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Abstract

Metadata in scientific data repositories such as GenBank contain links between data submissions 

and related publications. As a new data source for studying collaboration networks, metadata in 

data repositories compensate for the limitations of publication-based research on collaboration 

networks. This paper reports the findings from a GenBank metadata analytics project. We used 

network science methods to uncover the structures and dynamics of GenBank collaboration 

networks from 1992–2018. The longitudinality and large scale of this data collection allowed 

us to unravel the evolution history of collaboration networks and identify the trend of flattening 

network structures over time and optimal assortative mixing range for enhancing collaboration 

capacity. By incorporating metadata from the data production stage with the publication stage, 

we uncovered new characteristics of collaboration networks as well as developed new metrics for 

assessing the effectiveness of enablers of collaboration—scientific and technical human capital, 

cyberinfrastructure, and science policy.
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1. INTRODUCTION

Data repositories, software tools, and high-performance computing constitute key 

components of cyberinfrastructure (CI), which is established to facilitate and support 

data-intensive science. Data repositories store and manage scientific data and provide data 

submission, curation, and discovery services for sharing and reusing scientific data. Since 

the 1980s, the U.S. federal government has invested significant resources into building 
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cyberinfrastructure, including data repositories and research data services. In parallel with 

the advancement of CI and growth of data repositories is a paradigm shift in science from 

empiricism, theory, and simulation to data (i.e., the fourth paradigm), as envisioned by 

Jim Gray (Gray, 2007; Gray, Liu et al., 2005) and subsequently articulated by Szalay and 

Blakeley (2009). Science today, small or large scale, is increasingly carried out through the 

distributed global collaborations enabled by CI.

The rapid increase in science data is attributable in no small part to the support provided 

by CI-enabled tools and services. The large number of tools for using the vast biomedical 

data available on the National Center for Biotechnology Information (NCBI)’s website 

underlines the importance of CI-enabled tools and services in data-driven science. GenBank 

is one of NCBI’s key data repositories and stores “massive amounts of genetic sequence 

data generated from evolving high-throughput sequencing technologies,” serving “more than 

30 terabytes of biomedical data to more than 3.3 million users every day” (NLM, 2015). 

What is unclear in this grand picture of data-driven science is how this changing climate of 

science research has affected scientific capacity and the aggregation of the knowledge, skills, 

abilities, and technical facilities of individual scientists (referred to here as Scientific and 

Technical (S&T) Human Capital), as well as their networks of collaborative relationships 

(Bozeman, Dietz, & Gaughan, 2001). More broadly, there is also an unanswered question 

of how CI-enabled data services have impacted the increment of scientific capacity at 

individual, project, and institutional levels, and if there is any impact, how much it has 

affected the extent and rate at which scientists turn data into knowledge. Understanding 

these questions will require data beyond publication metadata to enable novel insights into 

the grand picture of data-driven science and CI-enabled research.

This paper reports the findings from a longitudinal study that uses the metadata from 

GenBank (Sayers, Cavanaugh et al., 2019) as the data source. We will first review 

previous research related to scientific collaboration networks and address the limitations 

of publication-based data sources in past research. As metadata from a data repository is 

a novel data source for studying collaboration networks, this paper attempts to provide the 

background of GenBank and its metadata and articulate on the suitability, feasibility, and 

possible issues in using this new data source to study data-intensive collaboration networks. 

Following the methods of data collection and processing, the analyses focus on the network 

structures and dynamics as well as their implications for the assessment of knowledge 

production and diffusion.

2. RELATED RESEARCH

Past research on scientific collaboration networks has generated a large body of 

literature that is scattered across scientometrics/bibliometrics, social studies of science, 

mathematics, physics (complex networks), information science, and science policy. 

Empirical collaboration network research has used almost exclusively publication metadata 

with varying sources and sizes, and with limited longitudinal time coverage. Theoretical 

research has also explored the statistical and mathematical mechanics of complex networks 

(Albert & Barabási, 2002; Costa, Rodrigues et al., 2007). Complex network theory has 

found wide applications in natural and social phenomena, including scientific collaboration 
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networks (Barabási, 2009; Butts, 2009). This literature review section will focus on the 

complex collaboration networks research and rationalize the need for data-intensive study 

of collaboration networks and its implications to science policy research and research data 

practices.

2.1. Complex Collaboration Networks

Collaboration in research is typically measured by coauthorship in publications. Researchers 

in a collaboration network are called nodes or vertices and the relationships (i.e., 

coauthorship) between nodes are edges. Collaboration networks with very large numbers 

of nodes and edges together with variant weights of edges and other factors are highly 

complex, as nodes have uneven numbers of edges and the edges may vary in length 

between nodes. Such networks consist of clusters or communities of researchers, which 

are self-organized, may be interconnected in some ways, and evolve over time. Over the 

last 50 years, since de Solla Price’s work Little Science, Big Science (1963), scientific 

collaboration networks have been studied extensively from a wide range of disciplines. 

Newman (2001) collected and analyzed publication author data from MEDLINE, e-Print 

Archive, and NCSTRL, which represented the biomedical, physics, and computer science 

fields respectively. He found that these collaboration networks formed small worlds and 

the randomly selected nodes were typically separated by a short path of intermediate 

acquaintances. Scientific collaboration networks are essentially a kind of social network 

in which communities form through tightly knit groups (Girvan & Newman, 2002). Such 

a social aspect can be reflected in whom a researcher chooses to collaborate with and how 

such collaborations may enhance their S&T human capital (Bozeman & Corley, 2004). 

Barabási, Jeong et al. (2002) give an excellent summary of the research on collaboration 

networks, which include: Most networks have the “small world” property; real networks 

have an inherent tendency to cluster, more so than comparable random networks; and the 

distribution of the number of edges for nodes (degree distribution) “contains important 

information about the nature of the network, for many large networks following a scale-free 

power-law distribution” (p. 591).

The CI-enabled research environment led to a shift to what has been called the fourth 

paradigm of science, an era that is characterized by distributed global collaboration, data-

intensiveness, and reliance on high-performance computing (Szalay & Blakeley, 2009). 

Large data repositories have been built in the last three decades for researchers to submit, 

manage, share, and reuse data. For many scientific disciplines, submitting to a repository 

has become part of the regular research process and been made as policy mandates (NIH, 

2021; NSF, 2020). As the science paradigm shifts and data management and sharing policy 

mandates blurred the boundaries between data professionals and researchers, researchers 

have been devoting more time to data processing and analyses. The cause of this blurred 

division of labor stems from the work needed to make raw data clean. That is, data usually 

cannot be directly fed into algorithms without preprocessing, transformation, and sometimes 

meshing with other data sources (Kamath, 2009). The impact of such paradigm shift on 

collaboration networks is largely unknown and publication coauthorship alone would be 

insufficient to address. The CI-enabled links between publications and data sets have created 
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a ripe condition for studying complex collaboration networks on a large scale by integrating 

metadata from data submissions.

2.2. Theories and Models

The study of complex networks has traditionally used graph theory, but in the last 50 years 

statistical methods have gained increasing significance in this research field. Questions of 

interest for complex network researchers include the typologies and properties of complex 

networks, interaction between these two components in a network, and the tools and 

measurements for capturing “in quantitative terms” the underlying organizing principles 

of real networks (Albert & Barabási, 2002). Well-known theories include those of random 

graph, per-colation, small-world networks, scale-free networks, networks with community 

structure, and evolving networks, for which Albert and Barabási (2002) and Costa et al. 

(2007) provided exhaustive surveys.

Three of the theories/models among those reviewed by Albert and Barabási (2002) and 

Costa et al. (2007) are the Watts-Strogatz model of small-world networks (Watts & Strogatz, 

1998), the Barabási-Albert model for scale-free networks (Barabási & Albert, 1999), and 

the theory of evolving networks (Albert & Barabási, 2002). In the discussion of each 

of these theories and models, Albert and Barabási (2002) used the average path length, 

clustering coefficient, and degree distribution, among others, to explain the statistical 

mechanics of these theories and models, which are considered as three robust measures 

of a network’s topology. Network theories and models have been applied in studying 

collaboration networks in biology, ecology, and physics, as mentioned in the previous 

section. Several properties of scientific collaboration networks have been identified in these 

studies: Small worlds are common in scientific communities; the networks are highly 

clustered; and biomedical research appears to have a much lower degree of clustering 

compared to other disciplines such as physics (Newman, 2001). The evolution of scientific 

collaboration networks shows that the degree of distribution follows a power law and key 

network properties (diameter, clustering coefficient, and average degree of the nodes) are 

time-dependent; that is, the average separation decreases in time and clustering coefficient 

decays with time (Barabási et al., 2002).

2.3. The Data Gap

Studies of scientific collaboration are abundant in scientometrics and information science 

scholarly journals. Many of them are often limited in that the data used are filtered by 

discipline and period from a single database and almost exclusively use publication-based 

authorship data, as seen in the studies cited above. The limitations of data source and 

variant timescales make it very difficult, if not impossible, to generate data sets that can be 

meaningfully reused or integrated with other data sources for understanding the complexity 

of scientific collaboration networks. Metadata in scientific data repositories offer a new 

breed of data source for studying research networks. Their large scale and continuous time 

coverage provide a rich testbed not only for developing models and theories but also for 

meshing other related data sources to examine and interpret complex collaboration networks 

from more dimensions.
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3. THE BACKGROUND OF GENBANK

GenBank was conceived in 1979 by a group of biologists and computer scientists at a 

meeting held at the Rockefeller University in New York. The meeting participants agreed on 

“the necessity to create a national, computerized database” (Strasser, 2008, p. 537). Three 

years later the Los Alamos Sequence Library became the cutting-edge repository—GenBank

—for curating nucleic acid sequence data (Cinkoski, Fickett et al., 1991). Soon after, 

the sequence data started to grow exponentially as the computer technology and network 

availability rapidly advanced in the second half of the 1980s. Meanwhile, nucleotide 

sequencing methods and technologies have evolved from the first generation represented by 

“Sanger sequencing” to Next Generation Sequencing (NGS), which allowed many parallel 

sequencing reactions at a much lower cost, namely high-throughput sequencing (Heather & 

Chain, 2016). During this period, the sequence data processed by GenBank grew from 1.38 

million nucleotides in 1984 to 14.1 million in 1990 (Cinkoski et al., 1991).

Early data entry into GenBank relied on curation staff who performed extraction of 

nucleotide sequences from published articles and made them available in electronic form 

to researchers. The rapid increase in the volume of nucleotide sequence data soon made 

it clear that this model could not keep up with the growth of sequence data, as it was 

labor intensive, and the publishing of these data lagged far behind their generation. In 

addressing this problem, GenBank worked with journal editors to develop policies to make 

direct submission of sequence data to GenBank a requirement for publishing a paper. This 

policy mandate, together with automated data processing, not only reversed the data flow, 

which was originally from journal articles to GenBank (Cinkoski et al., 1991), but also 

pioneered the incentive mechanisms for data sharing. Another significant driving force 

for GenBank’s data growth is the Human Genome Project (HGP, https://www.genome.gov/

human-genome-project), which started in 1990 and was completed in 2003. Six years into 

the HGP, countries participating in this international effort reached consensus on the timely 

release of sequence data through the Bermuda Principles, which established policies on 

sequence data quality standards, sequence submission and annotation, and sequence claims 

and etiquette to ensure the prepublication sharing and rapid disclosure of sequence data 

(BERIS, 2019; Cook-Deegan & McGuire, 2017; Maxson Jones, Ankeny, & Cook-Deegan, 

2018). If the development of NGS technology accelerated the increment of the volume 

and kinds of sequence data and shifted data generation toward more analyses (Alekseyev, 

Fazeli et al., 2018), then the journals’ requirement for data submission before manuscript 

submission and the Bermuda Principles cultivated the data sharing culture, an impact that 

goes far beyond GenBank.

The GenBank records are acquired in two ways: direct submission by individual researchers 

using tools such as BankIt (https://www.ncbi.nlm.nih.gov/WebSub/) and Submission Portal 

(https://submit.ncbi.nlm.nih.gov/), and batch deposit from sequencing centers by sequence 

types (Benson, Karsch-Mizrachi et al., 2011). The author field in these tools is designed 

to support multiple author entries in an annotation record. The public display of metadata 

section in GenBank annotation (Figure 1) does not show all the data authors, but they are in 

the released files on the FTP server.
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Although the advances in sequencing technology liberated researchers from performing 

sequencing work themselves, the researchers themselves continued to act as authors of 

the data submissions. In one of the data sets we created by matching the NIH funding 

records with the GenBank records related to infectious diseases, we randomly selected 55 

GenBank records. We used this sample to examine the authors who submitted the sequences 

to GenBank and how they were related to the principal investigators (PI). The funding 

data set was extracted from the NIH RePORT database, which contains information on 

PIs, publications, and affiliations. We mapped the funding records to GenBank records by 

PubMed article ID (PMID), which allowed us to track submission author’s affiliations 

and roles by triangulating with multiple sources of information, including affiliation 

and acknowledgment in the article, institutional and personal websites, LinkedIn, and 

researcher’s curriculum vitae/resumé. The records examined represent only a small fraction 

of the GenBank records; hence we do not have the generalization power of the whole data 

collection. Nevertheless, they offer some insights into who the submission authors are and 

what roles they may have played. Table 1 presents the summary of the findings from the 

manual checking of 55 records at three different time intervals.

We observed that many submission authors in this sample were also publication authors, 

while the PI was listed in publications more than half of the time. Through triangulation 

among the multiple sources mentioned above, we found that when the submission authors 

and the PIs appeared in both submissions and publications, they were more likely than not 

in a PhD advisee–advisor or postdoc–mentor relationship. In this context, the first author 

in data submission and publication was usually the doctoral student or postdoc. When the 

PIs were not included in the publication or submission, it seemed that they often held a 

position such as a director of a large laboratory or a government research staff position that 

did not allow them to engage in the project enough to be given the credit. In some cases, 

the submission authors were visiting scientists with their own grant and project but needed 

to use the research facility of a given PI. Although we observed in several acknowledgments 

that the sequencing was performed outside of the submission authors’ labs, this did not 

change the fact that submission authors were mostly researchers themselves who were also 

actively engaged in publication activities.

Sequence data submitted to GenBank will be assigned an accession number and reviewed 

by GenBank staff for quality assurance purpose. A GenBank annotation record contains 

metadata for identifying and describing the creators and characteristics of the sequence data, 

including authors who are included in the direct submission field, date of submission, data 

of public release, and publications associated with the sequence submission, as well as the 

molecular attributes of the sequences, such as locus, taxon lineage, and features (Figure 1). 

It is worth pointing out that the time between the date of submission and date of public 

release provides an important piece of information about the data-to-knowledge production. 

A GenBank record has two sets of authors: those in publications (references) and those in 

direct submissions of molecular sequences (i.e., the data authors). An author may or may not 

appear in both spaces, though it is likely that many authors reside in both the publication 

and sequence submission metadata. Because the act of data submission represents a stage 

in a research life cycle earlier than publication, examining the metadata about sequence 

data submissions and subsequent publications provides an opportunity to uncover how 
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collaboration networks evolved “in action” and gain insights into research collaboration that 

publication authorships alone would have been unable to offer.

One caveat in using metadata from GenBank to study collaboration networks is that the 

publications associated with data submissions are not representative of the full publication 

productivity of researchers because GenBank is not a publication repository. Therefore, 

metadata for data submissions are more suitable for studying relationships between 

publication and data submission networks than publication productivity. The data about 

sequence submissions, for example, the dates of sequence submission and public release, 

as well as related dates of patent applications and publications, allow for the creation and 

testing of new metrics for evaluating the impact of cyberinfrastructure, science policy, and 

S&T human capital on the biomedical research enterprise.

4. METHODS

4.1. Data

GenBank data is hosted on an FTP server at NCBI. The GenBank flat file release 229 (cutoff 

date December 15, 2018) consists of 3291 files in compressed format, each of which ranges 

between single digit to three-digit megabytes. We downloaded all the annotation records 

from 1982 to 2018 and extracted the metadata section in January 2019. The extracted 

metadata were then parsed into a relational database (we excluded the genetic sequence 

data, which comprised about 80% of the data volume). The data download and processing 

workflow included the following steps:

• Download one compressed sequence file from the FTP server.

• Decompress the file.

• Extract the metadata section from each record in the file.

• Save the metadata records to a buffer space.

• Delete the downloaded file.

• Parse the metadata into a database.

• Repeat the workflow for the next compressed file on the FTP server.

A computer program was created to automatically complete these steps in a batch style. We 

set up a data server with the necessary software and storage space for the GenBank metadata 

extractions. This process resulted in 227,905,057 annotation records minus the sequence 

data, in which 44,480,172 publications were referenced. This data collection also includes 

42,511,832 patent references.

Author names in this GenBank metadata collection were disambiguated by using the 

Kaggle solution from Chin, Zhuang et al. (2014) and by cross-checking the results with 

author metadata from Web of Science, SCOPUS, and Microsoft Academic Graph. After 

the disambiguation process, the data collection resulted in 877,134 unique author names 

(nodes), of which 519,719 are in the publication network, 523,013 in the submission 

network, and 214,197 are unique scientists in the patent network.
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We grouped the data by year and then, for each year, we constructed two networks: a 

publication coauthor network and data submission coauthor network. For each network, 

we built a data set that included information such as the year, if it was a publication or 

data submission network, how many publications (data submission) there were, and the 

number of authors, as well as network statistics such as degree centrality and clustering 

coefficient. We also looked at the distribution of degree centrality for each network. The 

degree centrality of all these networks, except the first few years, follows a power law. 

Research has shown that the shape of a power law distribution can be a useful signal that 

reflects information about the network (Hemsley, 2016). As such, we use the power-law 

shape parameter in iGraph (Csardi & Nepusz, 2006), which is an R package devoted to 

social network analysis, and stored that in our data as well. This data collection went 

through parsing, name disambiguation, slicing by year, and edge list generation and was 

used to compute the statistical properties for screening and analysis. For additional analysis, 

the publication and submission networks for each year were merged and the calculations 

rerun.

4.2. Measure for Collaboration Capacity

The inclusion of data submission metadata created an opportunity for examining a new 

aspect of collaboration networks: Collaboration Capacity (CC). In the context of this paper, 

we define CC as the ability of an individual, group, or institution to assemble and effectively 

use the S&T human capital in collaborative research. We assume that the greater the 

S&T human capital a researcher can accumulate or assemble, the more opportunities and 

resources they can garner to collaborate with other researchers and the more likely the S&T 

human capital will be used more effectively. This means that CC measures not only how 

much S&T human capital a person may accrue but more importantly, how effectively they 

can utilize the S&T human capital as well as the support provided by cyberinfrastructure and 

science policy to increase productivity and innovations. Because collaborative research starts 

well ahead of a coauthored publication, the trace data that document collaboration prior to 

publication, namely, the data submission records in science data repositories, can provide 

insights into the assessment of research performance and impact.

One of the measures we tested for CC is the number of new collaborators an author added to 

their coauthor list in a period. To compute the value of CC for individual authors, a sample 

of authors was selected by following two criteria: Authors eligible to be selected should be 

located in the elbow section of the L-shaped distribution (which is the pattern for all years; 

see Figure S1 in Supplementary Materials); that is, not those with extremely high number 

of publications or in the long tail, which was determined as between 1–50 publications; and 

an author must have published at least once in a 3-year window starting from 1997, namely, 

1997–1999, 2000–2002, 2003–2005, etc., to be selected. A random selection of authors with 

these two criteria generated a sample of 6,503 authors in 10 3-year windows between 1997 

and 2017. The computation of CC was performed on all 6,503 authors. The following steps 

were taken to calculate the value of CC:

1. Find all coauthors of an author who had collaborated each year during 1997–

2017. If an author was inactive in a given year, they would not have any 

coauthors that year.
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2. Collapse this timeframe into windows of 3 years each. Now each window has a 

list of all authors with whom an author collaborated in that 3-year window.

3. Remove any duplicate authors that may have appeared in the list. For example, if 

an author collaborated with an author twice in one window, they will be counted 

just once.

4. CC values were calculated in two ways:

a. Noncumulative CC: this value is obtained by counting how many new 
authors an author added as compared to previous window. For example, 

if an author collaborated with three authors A, B, and C in window 1 

and three authors A, D, and F in window 2, this author would have two 

new authors (D, F) in window 2. Therefore, the CC value for window 

2 is 2. The resulting CC value is the average of all windows, hence 

noncumulative collaboration capacity for that author.

b. Cumulative CC: this value measures how many new coauthors an 

author added in a given window as compared to all previous windows. 

For example, suppose an author collaborated with two authors A and 

B in window 1, two authors B and C in window 2, and 2 authors 

A and D in window 3. The CC value for window 3 will be just one 

because the author added only one new author (D) in window 3 as 

they had already collaborated with author A in window 1. If it were 

noncumulative collaboration, the value for window 3 would be 2, as 

both A and D are new authors as compared to window 1. The average 

of all windows is used as the average cumulative collaboration capacity 

value for that author.

5. RESULTS

5.1. Collaboration Networks in Time

GenBank started operation in 1984. It took about 8 years for the growth in data submissions 

to take off. Data before 1992 were merged into 1992 due to the sporadic nature of direct 

submissions. Figure 2 shows that the mean degree (average number of connections an author 

has) for the GenBank publication network doubled from a mean of 3 to 6 by 2018. At the 

same time, the mean degree for sequence data submission networks almost tripled (Figure 

2).

The publication network displayed a scale-free property from 1999 onward while the data 

submission network showed a scale-free property earlier in 1997 (Figure S1 and Table 

S1). A Kolmogorov-Smirnov test (see Table S1) confirms that the degree distribution of 

GenBank networks fits a power law distribution (Clauset, Shalizi, & Newman, 2009). A 

further examination of the data reveals that when we merge the GenBank publication and 

data submission networks, the result also has a power law distribution after 1998 (Table 

S2). Analysis of the combined publication and data submission networks displays a trend 

of increasing percentages of nodes belonging to the giant components throughout the whole 

27-year span. A giant component is a set of nodes in a graph that are connected directly or 

Qin et al. Page 9

Quant Sci Stud. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indirectly and an indicator for the connectedness of nodes in a graph. The size of the giant 

component in GenBank (publication and submission networks together) grew from 43.7% in 

1992 to 82.2% in 2012, the highest point in all years, before dropping off its peak by 15% by 

2018 (Table S2), an indication that the networks became more interconnected over time.

A prominent property in scale-free networks is that they follow an 80/20 rule (Barabási, 

2016). In the case of GenBank combined networks, the degree distribution of authors clearly 

presents this property. In Figure S1, the red colored points represent authors only in the data 

submission network, blue points represent authors only in the publication author network, 

and purple points represent authors who were in both publication and submission networks. 

The degree distribution in these plots appears highly skewed, following an L-shape. That 

is, a very small number of authors had very high degree centrality in the publication or 

submission networks or both, while the majority of authors tended to have a very low 

number of connections. As time went on, the number of authors only in the data submission 

networks (red) and in both networks (purple) grew, while the number of authors only in the 

publication network grew much more slowly.

However, three strata of degree distribution among the authors can also be seen in Figure 

S1: a majority of authors remained at the bottom level (<10 links), the middle group ranged 

roughly between 10 and 500 links, and a very small number of authors had over 500 

connections. Also, the red tail on the plot suggests that those in the data network only 

tended to have the smallest number of links, while those nearer the top, or those with the 

most connections, tended to work in both networks. In fact, the plots shift from mainly blue 

(publication only) to mainly purple (both networks), with a red long tail, over time, implying 

that more activity and people were engaged in the data work. It also suggests that more 

actors who were publishing were also engaged in the data work.

5.2. Structural Shift

As noted above, and shown in Figure 3, we observed that the percentage of nodes in the 

networks that were in the giant component tended to increase. However, in 2018 it decreased 

to near 1998–1999 (67%) levels. The percentage of edges in the giant component remained 

high and had only a slight decline.

Even though quantitatively the percentage of nodes in the giant component in 2018 dropped, 

the structure of the network in 2018 was quite different from that in 1998 and 1999. As 

observed in Figure 4, the network displayed a publication-centric (blue nodes) structure 

during 1992–1995, and after that initial period, the growth of data submission nodes (in 

red) was increasingly visible and even started to overshadow the publication author nodes 

in the last few years. Starting from 2008, the network appeared to be less concentrated on 

a few dominant hubs. More regional clusters or communities emerged with strong local 

connections (the red dots on the visualization represent the density of connections). It is 

notable that some highly connected node clusters emerged from outside the giant component 

and these clusters of nodes occurred mainly among the data submission nodes (Figure 4). 

A possible explanation is that, as the number of edges remained steady, a decrease in the 

number of nodes means more links between fewer people in the giant component and the 
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nodes that shifted outside of the giant component to form new, more tightly connected local 

clusters could be the reason for the shrinking giant component.

This phenomenon seems to coincide with the decrease in clustering coefficient for both 

publication and data submission networks (Table S3), signaling a flattening network 

structure during the entire period. This trend accelerated at a faster pace starting around 

2006. All these network behaviors implicate a structural shift in GenBank collaboration 

networks that went from densely clustering around a small number of hubs to dispersed 

local clusters with stronger ties inside the clusters. The fact that the node percentage in 

the giant component had a big dip in 2018 can be seen as an echo of the steady drop in 

grant-eligible young PIs in NIH R01 grant awards (Levitt & Levitt, 2017; Pickett, Corb et 

al., 2015).

The observed structural shift is supported by two statistical properties of GenBank networks: 

the clustering and assortativity coefficients. As shown in Figure 5, the clustering coefficient 

for both publication and data submission networks followed a downward trend, starting 

around 2007. It may be considered as a sign that GenBank networks were no longer 

dominated by a small number of highly connected “hub” nodes, but rather, the networks 

tended to be flatter, with more scattered, smaller clusters interconnected through a few 

bridge nodes. A similar trend is also visible in assortativity for both publication and 

submission networks, though with more turbulent fluctuations. Assortativity in networks 

measures the likelihood that nodes with similar properties link to other nodes with those 

properties. The measure ranges from −1 to 1, with 1 = perfect assortative mixing, 0 = 

nonassortative, and −1 = completely disassortative mixing. The fact that the assortativity 

coefficient for data submission network was near or below zero from 1993–1995, then 

above, and below zero again from 2016–2018 is an indication that the data submission 

network went through a structural shift from disassortative to assortative mixing then back to 

disassortative mixing (Figure 5). In other words, author nodes were more likely to connect 

with those having similar properties, then dissimilar and then similar again over time. At 

the same time, the global network was flattening structurally (i.e., there were more locally 

tightly linked clusters that had connections to “hub” nodes through bridging nodes), which 

we see as more evidence for structural shift.

To explore further the detail of GenBank network assortative mixing, we selected the year 

2002, which had the highest assortativity coefficient value among all years, and 2012, 

a decade on from 2002, to see how assortative mixing, and thus the network structure, 

changed. We computed the assortativity values by using the multiscale mixing algorithm 

(Peel, Delvenne, & Lambiotte, 2018). The network graphs in Figure 6 show author nodes 

in both publication and data submission networks (the combined network). Colors indicate 

the level of assortativity, with red being the highest and blue the lowest in assortativity 

mixing. The assortativity coefficient peaked in 2002, then dropped steadily afterwards. Table 

S3 shows that, on average, the data submission network coefficient was 0.761 and the 

publication network coefficient was 0.634 in 2002, while these numbers dropped to 0.172 

and 0.128 respectively in 2012.
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The detailed regions in Figure 6(a) show that extremely high and low assortative mixing 

coexisted among densely connected nodes, while in outer regions nodes were sparser and 

had fewer connections (mainly red periphery nodes). There was a tendency for nodes to 

connect to more similar nodes. Similar assortative mixing remained a decade later in 2012 

(Figure 6(b)); however, the center of clusters tended to concentrate with high assortativity 

nodes, while the nodes in the outer regions were more homogeneous, with much less 

assortative mixing in 2012.

5.3. Collaboration Capacity

Using the number of new collaborators acquired over a period as one of the measures for 

collaboration capacity (Qin, Hemsley, & Bratt, 2018), we drew a random sample of 6,503 

nodes from the networks between 1997 and 2017 and plotted their assortativity coefficient 

scores against collaboration capacity as measured by the number of new collaborators 

acquired in a 3-year interval (Figure 7). The plot shows that high levels of collaboration 

capacity are located between 0.1–0.6. The fact that the assortativity coefficient values were 

below 0.1 between 2013 and 2018 for data submission network (Table S3) can be interpreted 

as a below-optimal state of collaboration capacity, which coincides with the shrinking 

workforce and stagnant funding for young scientists in biomedical basic research (Levitt 

& Levitt, 2017; Pickett et al., 2015). This evidence suggests that networks that are highly 

assortative or disassortative would not cultivate collaboration capacity as effectively as those 

with moderate assortative mixing of the nodes. This leads us to speculate that researchers 

are more likely to attract new collaborators when they also tend to work in a moderately 

diverse setting. Like-wise, working with new collaborators implies a more dynamic network 

with stronger S&T human capital (Bozeman et al., 2001). Thus, the scatterplot in Figure 7 

implies that in these networks there is an optimal state of assortative mixing.

The scale-free nature and heterogeneous assortative mixing in GenBank networks raises a 

question about how complex networks in data-intensive science can be better characterized 

and measured. We observed that in GenBank annotation records, a publication is often 

referenced in multiple data submissions. This means that, regardless of the number of base 

pairs involved, the number of data submissions for a publication may be an indication 

of the degree of data-intensiveness of the research reported in the publication. Using the 

ratio of the number of data submissions vs. the number of publications as a measure of 

data-intensiveness, the result shows a clear trend: The ratio increased steadily from 1992 

through 2003 before leveling off in the next decade, which coincided with the Human 

Genome Project ending in 2003. Although there was a spike during 2015–16, the sudden 

drop in the ratio between 2017 and 2018 remains to be explored (Figure 8).

The fact that an increase in the number of data submissions (as well as authors) is involved 

in producing the same number of publications offers some insights into the GenBank 

collaboration networks and collaboration behavior in general. On the one hand, the increase 

in the submission-publication ratio implies that a publication required more data to support 

or make conclusive findings over time. This may also reflect that science has been looking 

at increasingly big, complex problems, hence requiring more team members for data 

production in support of the publications. On the other hand, the ability of a scientist 
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to secure sufficient and highly skilled S&T human capital will significantly affect their 

collaboration capacity, which in turn will affect their own productivity and influence in the 

collaboration network. The interaction of these two factors can be observed in Figure 9, in 

which the percentage of authors who participated in data production (grey area) increased 

but those who only participated in publications decreased. As a percentage, authors who 

appeared in both data submission and publication networks remained stable after 1996.

6. DISCUSSION

The GenBank metadata as a new data source creates an opportunity for developing 

and verifying some new metrics for characterizing and measuring research collaboration 

networks. We used the term “collaboration capacity” (Qin, Hemsley, & Bratt, 2018) to 

frame the enablers of collaboration capacity—S&T human capital (Bozeman & Corley, 

2004), cyberinfrastructure, and science policy—in examining collaboration networks from 

data production to knowledge diffusion. We assume that the greater the S&T human capital 

a researcher can accumulate or assemble, the more opportunity and resources they can 

garner to collaborate with other researchers and the more likely the S&T human capital 

will be used more effectively. In this sense, collaboration capacity is a framework of 

metrics developed for assessing the effectiveness of collaboration enablers in facilitating 

successful collaborations, fostering the growth of S&T human capital, and more importantly, 

accelerating innovations and new discoveries. Collaboration capacity is impacted by three 

enablers—cyberinfrastructure, S&T human capital, and science policy—and the evaluation 

of their impacts requires a set of metrics that can operationalize the key aspects that can 

reflect the impact of enablers.

The longitudinal GenBank metadata for data submissions and associated publications 

generated some new insights into research collaboration networks. The structural shift and 

patterns of assortative mixing in the GenBank collaboration networks exhibit the evolution 

history and trends of a large research community. The sharp drop in the total number of 

authors in the data submissions network from 2016 to 2018 resonates with the steady drop in 

grant-eligible young principal investigators (PIs) in NIH R01 grant awards, which has been 

warned to have a negative impact on national competitiveness in biomedical research (Levitt 

& Levitt, 2017). To verify whether any impact was generated on the data submissions, 

we used the data on sequences submitted to GenBank (NCBI, n.d.) to calculate the rate 

of increase. The results in Table S6 show that the number of sequences in yearly releases 

started to drop sharply in 2013 and the rate of increase has dropped to a historically low 

point (1.92, compared to 28.11 in 2005) in 2019. The drop in the number of sequences 

submitted to GenBank during 2013–2019 seems to correlate with the sharp drop in the 

data submission authors in our data. Although the COVID-19 pandemic reversed this trend 

(Table S6 shows that the numbers of sequences released in the first year of the pandemic 

[i.e., 2020] had skyrocketed by 83% of the previous year’s release total and the growth 

trend continued in 2021), the rise and fall of sequence submissions is nonetheless worthy of 

further investigation. Nucleotide sequence data as one of the pillars of biomedical research 

play a critical role in diagnosis, treatment development, and many other theoretical and 

clinical research areas, and the rapid development of COVID-19 vaccines is a great example.
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Using metadata from data repositories to study complex collaboration networks represents 

a new research field, which can be labeled as “big metadata analytics” (Bratt, Hemsley et 

al., 2017). The significance of big metadata analytics lies in that the data sources cover 

a much larger part of a research life cycle from data to publications and can even be 

expanded to patents. These metadata are traces left from different stages of a research 

life cycle and can be valuable sources for not only enhancing research reproducibility but 

also uncovering characteristics and patterns of collaboration networks to help us understand 

better the effectiveness of collaboration capacity enablers and their impact on the transition 

from data to knowledge. Currently, we have integrated NIH funding data for the same period 

as well as matched patent metadata from the U.S. Patent and Trademark Office with those in 

the GenBank metadata collection to conduct further examination on questions arising from 

the analysis already conducted. For example, we identified nodes that had consistently high 

performance, from low to high performance, from high to low performance, and consistently 

low performance based on the number of publications and data submissions. We observed 

that an author with performance from low to high involved a transition from a major 

involvement in data submissions or equal share in data submission and publication to a 

major involvement in publication and less involvement in data submission. These findings 

raise more questions for further analysis on questions such the following: “What are some 

of the characteristics of these categories of different performance levels?” and “How was 

collaboration capacity and funding associated with the level of performance?.” The answers 

to questions of this nature will provide new understandings of the complex collaboration 

networks in data-intensive science.

7. CONCLUSION

The longitudinal GenBank metadata presents the evolution history of complex collaboration 

networks that have the properties of scale-free and power law distribution. The decrease 

in clustering coefficient indicated a shift from a primarily hierarchical structure to a 

flatter structure in GenBank collaboration networks. The analysis shows that there was an 

optimal assortative mixing score range for collaboration capacity. The empirical evidence 

in flattening network structures, increasing data collaborations, and diverse assortative 

mixing in this large, global-scale research community makes big metadata analytics a 

promising research field for exploring a fuller picture of research collaboration and science 

research enterprise that attests the effectiveness of utilizing S&T human capital and 

cyberinfrastructure as well as the impact of science policy.
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Figure 1. 
The metadata section in a GenBank annotation record.
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Figure 2. 
Distributions of alpha values and mean degrees for both publication and sequence data 

submission networks in GenBank 1992–2018. The alpha values for both networks appear 

to be almost identical, while the mean degree values for publication network have been 

consistently higher than that of the submission network. (The data used to generate this 

chart are in Table S1. In this paper, table and figure numbers with an S mean they are in 

Supplementary Materials).
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Figure 3. 
Giant component size changes from 1992–2018 have been steadily growing. The growth in 

the percentage of edges has outpaced that of the nodes. See Table S2 for the data used to 

draw this plot.
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Figure 4. 
GenBank network visualization from 1992–2018: Each network represents 1 year of the 

data and includes the merged data submission and publication coauthor networks. Nodes 

that only showed up in the publication network are blue with green links. Nodes that 

only showed up in the data submission network are dark red, with red links. Nodes that 

showed up in both networks are purple with dark purple links between them. To observe 

the main structures, we are focused on the giant component for each year; thus isolates 

Qin et al. Page 20

Quant Sci Stud. Author manuscript; available in PMC 2022 April 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and disconnected clusters have been removed. Larger-size visualizations of yearly network 

structure changes can be seen from Movie S2 in Supplementary Materials.
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Figure 5. 
Distribution of clustering coefficient and average assortativity for publication and data 

submission networks from 1992–2018. (See Table S3 for data used to generate this plot.)
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Figure 6. 
Assortative mixing for 2002 and 2012: (a) A densely connected cluster and a sparsely 

connected region in 2002. There appear to be few connections between the nodes with high 

assortativity mixing (in red) and those with low assortativity mixing (in blue), similar to 

the outer region with sparsely connected nodes. (b) The densely connected cluster shows 

stronger mixing between high and low assortativity in 2012, while the sparsely connected 

outer region appears to have little mixing between high and low assortativity.
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Figure 7. 
Assortativity vs. collaboration capacity. The relationship between assortativity and 

collaboration capacity is consistently positive, as reflected in the 2002 and 2012 snapshots 

of the author-level statistics. The heat map color spectrum shown in the graphs shows the 

density of the values, that is, the frequency of the values, around the mean (vertical red line 

of ~0.3 assortativity score).
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Figure 8. 
Average ratio of data submissions to publications: 1992–2018. The increment up to 2003 

coincided with the Human Genome Project ending in 2003. See Table S4 for the data used to 

generate this plot.
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Figure 9. 
Change in the number and percentage of authors in data submission and publication 

networks from 1992–2018. Note that the percentage for each group does not add up to 100% 

because of the overlap of authors in the data submission and publication networks. The 

unique publication author count and unique submission author count are calculated as the 

total. The overlap, then, is an intersection of the two networks (publication and submission), 

so the “percentage intersected” includes authors from each network’s unique author counts. 

The data used to draw this plot are available in Table S5.
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Table 1.

Summary of observations on the submission authors, publication authors, and the principal investigators in 

infectious disease related GenBank records

Year Number of 
observations

Category 1: Submission 
author in publication

Category 2: PI in 
publication

Category 3: PI in 
submission Yes for all three 

categories
No Yes No Yes No Yes

1997 19 3 16 8 11 11 8 8

2006 19 19 8 11 8 11 11

2012–
2014 17 1 16 2 15 9 8 0
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