied to a set of 3,145 under-
water video observations of fish and benthic habitats collected in all reef and lagoon 
habitats around New Caledonia.

A baseline habitat typology was established with five habitat types clearly charac-
terized by abiotic and biotic attributes. In a complex mosaic of habitats, habitat type 
is an indispensable covariate for explaining spatial variations in fish communities. 
Habitat types were further described by 26 rules capturing the range of habitat fea-
tures encountered. Rules provided intuitive habitat descriptions and predicted habi-
tat type for new monitoring observations, both straightforwardly and with known 
confidence. Images are convenient for interacting with managers and stakeholders.

Our scheme is (a) consistent at the scale of New Caledonia reefs and lagoons 
(1.4  million  km2) and (b) ubiquitous by providing data in all habitats, for example, 
showcasing a substantial fish abundance in rarely monitored soft-bottom habitats. 
Both features must be part of an ecosystem-based monitoring strategy relevant for 
management.

This is the first study applying data mining techniques to in situ measurements to 
characterize coastal habitats over regional-scale management areas. This approach 
can be applied to other types of observations and other ecosystems to characterize 
and predict local ecological assets for assessments at larger scales.
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1  | INTRODUC TION

Assessing the ecological status of ecosystems and natural resources 
in the face of anthropogenic and environmental stressors is neces-
sary to inform and guide appropriate management decisions (Mumby 
& Steneck,  2008). Consistently with an ecosystem-based (EB) ap-
proach to management (Long, Charles, & Stephenson, 2015), assess-
ments of biodiversity and resource status are necessary at the scale 
of large spatial entities such as territories or regional ecosystems. In 
this paper, assessment refers to periodic evaluation of changes in 
monitoring-based indicators of biodiversity linked to management 
targets, for example, for marine protected areas (MPA) (Hockings, 
Stolton, Leverington, Dudley, & Courrau, 2006). However, the spa-
tial and temporal distribution of biodiversity indicators depends on 
both management-related factors (anthropogenic pressures and/or 
protected area status) and environmental factors, such as habitat, 
which must thus be accounted for in monitoring and assessment. It 
has long been acknowledged that the spatial distribution of natural 
communities is largely shaped by the characteristics and availability 
of their habitat in the environment (Bell, McCoy, & Mushinsky, 1991). 
Shallow marine ecosystems typically encompass a variety of habi-
tats determined by biological and physical features, such as benthic 
cover, depth, wave exposure, and modified by anthropogenic pres-
sures such as fishing or pollution. Habitat features strongly influence 
the structure of demersal–benthic fish communities (Anderson & 
Millar, 2004). This influence occurs at a range of spatial scales (Bach, 
Saunders, Newman, Holmes, & Harvey, 2019; García-Charton & 
Pérez-Ruzafa, 2001) from small (<100 m) to larger (>100 m) (see, e.g., 
Grober-Dunsmore et al. (2008) for references); even at meter scale, 
habitat variations influence spatial patterns of fishes and other mac-
rofauna (e.g., Brokovich, Baranes, & Goren, 2006; Ferraris, Pelletier, 
Kulbicki, & Chauvet,  2005; García-Charton & Pérez-Ruzafa, 2001; 
Gratwicke & Speight,  2005; Komyakova, Jones, & Munday, 2018). 
The influence of habitat on shallow fishes has been studied mostly in 
either rocky habitats (Quaas, Harasti, Gaston, Platell, & Fulton, 2019; 
Smith & Anderson, 2016; Teixeira-Neves, Neves, & Araújo, 2015) or 
soft-bottom areas (van Lier, Harasti, Laird, Noble, & Fulton, 2017), 
but not over all habitats in a given area. Yet, fish are connected to 
multiple habitats via ontogenic migrations, larval dispersal, and daily 
movement (Perry, Staveley, & Gullström, 2018), meaning that from 
an EB perspective, all habitats within the concerned ecosystem 
should be considered when assessing coastal fish communities.

This paper focuses on benthic coastal habitats described by geo-
metric parameters, for example, complexity, rugosity (Charbonnel, 
Ruitton, Serre, Harmelin, & Jensen,  2002), and other measures of 
configuration or landscape metrics (Grober-Dunsmore et al., 2008), 
geomorphology (e.g., Andréfouët & Torres-Pullizza,  2004), and bi-
otic and abiotic covers. Small-scale (<100 m) patchiness of habitats is 

preferably captured by in situ measurements. Here, we characterize 
benthic habitats at observation scale using panoramic underwater 
video. Measurements of habitats and fish communities were col-
lected on both hard substrates and soft-bottom areas within vast 
marine managed areas where periodic assessment of both habitats 
and fish communities is required.

To be utilized as an explanatory factor in assessments, a con-
cise description of habitat is needed at each station. In the past, 
habitat typologies (also termed systematic classification schemes; 
Mumby and Harborne (1999)) have been obtained from quadrat 
and distance-based transect data using nonsupervised multivariate 
methods such as factorial and cluster analyses (Ferraris et al., 2005; 
Mumby & Harborne, 1999; Pelletier et al., 2012). The cluster index 
forms a concise habitat proxy (covariate) for explaining spatial varia-
tions of fish assemblages (Ferraris et al., 2005) or for informing man-
agement and science through standardized maps. Yet, this synthetic 
proxy neglects within-habitat heterogeneity, which also influences 
spatial variations of macrofauna (see above). In addition, predicting 
habitat from data collected either in follow-up monitoring surveys 
or at other locations is tedious as it requires mathematical computa-
tions, namely projecting the new data on the clusters.

In the case of large databases, mining techniques are an ap-
propriate and efficient way to determine meaningful association 
rules between variables of interest under the form of sets of con-
ditions on their values, along with measures of confidence and fre-
quency (Agrawal, Imielinski, & Swami, 1993; Fournier-Viger, Wu, & 
Tseng, 2012; Han, Pei, Yin, & Mao, 2004). Significant rules are typ-
ically frequent patterns encountered in the data set at hand (Han 
et al., 2004), but methods are also developed for mining rare pat-
terns (Piri, Delen, Liu, & Paiva, 2018).

Using both clustering techniques and supervised classification 
rules, we developed a methodology for (a) devising a habitat ty-
pology consistent across scales within large management units; (b) 
characterizing heterogeneities within each habitat type; and (c) pre-
dicting habitat from new survey data. The methodology was applied 
to a comprehensive data set of underwater video observations col-
lected in New Caledonia (NC, Southwest Pacific).

2  | MATERIAL S AND METHODS

2.1 | Study area

The study area encompasses NC reef and lagoon areas (southwest 
Pacific Ocean, 17–24° S, 158–172° W; Figure 1). NC comprises the 
Loyalty archipelago and a main island, approximately 400 km long 
and 50 km wide, surrounded by a large lagoon subject to a range of 
anthropogenic pressures, particularly close to Noumea City. Outside 
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of the lagoon, the NC Exclusive Economic Zone (EEZ) comprises re-
mote well-preserved reefs, islands, and atolls that make up for the 
Coral Sea Marine Park (CSMP, 1,300,000  km2) declared in 2014 
(Figure 1). Aside from CSMP, 15,743 km2 (i.e., 80%) reef and lagoon 
areas were declared a World Heritage (WH) serial property in 2008 
due to the exceptionally high diversity of their coral reef ecosystems 
(https://whc.unesco.org/en/list/1115). Both WH and CSMP man-
agement involve periodic monitoring for assessment and reporting 
on fish resources and biodiversity.

2.2 | Data collection

2.2.1 | Observation equipment

Data for benthic habitat and fishes were collected using a remote 
unbaited rotating underwater video system (STAVIRO; Pelletier 
et  al.,  2012). A standardized procedure for sampling design, field 
operations, image annotation, and data analysis was described in 
Pelletier, Carpentier, Roman, and Bockel (2016). The STAVIRO sys-
tem consists of an HD video camera and a motor programmed to 
rotate the camera housing by 60° every 30 s (1 rotation ~ 3 min), 
yielding 6 contiguous fixed frames per 360° rotation. This relatively 
lightweight (6 kg) system was dropped from the boat at the station 
location and set horizontally on the sea bed. The system was left 
for 15–20 min to record the video over three complete undisturbed 
rotations.

2.2.2 | Sampling design

Stations were located at eighteen sites representative of NC 
coral reef areas: remote sites in the CSMP (Entrecasteaux, Petrie, 
Astrolabe, Chesterfield, Bellona, Matthew, Hunter, Walpole), and 
others around the main island (Nouméa, Koné, Pouebo, Hienghène, 
Bourail, Borendy, Merlet, Corne Sud and Ouano) and in the Loyalty 
Is. (Lifou) (Figure 1). Data were collected between 2007 and 2015, 
between March and September, outside of the summer season. The 
sampling design at each site was stratified using geomorphological 
maps (Andréfouët & Torres-Pullizza, 2004) and included main reef 
areas and associated soft-bottom habitats. Within each stratum, 
stations were distributed to cover the entire site area and account 
for management status (marine protected area (MPA), WH property, 
unprotected areas). In total, 3,145 stations were sampled (Figure 1) 
at depths ranging between 1 and 41 m.

2.2.3 | Data validation and image analysis

After fieldwork, video footage was validated when (a) underwater 
visibility (estimated from reference images; see below) was at least 
5 m, and (b) the field of view was not obstructed by any sea floor or 
benthos relief that would prevent image analysis within a 5-m radius 
around the system. For each valid video, habitat attributes (Table 1) 
were evaluated from a single rotation for an estimated 5-m radius 
around the video system, corresponding to an observed surface area 

F I G U R E  1   Study area showing distribution of 3,145 sampling stations (red). Inset: location of NC in the southwest Pacific, with the 
perimeter of the EEZ and external boundary of the Coral Sea Marine Park (CSMP) in green. The CSMP coastal boundary is the barrier reef 
surrounding the main island and the three islands of the Loyalty archipelago (including Lifou) located between Astrolabe and Walpole. 
Boundaries of the World Heritage property are in orange

https://whc.unesco.org/en/list/1115
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of ca. 78.5 m2. Each attribute was evaluated in each frame, and val-
ues were then averaged over the six frames of the rotation.

Fish and other marine animals were identified at the most precise 
taxonomic level based on a reference species list, and counted on 
each frame and for each of three undisturbed rotations within a 5-m 
radius around the system. The reference list included 42 families 
(Appendix 1). For each species at each station, abundance was cal-
culated as the mean count over three rotations, which averaged out 
the variability between rotations. Abundances were expressed in 
densities as numbers of individuals per 100 m2 (ind/100 m2). Species 
richness was the number of species observed within a 5-m radius 
around the camera during the three rotations.

Estimation of visibility, attributes, and 5-m radius followed 
training of annotators with reference images comprising bright and 

dark fish silhouettes of several sizes filmed at a range of distances 
and in several visibility conditions. Training was validated after 
successful joint analyses of a set of images were conducted with 
an expert.

2.3 | Data analysis

Our classification method had two steps: (a) producing the habitat 
proxy (cluster index) summarizing habitat attributes at each station, 
and (b) deriving classification rules for describing within-cluster het-
erogeneity and predicting habitat (Figure 2).

2.3.1 | Constructing the typology and the 
habitat proxy

In this broadly distributed data set, biotic covers differed strikingly 
between well-preserved remote sites, and coastal sites subject to 
anthropogenic pressures. The typology was constructed from the 
2,609 coastal stations only, and the remote stations were a poste-
riori projected on the typology to avoid: (a) a systematic contrast of 
remote and coastal stations due to average differences in live coral 
cover; and (b) failure to discriminate between habitat variations be-
tween coastal areas. The clusters of coastal stations were obtained 
by combining principal component analysis, hierarchical ascend-
ing clustering, and Random Forest (RF) modeling (Breiman,  2001, 
Appendix 2). Based on this typology of coastal stations, habitat 
was predicted at the 536 remote stations using a second RF model 
(Appendix 2). Clusters were characterized by habitat attributes by 

TA B L E  1   Habitat attributes annotated in video footages

Attribute
(parameter type) Definition

Depth (m) Measured from a depth gauge on the STAVIRO

Topography Seabed steepness. If h denotes the largest altitude between troughs and elevations:
h negligible, h < 1 m, 1 < h < 2 m, 2 < h < 3 m, h > 3 m

Complexity Number and diversity in size of potential refuges:
none, low, medium, strong, outstanding

Substrate PC of five substrate categories: (a) sand; (b) debris (<0.3 m); (c) boulder (between 0.3 m and 1 m); (d) rock (>1 m); 
and (e) slab

Live coral PC of live coral

Dead coral PC of recently dead coral

Macroalgae PC of macroalgae

Seagrass PC of seagrass

Auxiliary attributes

Coral form PC of live coral per morphotype: branch, massive, digitate, foliate, others

Macroalgae PC of erect algae and other algae

Seagrass PC of erect and short seagrass, percent covers of seagrass per density category: dense, semidense, sparse

Note: Topography and complexity scores range between 1 and 5. Percent covers (PC) refer to the observed surface area. “Macroalgae” does not 
include encrusting algae. “Other algae” mostly includes algal turf, that is, typically low-lying (mm to cm tall) layer of algae (Connell et al., 2014). “Dead 
coral” still retains a coral shape. Habitat annotation was derived from Clua et al. (1996).

F I G U R E  2   Analytical workflow: methods (left) and outputs 
(right)
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testing differences in means between each cluster and the overall 
set of stations (Pelletier & Ferraris, 2000).

The distribution of the habitat proxy was mapped at the scale of 
the entire territory and at the site scale. The relevance of the clus-
ters as a habitat proxy for explaining spatial variations of fish com-
munities was illustrated by: (a) testing the effect of habitat for two 
widely used metrics, overall fish abundance and species richness; 
and (b) computing and plotting frequency per family in each habitat.

2.3.2 | Classification rules

Classification rules are used to describe multivariate data sets 
(Appendix 3). In this paper, a classification rule is made of a set of 
conditions on habitat attributes that imply a specific habitat (here, 
the habitat proxy).

Because of the large number of possible combinations of con-
ditions on habitat attributes, objective constraints were set to se-
lect the most interesting and relevant rules: (a) The rule comprises 
3 conditions or less on habitat attributes; (b) a maximum support 
(number of observations satisfying the rule), and (c) a minimum con-
fidence (proportion of observations satisfying the conditions and 
belonging to that habitat) (Appendix 3). Rules were extracted using 
the TopKRules algorithm, which retains the K rules with maximum 
support and a minimum confidence (min_conf). The algorithm was 
implemented using the SPMF software (Fournier-Viger et al., 2012). 
Top1000 rules were searched for three min_conf values, 80%, 90%, 
and 95%, producing three sets of 1,000 rules.

The Top1000 rulesets were then selected and reorganized based 
on expert knowledge, to achieve a compromise between represen-
tativeness (i.e., a large proportion of the stations in each habitat 
were described by the rules with a high confidence level) and par-
simony (not having too many rules). Each rule had to (a) include a 
condition on the archetypical attribute of each habitat; (b) comprise 
up to four conditions on habitat attributes; and (c) not overlap with 
another rule.

Expert knowledge was also useful to identify specific habitat at-
tributes that were relevant to describe within-habitat heterogeneity. 
Including a condition on such an attribute in some rules increased 
the rules' confidence by making it more specific of the habitat type. 
In some habitats, rules with lower confidence were considered to 
increase their support. The resulting set of expert-selected rules was 
then used for describing within-habitat heterogeneity. We then as-
sessed the ability of this set of rules to predict habitat considering 
the confidence level for each habitat type and over all habitats.

3  | RESULTS

3.1 | Habitat typology and proxy

Five clusters (i.e., habitat types) were retained, each clearly charac-
terized by an archetypical attribute and named accordingly. Three 

habitats pertained to soft sand-dominated bottoms (Macroalgae, 
Seagrass, Sandy), while two habitats corresponded to dominant hard 
substrates (Live Coral and Debris). In each cluster, the archetypical 
attribute was larger than 15%, but for the Live Coral habitat, 113 
stations displaying a lower live coral cover were assigned because 
they also had a substantial dead coral cover. They were set aside 
from the coastal station data set, which was then used to train a RF 
classification model (based on 1,000 trees, out-of-bag (OOB) error of 
3.9%). From this model, habitat was predicted for the 113 stations: 
Respectively 77 and 35 stations were classified in the Debris and 
Sandy habitats, and one in the Live Coral habitat (live coral cover, 
14.9%).

The second RF model trained from this consolidated typology 
(based on 1,000 trees, out-of-bag (OOB) error of 4.1%) served to 
predict habitat for the 536 oceanic remote stations. These were 
assigned to the Live Coral (48%), Sandy (27%), and Debris (25%) 
habitats.

The final clusters with all the stations were described by habitat 
attributes (Table 2, Appendix 4). Average live coral cover was unsur-
prisingly higher at remote stations than at coastal stations, in partic-
ular in the Live Coral habitat (Appendix 4), and two thirds of stations 
with live coral cover > 80% were in remote sites. In other habitats, 
live coral cover was sometimes high, for example, in Sandy habitat 
due to the presence of coral patches. Seagrass and Macroalgae hab-
itats appeared characteristic of coastal areas where high seagrass 
and macroalgae covers were also observed in other habitats, thereby 
illustrating the heterogeneity inherent to each habitat.

The distribution of the habitat proxy across sites illustrated dif-
ferences between sites (Figure 3, Appendix 5). Soft-bottom habitats 
were more frequent on the western coast, consistently with a larger 
and shallower lagoon area. Hence, the prevalence of fringing seagrass 
beds was outstanding in Bourail (WH property) and macroalgae fields 
were common in Nouméa and Ouano areas. In contrast, stations in 
the Live Coral habitat were numerous at oceanic sites (48% at sta-
tions versus 17% at coastal stations; Figure 3, Appendix 4).

The ability of the habitat proxy to explain variations in fish com-
munities was first illustrated by comparing overall abundance den-
sity and species richness (SR) across habitats (Figure 4). Both metrics 
highly significantly varied across habitats (p  <  2.2e−16, GLM with 
gamma and negative binomial distribution, respectively). Densities 
per habitat significantly differed from one another (Tukey's multi-
ple comparisons, p <.01 ), except between Macroalgae and Seagrass 
habitats. SR per habitat all significantly and strongly differed from 
one another (Tukey's multiple comparisons, p < 1e−05). Community 
composition strikingly differed between habitats (Figure  5, 
Appendix 6). Four families (Acanthuridae, Scaridae, Labridae, and 
Chaetodontidae) dominated in the Live Coral, Debris, and Sandy 
habitats. In the Macroalgae and Seagrass habitats, Lethrinidae, 
Mullidae, Balistidae, and to a lesser extent Labridae were the most 
frequent families. Dasyatidae and Elapidae were mostly observed on 
soft bottoms, whereas Carcharinidae were mainly seen on hard bot-
toms, and rarely in Macroalgae and Seagrass habitats. Turtles were 
seen in all habitats.
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TA B L E  2   Description of habitat clusters

Habitat
(# stations)

Significant habitat attributes by decreasing 
significance

IllustrationHigher mean in cluster Lower mean in cluster

Seagrass (340) Seagrass, sand, depth, 
macroalgae

Complexity, topography, 
live coral, dead coral, 
debris, slab, boulder, 
rock

Macroalgae 
(175)

Macroalgae, sand, 
depth

Topography, live coral, 
dead coral, complexity, 
slab, debris, boulder, 
rock

Sandy (1,157) Sand Complexity, live coral, 
topography, seagrass, 
slab, debris, dead coral, 
macroalgae, boulder, 
depth, rock

(Continues)
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3.2 | Habitat heterogeneity explained through 
classification rules

For the Macroalgae habitat, four rules described 95% of stations 
with an 80% overall confidence (Table 3). This habitat being clearly 
characterized by erect algae, a lower threshold on algal turf cover 
was necessary to distinguish it from the Sandy habitat. Where algal 
cover was lower (MA4), a maximum value for seagrass cover discrim-
inated this habitat from the Seagrass habitat. MA4 included stations 
displaying a mix of macroalgae, sandy, and seagrass covers.

In the Seagrass habitat, four rules described 94% of stations with 
a 95% overall confidence. 58% of stations (SG1 and SG2) comprised 
stations with dense and healthy seagrass beds. SG3 corresponded 
to a mix of seagrass and macroalgae. Where seagrass cover was 
lower (SG4), a third condition was needed to discriminate this habi-
tat from Macroalgae, Debris, and Sandy habitats. SG4 corresponded 
to deeper areas with sparser seagrass beds.

In the case of Sandy habitat, 84% of stations were captured from 
four rules with a 96% overall confidence. Where sand cover ≥ 60%, 
two more conditions avoided confusion with the Seagrass and 

Macroalgae habitats (SA1 to SA3), while for lower sand covers, ad-
ditional conditions prevented confusion with the hard-bottom hab-
itats (SA4). For sand covers below 60%, SA5 captured 91 stations, 
but confidence dropped due to confusion with the Live Coral and 
Debris habitats, and no additional condition could be determined 
to improve confidence. Likewise, no rule with sufficient confidence 
could be identified for the 22 stations with a sand cover ranging be-
tween 20% and 40%, these resembling stations from the Live Coral 
and Debris habitats.

For Live Coral habitat, six rules described 90% of stations with 
a 92% overall confidence (Table 4). LC1 indicated a good or excel-
lent status of coral cover. Where live coral cover was lower, a sec-
ond condition on hard coral cover was necessary (LC2 to LC5). A 
hard coral cover ≥ 60% clearly distinguished the Live Coral habitat 
from the Debris habitat where the dominant substrate was a mix-
ture of debris, boulders, rock, and slab. These rules (LC2 and LC4) 
corresponded to high hard coral cover but medium live coral cover, 
pointing to a not-so-good status of coral cover. Where hard coral 
cover  <  60%, possible confusion with the Debris and Sandy habi-
tats increased (LC3). If in addition live coral cover was lower (LC5), 

Habitat
(# stations)

Significant habitat attributes by decreasing 
significance

IllustrationHigher mean in cluster Lower mean in cluster

Debris (756) Debris, slab, boulder, 
rock, complexity, dead 
coral, topography

Sand, seagrass, live coral, 
macroalgae, depth

Live Coral (717) Live coral, complexity, 
topography, dead 
coral, depth

Sand, seagrass, debris, 
macroalgae, boulder, 
rock

Note: Highly significant attributes (p < 10–50) are in bold. Higher (resp. lower) mean in cluster signifies that the mean attribute was higher (resp. lower) 
in the cluster than on average over all stations (statistics and boxplots in Appendix 4).

TA B L E  2   (Continued)
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confusion with Debris and Sandy habitats was reduced by additional 
conditions on debris-related cover, and minimum complexity and to-
pography. LC5 illustrated the fact that complexity was higher in the 
Live Coral habitat than in the Debris habitat. At even lower live coral 
covers (<20%), confusion with the Debris and Sandy habitats was 
minimized by adding two conditions (LC6) that are—interestingly—
linked to a poor status of live coral (presence of algal turf and sub-
stantial dead coral cover).

In the Debris habitat, seven rules described 72% of stations with 
a 93% overall confidence level. This habitat was assigned with high 
confidence for either of the following single conditions (only D1 
was selected in Table4 as the other rules had low support): debris 
cover ≥ 60% (D1, conf. = 100%), slab cover ≥ 60% (conf. = 96%), boul-
der cover ≥ 40% (conf. = 86%), and rock cover ≥ 20% (conf. = 97%). 
Each of these conditions described facies (defined here as a set of 
morphological, physical, and biological features) that were only or 
mostly found in this habitat. Rules involving a composite variable 
corresponding to the sum of other debris-related variables were 
selected as they have a larger support. Small (D1) or intermediate 
(D2) substrate granularity was the most frequent patterns. For D3 
to D7, more conditions were required to discriminate Debris hab-
itat from Sandy, Macroalgae, and Live Coral habitats; and for de-
bris cover < 40%, a condition on the composite debris-related cover 

was needed. D5 and D7 corresponded to a higher substrate gran-
ularity (including slab and rock). The Debris habitat was the most 
heterogeneous.

The Debris habitat was the most heterogeneous. Screenshots 
of frames from video footages illustrated each rule (Pelletier, 2020).

3.3 | Habitat prediction from rules

Based on the 1,000 rules obtained from the TopK algorithm, habitat 
was predicted correctly for 70% to 84% of the stations depending 
on the required confidence level (Table 5, column 5). However, the 
Macroalgae habitat could not be predicted at all (columns 2–4), be-
cause with fewer stations, it was described by rules with smaller sup-
ports that were not among the 1,000 rules with maximum support.

The 26 expert-selected rules (Tables 3 and 4) may be used in-
stead for prediction (Table 5, columns 6 and 7). In the Macroalgae 
habitat, 95% of stations were thus predicted with an overall confi-
dence of 80%. Confidence was 100% where algal cover exceeded 
60% (MA1 and MA2), and 80% for covers below 60% (MA3 and 
MA4). The Seagrass habitat was well predicted from the rules (94% 
of stations with a 95% overall confidence) with a low probability of 
confusion.

F I G U R E  3   Distribution of the habitat proxy at each sampled site (number of observations in parentheses). Live Coral (pink), Debris 
(white), Sandy (yellow), Seagrass (light green), and Macroalgae (dark green)
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In the Sandy habitat, 91% of the stations were predicted with an 
88% overall confidence. Probability of confusion was <3% for SA1 to 
SA3, increased for SA4 and mostly for SA5. Habitat was not reliably 
predicted only for 2% of stations in this habitat (corresponding to 
20% < sand cover ≤ 40%).

In the Live Coral habitat, 90% of stations were correctly classified 
from six rules encompassing the range of live coral covers observed 
(overall confidence 92%). Even at low live coral covers, habitat pre-
diction had a high confidence and a low probability of confusion with 
the Sandy and Debris habitats.

In contrast, only 72% of stations in the Debris habitat were cor-
rectly classified from seven rules (overall confidence 93%). Additional 
rules of increasing complexity would be necessary to classify the re-
maining 28% of stations. In general, where live coral cover or debris 
cover comprised between 5% and 40%, stations could belong to 
three habitats: Live Coral, Debris, or Sandy.

Overall, the 26 rules selected enabled more stations to be cor-
rectly classified in each habitat, and with higher confidence than the 
Top1000 rules.

4  | DISCUSSION AND PERSPEC TIVES

4.1 | A regionally scalable habitat proxy for 
consistent assessments

We have developed a methodology to construct a habitat clas-
sification that we applied to a large data set of sampling sta-
tions distributed over the entire reef and lagoon areas of NC 

F I G U R E  4   Overall abundance density (top, in ind/100 m2) and 
species richness (bottom, in number of species within a 5-m radius 
around the camera) as a function of habitat proxy. Ends of boxes 
correspond to 0.25 and 0.75 quartiles, median as black line. 0.25, 
0.5, and 0.75 quartiles for the same metrics computed over all 
habitats in red
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(1.4 million km2) and with a systematic coverage in all major habi-
tats. Habitat attributes are summarized into five habitat types, 
which are consistent across spatial scales, and represent a satis-
factory compromise between parsimony and relevance for assess-
ment and management. Three are essential habitats for coral reef 
ecosystems (Seagrass, Macroalgae, and Live Coral). Three corre-
spond to soft-bottom areas rarely surveyed (Seagrass, Macroalgae, 
and Sandy).

Variations in overall abundance and species richness were highly 
significantly related to habitat type (i.e., the proxy) despite the variety 
of settings encompassed in our large data set. This established the 
importance of the habitat proxy (covariate) for assessing fish com-
munities. Family dominance differed according to habitat; several 
families including important fished species, for example, Lethrinidae, 
are more frequent in soft-bottom habitats. Although diversity and 
abundance were highest in reef areas stricto sensu (i.e., hard bot-
toms), soft-bottom habitats host a number of species belonging to 

many families and in substantial abundances. Simultaneous in situ 
measurements of fish and habitat covering both hard and soft bot-
toms enable cross-habitat comparisons of important metrics such as 
fish abundance and species richness. Also, they enable monitoring 
changes in habitat that affect fish stock status (Brown et al., 2019). 
Studies using simultaneous in situ measurements of fish and habi-
tat covering both hard and soft bottoms are few. Ricart, Sanmartí, 
Pérez, and Romero (2018) collected fish data from Underwater 
Visual Censuses and habitat data from video transects. Small-scale 
habitats were directly identified by visual analysis and directly clas-
sified into seagrass, rocky reefs, and sand, to compare fish-related 
metrics across habitats along a 100-km stretch of coast in the NW 
Mediterranean. Yates, Mellin, Caley, Radford, and Meeuwig (2016) 
used baited video for surveying fish, and both video (baited and 
towed) and remote sensing to survey habitat in an area of 200 km2 
encompassing a wide range of subtropical habitats. Habitats were 
categorized either visually according to habitat complexity (for 

TA B L E  3   Mutually exclusive classification rules selected for soft-bottom habitats. Rules were illustrated by screenshots in Pelletier 
(2020)

Habitat
(No. of stations) Classification rules

Conf. level 
(%)

No. of stations 
fulfilling the rule

Habitats for which confusion is 
possible (% stations)

Macroalgae
(175)

MA1. Algae > 80% and algal turf < 20% 100 20 None

MA2. 60% ≤ algae < 80% and algal 
turf ≤ 20% and dead coral < 5%

100 35 None

MA3. 40% ≤ algae < 60% and algal 
turf < 20% and hard coral ≤ 20%

79 64 Sandy (7%)
Sea grass beds (11%)
Debris (2%)

MA4. 20% ≤ algae < 40% and algal turf < 5% 
and seagrass < 40% and hard coral < 5%

66 48 Sandy (25%)
Seagrass beds (8%)
Debris (1%)

Seagrass
(340)

SG1. Seagrass ≥ 80% 100 93 None

SG2. 60% ≤ seagrass < 80% 98 100 Macroalgae (1%)
Debris (1%)

SG3. 40% ≤ seagrass < 60% and 
algae < 40%

93 92 Macroalgae (4%)
Debris (2%)
Sandy (1%)

SG4. 20% ≤ seagrass < 40% and 
algae < 40% and depth ≥ 10

81 34 Macroalgae (12%)
Debris (2%)
Sandy (5%)

Sandy
(1,157)

SA1. Sand ≥ 80% and seagrass < 20% and 
algae < 20%

99 393 Seagrass (1%)

SA2. Sand ≥ 80% and seagrass < 20% and 
algae ≥ 20% and algal turf > 5%

97 69 Macroalgae (3%)

SA3. 60% ≤ sand < 80% and seagrass < 5% 
and erect algae < 20%

97 417 Live Coral (2.5%)
Debris (0.7%)

SA4. 40% ≤ sand < 60% and 5 ≤ live 
coral < 40% and complexity < 2 and 
(debris + boulder + rock + slab) < 40%

87 88 Debris (8%)
Live Coral (4%)
Macroalgae (1%)

SA5. 40% ≤ sand < 60% and 5 ≤ live 
coral < 40% and 2 ≤ complexity < 3 and 
(debris + boulder + rock + slab) < 40%

46 91 Live Coral (33%)
Debris (21%)

Note: “Algae” cover corresponds to the sum of “erect algae” and “algal turf” covers. Rules with a confidence lower than 70% are in italics.
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baited video) or by using the CATAMI classification scheme (Althaus 
et al., 2015) (for towed video). But habitat descriptors were not inte-
grated into a habitat typology.

Overall, our results illustrated the strong dependence of fishes 
upon very small-scale (<100 m2) habitat features, both biotic and abi-
otic (see references in §1), and the feasibility of a scalable approach. 
The habitat proxy was successfully used in assessments of benthic 
habitats and fish communities in NC (see §4.4).

Owing to the spatial coverage of the data, general patterns of 
habitat distribution in vast reef and lagoon areas were for the first 
time evidenced from comprehensive field measurements covering 
the entire EEZ of New Caledonia: the prevalence of Seagrass and 
Macroalgae habitats in the western lagoon of the main island and, 
importantly, high live coral covers frequently observed at oceanic 
reefs remote from anthropogenic pressures.

We are not aware of any study characterizing coastal habi-
tats from direct measurements encompassing all habitats over 
such vast management units. Existing studies either pertained 
to smaller areas (e.g., Davis, Harasti, & Smith,  2016), relied on 
remote-sensing data (Mellin et al.  (2012), or focused on particu-
lar habitats (Curley, Kingsford, & Gillanders,  2003; Setyawidati 
et al., 2018).

4.2 | Classification rules for habitat 
description and prediction

Supervised classification rules constitute a novel approach to habi-
tat description previously achieved through clustering (Pelletier 
et  al.,  2012), nonparametric multidimensional scaling (Davis 
et al., 2016; Giménez-Casalduero, Gomariz-Castillo, & Calvín, 2011), 
or other statistical modeling.

In cluster analysis, within-habitat heterogeneity is measured 
through the variance of habitat attributes in each cluster. In con-
trast, classification rules tackle heterogeneities through distinct sets 
of conditions on threshold values for habitat attributes. In this re-
spect, rules capture both local heterogeneities and nonlinearities, 
representing an original and complementary approach for pattern 
analysis in large multivariate data sets.

The 26 selected rules described the main facies encountered in 
each habitat based on biotic (seagrass, live coral, erect macroalgae, 
and algal turf) and hard substrate covers. At medium or low values 
of these attributes, decreased confidence and possible confusions 
indicated a continuum between habitats. The rules confirmed the 
relevance of the typology and provided a refined and easy-to-grasp 
habitat description. Furthermore, the ruleset predicted habitat for 
87% of stations in all habitats with an overall confidence ≥ 91%.

Rule selection was made possible by including expert knowledge, 
for example, considering archetypical habitat attributes, combining 
rules, using additional attributes (algal turf), and deriving relevant 
and mutually exclusive rules. Supervised classification rules belong 
to data mining—Knowledge Discovery from Data (KDD)—the pro-
cess of discovering patterns in data (Witten & Frank, 2005). Inputs 
from domain (here ecology) experts are an important and acknowl-
edged component of KDD because results produced by algorithms 
are overly numerous and must be further analyzed to unravel mean-
ingful patterns. Adamo et al. (2016) combined expert rules and earth 
observation data to map wetland habitats. Our results illustrate the 
importance of embracing expert knowledge within workflows for 
large data sets.

4.3 | Implications for conservation and management

The habitat proxy was derived from a comprehensive baseline data 
set comprising areas subject to a range of anthropogenic pressures, 
and it is consistent at the scale of New Caledonia's EEZ, including 
the 1.3 million km2 CSMP and the 15,743 km2 WH property. It has 
been successfully used in a number of assessments of the ecological 
status of fish communities, biotic covers, and other marine animals 
such as turtles (e.g., Pelletier, Bockel, Roman, Carpentier, & Laugier, 
2016; Pelletier et al., 2014; Schohn, Bockel, Carpentier, & Pelletier, 
2017; Schohn, Pelletier, & Carpentier, 2017), where it better ex-
plained habitat-related variations of biodiversity than geomorpho-
logical maps.

The abundance, diversity, and community composition observed 
in the five habitats showed that an ecosystem-based monitoring 
strategy must encompass not only reef areas (hard-bottom areas) 

Habitat

Top1000 rules
CL

Expert-selected rules 
(26)

80% 90% 95%
Number of rules 
needed at 95% CL

% stations 
classified

Overall 
CL

Macroalgae 0 0 0 - 95 80

Seagrass 75 76 80 221 94 95

Sandy 91 82 73 83 91 88

Live Coral 91 84 80 494 91 93

Debris 90 82 70 202 72 93

Overall 84 77 70 1,000 87 91

Abbreviation: CL, confidence level.

TA B L E  5   Proportion of stations 
classified and corresponding confidence 
for the (a) Top1000 rules with three 
conditions (columns 2–4), and (b) rules 
from Tables 3 and 4 (columns 6–7)
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but also soft-bottom areas, such as in this case Sandy, Seagrass, and 
Macroalgae habitats. Designing future surveys will benefit from our 
results, and the ruleset will be used to predict habitat with high con-
fidence for any new observation.

Both the rules and the habitat proxy are thus useful tools for 
monitoring-based assessment of habitat and associated macrofauna.

The study relies on an underwater video technique, which si-
multaneously records benthic habitat and fishes at the same exact 
spatial scale, and at a relatively low cost per observation: (a) 4–6 
observations collected per field hour with two systems; (b) no 
expert needed on the field; (c) image postprocessing: 15–20' for 
habitat and 45–90' for fish (per footage); and (d) one system ap-
proximately costs 4,500 €. Pelletier et  al.  (2012) compared the 
cost-effectiveness of Underwater Visual Censuses and STAVIRO 
techniques. Recent work in New Caledonia showed that on average 
one STAVIRO station requires 4 hr 30 min of work from fieldwork 
to assessment production (D. Pelletier, unpubl. data); however, the 
comparison with other techniques must account for the fact that 
many more observations are produced by STAVIRO for a given 
sampling effort on the field. Training in image analysis is achieving 
by joint analysis with a trained observer and requires 1 month on 
average. Identification skills are progressively gained, uncertain-
ties being systematically checked by experts based on screenshots 
or video clips. The same protocol was implemented in temperate 
ecosystems (~900 valid footages in the Mediterranean and in the 
northeast Atlantic; D. Pelletier, unpubl. data) with lower under-
water visibility, showing the relevance of the STAVIRO to various 
environments (see also Donaldson et al. (2019) for image postpro-
cessing solutions to handle poor visibility). These data are currently 
being analyzed for assessments of habitats and fish communities.

This modeling approach may apply to any data set aimed at 
characterizing and predicting local habitat for assessments at larger 
scales. More generally, it could apply to other data sets where an 
observation is described by a number of attributes, for example, 
habitat attributes or species presence or abundance, obtained from 
other observation protocols.

As the numbers and sizes of monitoring data sets grow, robust 
data analysis tools and methods are needed to (a) update knowl-
edge base as monitoring is conducted; (b) summarize numerous 
ecological attributes into a tractable nontechnical description; 
and (c) use these synthetic descriptions in assessments. Easy-to-
understand descriptions, ideally complemented by in situ images 
and maps (Appendix 5), support the uptake of outcomes by sci-
entists, by managers, and by a broader audience. Complementary 
efforts to develop interfaces that facilitate knowledge uptake by 
end users are underway.
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APPENDIX 1

APPENDIX 2

ME THOD DE TAIL S FOR THE CONS TRUC TION OF THE 
HABITAT T YPOLOGY
The clusters were first obtained through a combination of princi-
pal component analysis (PCA) and hierarchical ascending clustering 
(HAC) (Pelletier & Ferraris, 2000). The number of clusters was de-
termined from Ward's (1963) criterion based on a trade-off between 
relevance and parsimony.

Clusters were then checked for stations not assigned to the 
most relevant cluster, which may occur in unsupervised techniques. 
Hence, in each cluster characterized by an archetypical biotic cover, 
stations with this cover less than 15% were set aside. 15% corre-
sponded to the presence of the biotic cover on a single frame of 
the station and was a reasonable expert-based threshold. A random 
forest (RF) algorithm (Breiman,  2001) was trained from the other 
coastal stations and then used to predict cluster (i.e. habitat proxy) 

for each station set aside, enabling to reclassify the station in a more 
appropriate cluster with a known confidence level.

To assign a habitat to the 536 remote stations, a second RF model 
was then trained from the typology of coastal stations and used to 
predict habitat at these remote stations.

Resulting clusters were characterized by habitat descriptors by 
testing differences in means between each cluster and the overall 
set of stations (Pelletier & Ferraris, 2000). Analyses were performed 
with R 3.5.1 (R Core Team, 2018) using the FactomineR package (V 
1.41, Lê, Josse, & Husson,  2008) and the randomForest package 
(Liaw & Wiener, 2002).

APPENDIX 3

ME THOD DE TAIL S FOR CL A SSIFIC ATION RULE S

What are classification rules?
Association rules are used to describe multivariate data sets, par-
ticularly for mining large data sets of categorical variables (Agrawal 
et al., 1993). An association rule r is an implication of the form r: R 
→Q, with R the antecedent of the rule and Q the consequent of 
the rule. Classification rules are association rules that conclude to 
a particular attribute being a label, for example, a class index. The 
label of the consequent Q was here the habitat proxy from the typol-
ogy, while the antecedent R comprised the conditions on the habitat 
descriptors.

Additional constraints for the supervised classification algorithm
A huge number of rules may be result from the combinatory of con-
ditions on categorical variables. Constraints are thus set to discover 
the most interesting and relevant rules (McGarry, 2005). Objective 
constraints are interestingness measures (Freitas, 1999) or statisti-
cal measures, while subjective constraints are often formulated by 
domain experts. Three objective constraints were considered here: 
(a) the number of conditions on habitat descriptors was ≤3; (b) the 
support, and (c) confidence (Table A2). We used the TopKRules al-
gorithm (Fournier-Viger et  al.,  2012), which extracts rules with a 
confidence larger than a minimum threshold (min_conf), and retains 
the K ones with maximum support. TopK rules were searched for 
K = 1,000, and for three min_conf values, 80%, 90%, and 95%, pro-
ducing three sets of 1,000 rules. In each set, a given station may 
satisfy several rules, and conversely, some stations may not satisfy 
any rule, for example, if they correspond to rare patterns.

For the TopK algorithm, quantitative habitat descriptors were 
recoded as categorical variables based on bins of equal width, 
except for extreme values, which may be meaningful for char-
acterization. Cover categories were <5%, [5%,20%[, [20%,40%[, 
[40%,60%[, [60%,80%[, [80%,95%[, and ≥95%. Depth categories 
were [0.8 m,5 m[, [5 m,10 m[, [10 m,15 m[, [15 m,20 m[, [20 m,25 m[, 
and ≥25 m. Topography and complexity were recoded in four cat-
egories: [1–2[, [2–3[, [3–4[, and [4–5[. The TopKRules algorithm was 
implemented using the SPMF software (Fournier-Viger et al., 2014).

TA B L E  A 1   List of taxonomic families considered in image 
analysis and in the metrics reported in Figure 4

Acanthuridae Lutjanidae

Albulidae Malacanthidae

Aulostomidae Megalopidae

Balistidae Mugilidae

Caesionidae Mullidae

Carangidae Polynemidae

Carcharhinidae Pomacanthidae

Chaetodontidae Priacanthidae

Chanidae Rhincodontidae

Chirocentridae Rhinobatidae

Dasyatidae Scaridae

Diodontidae Scombridae

Ephippidae Serranidae

Gerreidae Siganidae

Ginglymostomatidae Sphyraenidae

Fistulariidae Stegostomatidae

Haemulidae Tetraodontidae

Kyphosidae Zanclidae

Labridae Chelonidae

Lamnidae Dugongidae

Leiognathidae Elapidae

Lethrinidae

Note: The 39 fish families include all fished species and iconic species, 
which are identifiable within a 5 m distance under the observation 
protocol. Hence, small (in practice, Lmax < 18 cm), cryptic, and 
nocturnal species are excluded from the list. Three families of 
conspicuous iconic nonfish species (in italics), namely marine turtles, 
sea snakes, and dugongs, are also included.
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Expert-based constraints to select among the rules
The 1,000 rules found by the algorithm were selected and reorgan-
ized, in order to achieve a compromise between representativeness 
(i.e., a large proportion of the stations in each habitat were described 
by the rules with a high confidence level) and parsimony (not hav-
ing too many rules). In addition to the constraints on support and 
confidence, the following constraints were thus set for each rule: 
(a) include a condition on the archetypical (also termed paragon) at-
tribute of each habitat; (b) comprise up to four conditions on habitat 
attributes; and (c) not overlap with another rule, the set of rules then 
formed a partition of the stations in each habitat and over all habitats.

A large support meant the rule described a frequent pattern, and 
this was desirable since we aimed at identifying rules accounting 
for as many stations as possible in each habitat. A large confidence 
indicated that the rule would reliably predict habitat from habitat 
descriptors, which was also an objective of the analysis.

Specific habitat attributes not considered in the typology were 
included in the rules to increase confidence when they were 

deemed relevant to describe within-habitat heterogeneity. In some 
habitats, rules with a lower confidence were useful to increase 
support and gain more explanation about within-habitat hetero-
geneity. The resulting set of rules was then used to describe this 
heterogeneity.

Habitat prediction from classification rules

In the case of classification rules, the set of solutions forms a clas-
sification model ordered by decreasing support and confidence. 
This model was used to predict the label of a new individual by 
finding the first rule it satisfies within the set of solutions. We de-
termined the ability of both the Top1000 and the expert-selected 
rules to predict habitat with a satisfactory confidence level.

APPENDIX 4

Statistics and boxplots for habitat attributes

TA B L E  A 2   Algorithm settings for the supervised classification algorithm used (TopKRules)

Parameter Definition Relevance to the study's objective

Number of conditions Number of conditions in the subset R A simple rule is preferred. But more complex rules may 
be needed to assign more stations to clusters

K Number of rules r to be searched for More rules enable to assign more rules to clusters

Confidence Proportion of stations that are correctly assigned to  
the cluster based on the rule, i.e. Card(r)/Card(R))

A high confidence level is needed to classify stations 
correctly. In return, particular (and thus) rare stations 
may be assigned with a lower confidence level

Support Number of individuals satisfying the rule (potentially 
not belonging to the cluster if confidence level is 
smaller than one)

Rules with a larger support are preferred as they 
correspond to more frequently encountered 
conditions. However, particular conditions also occur 
in relation to specific features of habitat

Note: Note that the higher the confidence, the smaller the rule's supports, meaning a trade-off between support and confidence.
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TA B L E  A 4   Boxplots of habitat attributes for the three habitats encountered at both coastal and oceanic stations: light grey: CSMP 
(oceanic) stations; dark grey: coastal stations

Note: For each boxplot, whiskers extend to 1.5 *box length away from each side of the box (default setting in R); therefore, values above or below 
these are not plotted (for sake of readability).
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APPENDIX 5

Results at site scale: number of stations per habitat and habitat maps
On following maps, orange lines delineate the WH property, green lines delineate marine protected areas. GIS layers may be accessed on a 
map server (Schohn & Pelletier, 2018)

Site Macroalgae Live coral Debris Sandy Seagrass

Astrolabe 0 28 24 7 0

Bellona 0 28 5 32 0

Bourail 0 7 55 81 16

Borendy 0 39 14 23 0

Chesterfield 0 64 15 52 0

Corne Sud 2 88 18 51 0

Entrecasteaux 0 50 26 33 0

Noumea 150 152 322 438 290

Hienghène 0 6 76 27 0

Hunter 0 2 5 0 0

Kone 0 34 50 212 10

Lifou 0 74 34 14 0

Matthew 0 0 2 1 0

Merlet 5 83 20 99 0

Ouano 16 20 32 48 19

Petrie 0 9 21 4 0

Pouebo 2 30 35 35 5

Walpole 0 3 2 0 0

Note: See Figure 1 for site location.

TA B L E  A 5   Number of stations per 
habitat in each site

Bourail
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Borendy

Corne Sud
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Grand Nouméa

Hienghene
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Koné

Lifou
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Merlet

Ouano
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Pouebo

Entrecasteaux



7046  |     PELLETIER et al.

Chesterfield & Bellona
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Petrie

Astrolabe
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Walpole (a), Matthew (b) and Hunter (c)

(a) (b) (c)
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APPENDIX 6

Macroalgae
Live 
Coral Debris Sandy Seagrass Overall

Acanthuridae 16.9 94.6 85.3 64.5 7.2 70.3

Scaridae 11.3 86.3 76 53.7 5.5 61.5

Labridae 23.2 84.4 73.8 46.7 11 59

Chaetodontidae 17.6 84.6 66.5 45.9 8.1 56.2

Mullidae 36.6 51.8 64 50.7 21.2 51.5

Balistidae 36.6 40 60.5 32.1 26.3 41.5

Lethrinidae 44.4 39.1 36 34.6 34.7 36.6

Serranidae 7 61.3 44.6 24.9 5.9 36.5

Lutjanidae 4.9 39.1 26.2 21 2.5 24.4

Siganidae 7 26.3 25.8 16 5.1 19.8

Carangidae 5.6 10.7 13.3 10.4 11 11.1

Caesionidae 0 15.9 8 11.5 0 10.1

Carcharhinidae 2.8 14.3 10.7 4.9 1.7 8.4

Zanclidae 0 12.4 9.5 3.7 0.4 6.9

Haemulidae 0.7 5.6 2.7 2.8 0.8 3.1

Cheloniidae 2.8 2.4 4.1 2.1 3 2.8

Kyphosidae 0 5.6 2.9 0.9 0 2.4

Elapidae 2.1 1.5 1.3 2.3 3.8 1.9

Priacanthidae 0 2.9 1.7 1.7 0 1.7

Pomacanthidae 0.7 3.7 1.4 0.5 0.4 1.5

Dasyatidae 2.1 0.6 0.4 2.5 2.1 1.4

Aulostomidae 0 3.4 0.1 0.2 0 0.9

Tetraodontidae 0.7 1 1 0.4 0.4 0.7

Scombridae 1.4 0.6 0.8 0.5 0.8 0.7

Diodontidae 0 0.7 0.4 0.6 0.4 0.5

Ephippidae 0.7 0.3 0.6 0.1 1.7 0.5

Myliobatidae 0.7 0.1 0.6 0.2 0 0.3

Chanidae 1.4 0 0.1 0.4 0.4 0.3

Sphyraenidae 0 0.3 0.3 0.4 0 0.3

Ginglymostomatidae 0 0.3 0.1 0 0 0.1

Stegostomatidae 0 0.1 0 0.2 0 0.1

Mugilidae 0 0.1 0 0 0.4 0.1

Note: Families are ordered by decreasing overall frequency (frequency computed over all habitats). 
For each family, the three habitats with maximum frequency are in bold.

TA B L E  A 6   Frequency per family in 
each habitat of the typology


