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IntroDuctIon
Aortic stenosis is the most common valvular heart disease 
in the developed world. The prevalence of aortic sclerosis in 
the general population is estimated to be 25% at the age of 
65 increasing to almost 50% at age 80. The rate of progres-
sion to hemodynamically significant aortic stenosis is esti-
mated to be almost 2% per year, translating to a relatively 
low prevalence (<1%) at age 60 and younger,1,2 but rising 
rapidly to >10% for elderly patients aged >75.3

Aortic stenosis was once thought simply related to age- 
associated wear and tear but is now known to be an 
active, highly regulated process with pathophysiological 
similarities to atherosclerosis and bone formation. Initial 
endothelial injury leads to lipid and inflammatory cell infil-
tration followed by the development of progressive valvular 
fibrosis and calcification. A progressive vicious cycle of 
calcification and endothelial injury then ensues leading to 
progressive valve stiffening and stenosis4 and consequent 
left ventricular hypertrophy. Without appropriately timed 
valve replacement patients end up with symptoms, heart 
failure and finally death.

In aortic stenosis, imaging of the valve is crucial in ascer-
taining a diagnosis, grading severity and informing the 

timing of valvular intervention.5 In addition, the impor-
tance of the myocardial remodelling response to these 
forms of valve disease is increasingly appreciated.6 While 
echocardiography remains the gold standard method for 
assessing patients with aortic stenosis, CT and MR are 
being used increasingly to provide complimentary infor-
mation on valve stenosis severity and myocardial health, 
respectively. Most recently PET has emerged, providing 
unique information regarding disease activity in combina-
tion with either CT or MR assessments.

In this review, we will focus on how modern advances in 
PET/CT and PET/MR might improve our pathophysiolog-
ical understanding of aortic stenosis, aid in the develop-
ment of novel treatment strategies and ultimately improve 
the care of patients with aortic stenosis.

How does PET work?
Modern hybrid PET/CT and PET/MR scanners now 
provide detailed molecular information about the activity 
of specific disease processes developing in vivo. In principle 
any biologically active process can be studied depending on 
the availability of a targeted PET radiotracer. These radio-
tracers are injected into the body and accumulate in areas 
of active disease, emitting radiation that can be detected by 
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abstract

Aortic valve disease is the most common form of heart valve disease in developed countries and a growing healthcare 
burden with an ageing population. Transthoracic and transoesophageal echocardiography remains central to the diag-
nosis and surveillance of patients with aortic stenosis, providing gold standard assessments of valve haemodynamics 
and myocardial performance. However, other multimodality imaging techniques are being explored for the assessment 
of aortic stenosis, including combined PET/CT and PET/MR. Both approaches provide unique information with respect 
to disease activity in the valve alongside more conventional anatomic assessments of the valve and myocardium in this 
condition. This review investigates the emerging use of PET/CT and PET/MR to assess patients with aortic stenosis, 
examining how the complementary data provided by each modality may be used for research applications and poten-
tially in future clinical practice.
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the PET scanner to create a PET image. This image lack spatial 
resolution but this is overcome by fusion with an anatomical 
image provided by either CT or MR, captured with the patient 
lying in the same position on a single gantry (Figure 1). These 
scans also offer attenuation correction allowing quantification 
of tracer concentration in different tissues. Additional CT and 
MRIsequences now allow combination of the disease activity 
information from PET with advanced structural information 
from CT or MR, harnessing all the advantages of these advanced 
imaging techniques.7

Developing role of CT and MR in calcific AS
Transthoracic echocardiography (TTE) is generally suffi-
cient enough to assess the aortic valve morphology (tricuspid 
vs bicuspid) and the haemodynamic assessment of the valve. 
However, in around a quarter of patients with moderate of 
severe aortic stenosis, echocardiographic assessments of disease 
severity are discordant resulting in diagnostic uncertainty. 
Recently, multidetector CT (MDCT) calcium scoring of the valve 
(CT- AVC) has emerged as an alternative assessment of aortic 
stenosis severity to complement echocardiography. CT- AVC 
provides a quantitative and accurate measurement of aortic 
valve calcium (AVC) burden, with high intraobserver, interob-
server and scan–rescan reproducibility.8,9 Sex- specific thresh-
olds for severe disease demonstrate excellent agreement with 
concordant echocardiography (AUC 0.92 in female and 0.89 
in male Pawade et al)10 and importantly provide strong predic-
tion of disease progression and the need for AVR compared to 
echocardiography.11–17 On this basis, CT- AVC was included in 
the most recent European Society of Cardiology guidelines for 
the assessment of patients with discordant echocardiographic 
measurements.17 Contrast- enhanced CT angiography is now 
used as standard in the work up of patients being considered 
for transcutaneous aortic valve implantation, providing accurate 

valve sizing, distance to the coronary arteries and assessment of 
the optimal access route (ref).

Cardiac MR (CMR) can also be used in cases where echocar-
diographic results are inconclusive. It has multiple advantages, 
including the ability to measure heart volumes, blood flow and 
ventricular wall thickness.18–21 CMR is a useful tool in the diag-
nosis and evaluation of bicuspid aortic valve and is invaluable 
in the assessment of concomitant thoracic aortic dilatation/
aneurysm and mitral valve abnormalities.22,23 However, the 
real strength of CMR lies in the assessment of the myocardium 
and in particular of myocardial fibrosis.24–26 Multiple studies 
have now shown that midwall fibrosis (as detected through late 
gadolinium enhancement) serves as an objective marker of left 
ventricular decompensation and is an independent predictor of 
mortality in patients with aortic stenosis.25,27–29 The EVOLVED 
study (Early Valve Replacement Guided by Biomarkers of LV 
Decompensation in Asymptomatic Patients with Severe Aortic 
Stenosis, NCT03094143) aims to assess the clinical outcome of 
asymptomatic patients with severe aortic stenosis and mid- wall 
myocardial fibrosis that have either early surgical intervention or 
routine care.

positron emission tomography
Hybrid imaging platforms such as PET/CT and PET/MR can 
now incorporate the benefits of both anatomical (CT and MR) 
and molecular (PET) techniques to provide a comprehensive 
imaging assessment of aortic stenosis. In particular, the PET 
component provides assessments of disease activity to comple-
ment the anatomic information provided by the other modalities. 
Recently, PET has utilised two tracers: 18F- fluorodeoxyglucose 
(18F- FDG) to measure inflammation in the valves of patients 
with aortic stenosis and 18F- fluoride for calcification activity.

Figure 1. Basis of PET/CT imaging. PET/CT scanners incorporate functional data from PET and anatomical information from CT 
imaging on the same gantry allowing near simultaneous acquisition. Fused PET/CT images then allow localization of specific 
pathological processes to individual structures such as the aortic valve in this example. (Images reconstructed using FusionQuant)
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18F- FDG PET is widely used to image vascular inflammation. This 
PET tracer is an inactive glucose analogue which concentrates 
in metabolically active cells and is a well- established, sensitive 
but non- specific marker of vascular inflammation. Macrophages 
have higher glucose requirements than surrounding cells in the 
vasculature, which translates in excellent correlation (r = 0.85, p 
< 0.001) between the 18F- FDG signal and macrophage burden on 
histology (CD68 staining) in carotid atheroma.30

18F- fluoride has been used both clinical and in oncological 
research for over 50 years as a bone tracer. Fluoride ions exchange 
with hydroxyl ions in areas of exposed hydroxyapatite crystal, 
with binding highest in areas of developing microcalcification 
due to surface area effects.31 In preferentially targeting devel-
oping microcalcification, 18F- Fluoride PET therefore provides 
different information to the macrocalcification identified by CT.

PET/CT
18F- FDG PET/CT imaging in aortic stenosis was first explored 
by Marincheva- Sancheva in 2011.32 In a retrospective obser-
vational study, 84 patients (42 with aortic stenosis and 42 age- 
matched control patients without aortic stenosis) were recruited 
from a list of subjects who endured PET/CT imaging between 
2005 and 2010, primarily for assessment of cancer. Severity of 
aortic stenosis was established on echocardiography and patients 
were respectively divided in three groups (mild, moderate and 
severe aortic stenosis). Overall the AV PET signal, mean Target 
to Background Ratio (TBRmean), was higher in patients with 
aortic stenosis compared to controls: median 1.53 (IQR: 1.42 
to 1.76) vs 1.34 (IQR: 1.20 to 1.55); p < 0.001. Interestingly on 
further assessment, 18F- FDG uptake was higher in patients 
with mild and moderate aortic stenosis than controls but was 
no different in those with severe AS. Comparable tendencies 
were detected when subjects were classified according to AV 
calcification. Furthermore, compared with the 18F- FDG uptake 
in non- calcified AVs, TBR was increased in mildly and moder-
ately, but not severely calcified valves. As predicted, there was a 
significant association between valvular calcification grade and 
aortic stenosis severity (r = 0.90, p < 0.001). Moreover, in a subset 
of patients, it was observed that the valvular TBR is increased 
in patients who afterwards experience progression of aortic 
stenosis. Patients with high AV TBR had a higher probability of 
haemodynamic progression of aortic stenosis on repeat echo, 
performed 1 to 2 years after the baseline echo. Notably, progres-
sion of aortic stenosis was noted in five of six patients (83%) with 
high initial AV TBR and only in two of nine patients (22%) with 
low TBR (p = 0.04).

This was the first study to demonstrate that 18F- FDG uptake is 
increased in aortic stenosis, supporting the hypothesis that it is 
an active inflammatory condition.

Our group has also confirmed the excellent reproducibility 
and feasibility of PET/CT in the assessment of aortic stenosis, 
with 18F- FDG and particularly 18F- NaF exhibiting significant 
potential as novel biomarkers of aortic stenosis progression.33 
In a prospective study, 101 successive patients aged >50 years 
with different stage of aortic valve disease, ranging from aortic 

sclerosis to severe aortic stenosis, and 20 age- matched control 
subjects, had 18F- NaF and 18F- FDG scans less than 1 month 
apart. 18F- NaF uptake strongly correlated with the stage of the 
aortic valve disease, with patients with aortic stenosis demon-
strating the highest uptake followed by the aortic sclerosis and 
control subjects (TBRMAX: vs 2.87 ± 0 vs 1.92 ± 0.3182 vs 1.55 ± 
0.17, respectively; p < 0.001). In the severe aortic stenosis group 
(n = 23), 100% of subjects had increased uptake compared to 
88% in the mild and moderate groups (n = 55) and 45% in the 
aortic sclerosis cohort (n = 20).

Although 18F- FDG also showed increased uptake in the valve, 
a more scattered pattern of activity was observed. We observed 
similar trends of activity with aortic stenosis demonstrating 
substantially higher uptake compared with both aortic scle-
rosis and control subjects. (TBRMAX: 1.58 ± 0.21 vs 1.47 ± 0.15 
vs 1.30 ± 0.13, respectively; p < 0.001. Compared to 18F- NaF, 
the correlation of the uptake with the stage of the aortic stenosis 
severity was weaker, with only 52% (vs 100% with 18F- NaF) at 
the severe aortic stenosis group demonstrating increased uptake. 
Similarly, just below one- third (31%) in the mild and moderate 
aortic stenosis showed increased uptake and just one- fourth 
(20%) in the sclerosis group. Interestingly, while 18F- NaF uptake 
was higher than 18F- FDG uptake in the valve, the reverse was 
true in areas of atheroma, highlighting importance pathological 
differences in these two conditions that might justify the disap-
pointing results of statin therapy in aortic stenosis and indicating 
that therapies targeting calcification directly might prove of 
greater clinical value.34

A subsequent follow- up study of this cohort demonstrated 
that both 18F- fluoride and 18F- FDG predicted disease progres-
sion and adverse clinical outcomes in aortic stenosis.35 Disease 
progression was assessed at 1 and 2 years using AVC scoring and 
TTE. On repeat CT imaging, new valvular calcium was visible in 
a similar distribution as the 18F- fluoride activity on baseline PET 
imaging. Indeed, baseline 18F- fluoride uptake correlated strongly 
with the subsequent rate of progression in AVC (Spearman r = 
0.80; p < 0.001) and with echocardiographic measures of haemo-
dynamic progression (mean gradient r = 0.32; p = 0.001). 18F- F-
DG- PET showed similar but weaker correlations. (r = 0.43; p < 
0.001 and r = 0.26; p = 0.01, respectively). The study also looked 
at clinical outcomes. The primary clinical outcome endpoint was 
a composite of cardiovascular death and aortic valve replace-
ment. Average follow- up was 1232 days with 23 patients (17%) 
having undergone AVR and nine cardiovascular death.7 Both 
18F- Fluoride and 18F- FDG were independent predictors of all- 
cause mortality and AVR [HR 1.46 (1.24–1.71); p < 0.001 and HR 
1.59 (1.21–2.09); p = 0.002, respectively].

More recent studies have used 18F- NaF to gain insights into the 
pathophysiology underlying aortic stenosis. Knag et al36 showed 
that PET/CT has a promising role in research studies exploring the 
pathophysiology of aortic stenosis and finding potential medical 
therapy targets. They showed that in patients with aortic stenosis, 
lipoprotein(a)[Lp(a)] and oxidised phospholipids (OxPL), drive 
valve calcification and disease progression. On baseline PET/CT, 
patients in the top Lp(a) tertile had increased valve calcification 
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activity and increased 18F- NAF uptake, compared with those in 
lower tertiles. These findings suggest lowering Lp(a) or inacti-
vating OxPL may slow aortic stenosis progression and provide a 
rationale for clinical trials to test this hypothesis.36

In addition, 18F- NaF PET/CT has been extended to investi-
gate bioprosthetic valve calcification and degeneration. Indeed 
18F- NaF appears to provide a highly sensitive marker of early 
bioprosthetic valve degeneration correlating well with tissue 
degeneration on histology and providing a powerful predic-
tion tool of subsequent valvular dysfunction and failure of 
incremental value to standard approaches.37 (18F- Fluoride 
Assessment of Aortic Bioprosthesis Durability and Outcome 
[18F- FAABULOUS]; NCT02304276)

In summary, PET/CT imaging provides unique information with 
respect to disease activity in aortic stenosis. It provides powerful 
prediction of disease progression in both native and prosthetic 
valve, excellent scan–rescan reproducibility for tracer quanti-
fication (refs) as well as important biological insights. On this 
basis, it is being used as a marker of disease activity and efficacy 
endpoint in several ongoing trials of novel therapies in aortic 
stenosis. In SALTIRE 2 (NCT02132026) 75 subjects will be 
randomised (2:1) to either subcutaneous denosumab 60 mg (n = 
50) or matched placebo (n = 25) every 6 months; and a further 
75 will be randomised (2:1) to oral alendronate 70 mg (n = 50) 
or matched placebo (n = 25) once week. 18F- NaF uptake will be 
measured at baseline, and 6 months to assess the early impact of 
the intervention on valvular calcification activity. Its future role 
in clinical practice is less clear, given that the simpler technique 
of CT calcium scoring also provides similar prediction of disease 
progression and clinical events. However, if advances in the PET/
CT technique including motion correction and co- registration 
result in improvements such that PET outperforms in CT, then 
this approach may yet develop a clinical role, with initial results 
suggesting that this may occur sooner in bioprosthetic rather 
than native valves.

PET/MR
PET/MR is an emerging technique, combining the excel-
lent temporal and spatial resolution of MRI with the sensitive 
molecular imaging of PET. In principle, PET/MR offers several 
potential advantages over PET/CT, in particular superior tissue 
characterisation, improved motion correction and major reduc-
tions in radiation exposure. Furthermore, MR is also more natu-
rally suited to the imaging of certain tissues in the body compared 
to CT including the left ventricular myocardium. However, the 
availability of PET/MR is currently limited, and scanners remain 
expensive. Moreover, several technical challenges remain with 
cardiac PET/MR scanning as outlined below.

First, the method of PET attenuation correction is different 
between PET/CT and PET/MR. Unlike CT, MR attenuation 
correction maps are based on proton density,38 with two current 
approaches. The Dixon MR AC map is the standard approach but 
is hampered in cardiac studies due to both motion artefact (along 
the heart- lung and liver- lung interfaces) and mis- segmentation of 
the bronchi as soft tissue. A novel free- breathing radial Gradient 

Recalled Echo approach has been demonstrated in patients with 
coronary disease to largely overcome these issues39 but concerns 
regarding signal dropout in those with metallic implants such as 
aortic valve replacements and stents remain.

Second, both cardiac and respiratory motion causes loss of PET 
signal which subsequently reduces reader confidence in image 
interpretability. In principle, PET/MR might allow the tracking 
of motion throughout PET acquisition and therefore its correc-
tion. In practice, this has yet to be consistently applied. Finally, 
PET/MR is a costly technique which requires considerable 
expertise within centres for both performing and interpreting 
scans, rendering both research output and clinical adoption slow 
when compared to PET/CT.

PET/MR of the aortic valve
Despite these limitation PET/MR has demonstrated some early 
promise in the assessment of patients with aortic stenosis. Doris 
et al were the first to report increased 18F- fluoride activity on 
PET/MR in aortic stenosis (Figure  2) and also illustrated the 
versatility of the technique providing assessments of LV volumes, 
mass, ejection fraction and LGE burden alongside the valve 
assessments. Moreover, they demonstrated improved signal- to- 
noise ratios (SNR) and TBRs over the valve using motion correc-
tion approaches derived from the PET.40 Further studies are now 
required.

Outside the aortic valve, both 18F- FDG and 18F- fluoride PET/
MR have been shown to delineate areas of infarcted myocar-
dium.41,42 In inflammatory disease, 18F- FDG PET/MR has 
demonstrated major promise in the clinical diagnosis of active 

Figure 2. 18F- fluoride uptake in a patient with moderate aor-
tic stenosis. The columns represent the imaging modality 
and rows the corresponding view. Panels A, F and G show 
calcification of the aortic valve (non- coronary cusp predom-
inantly, yellow arrows). Panels B, G and L show the CMRA in 
the same views. Calcification cannot be appreciated on MR 
but the raphe between the NCC and LCC appears thickened 
(B). PET/CT shows uptake overlaying these areas of calcifica-
tion (Panels C, (H and M). Note uptake also over the calcified 
mitral annulus (M, red arrow) and arterial wall of the descend-
ing aorta (M, red arrow). Fused PET/MR shows 18F- fluoride 
uptake in the same areas as the PET/CT (D, I and N).
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cardiac sarcoid combining the advantages of PET and MR 
LGE.43,44 This approach has also shown promise in identifying 
areas of florid inflammation in myocarditis and endocarditis.45,46 
Furthermore, 18F- fluoride PET/MR may help differentiate 
between different subtypes of cardiac amyloid.47 Given the 
increasing prevalence (and similar phenotypes) of both aortic 
stenosis and cardiac amyloid in an ageing population, our group 
is currently utilising PET/MR to investigate whether 18F- fluo-
ride can distinguish clinically significant aortic stenosis from 
cardiac amyloid as well as comparing uptake in healthy controls 
(NCT03352089).

PET/MR holds particular promise in the temporal assessment 
of chronic slowly progressing conditions such as bicuspid aortic 
valve disease which is present in 1.4% of live births and contrib-
utes significantly to the proportion of patients undergoing aortic 
valve surgery.48–50 The greatly reduced radiation exposure is 
particularly important given the relatively younger age of the 
patient at presentation and indeed this is why 18F- Fluoride PET/
MR is being explored as an efficacy endpoint in the BASIK two 
trial (Bicuspid Aortic Valve Stenosis and the Effect of Vitamin K2 
on Calcification Using 18F -Sodium Fluoride Positron Emission 
Tomography/Magnetic Resonance, NCT02917525).51 Further-
more, the reduced radiation dose afforded through PET/MR 
may allow the exploration of multiple tracers used simultane-
ously to enhance our understanding of the temporal relation-
ship between inflammation, fibrosis and calcification within the 
disease process. However, before PET/MR can be widely applied 
to cardiovascular disease, it is important to establish whether 
PET/MR provides similar results to PET/CT. We have there-
fore recently completed a simultaneous PET/CT and PET/MR 

validation study in patients with coronary artery disease and 
aortic stenosis which will report soon (NCT02988531). More-
over, the BASIK2 trial (NCT02917525) is now being conducted to 
investigate the effect of vitamin K2 supplementation on valvular 
calcification in patients with bicuspid aortic valve disease.51 The 
primary endpoint is the change in PET/MR 18F- NaF uptake (6 
months minus baseline).

conclusIon
PET/CT can be used to measure inflammation and valvular 
calcification activity in patients with aortic stenosis, providing 
important insights into the pathogenesis of aortic stenosis and 
a useful surrogate endpoint of disease activity in trials of novel 
therapies. Moreover 18F- Fluoride PET provides powerful predic-
tion of disease progression and adverse events, with further 
development required to demonstrate incremental value to CT 
calcium scoring. Despite its inferior spatial resolution, PET/MR 
can provide detailed assessment of both valvular function and 
hypertrophic response with a lower associated radiation expo-
sure. While in the early stages of its development, PET/MR may 
emerge as the favoured technique for temporal disease tracking 
and myocardial assessments. Further research is now warranted 
using both these exciting techniques to imaging patients with 
aortic stenosis.
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