

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on RDM16 and STA1 regulate differential usage of exon/intron in RNA directed DNA Methylation pathway

Ravi Datta Sharma^{a,b,*}, Bert Bogaerts^a, Neha Goyal^c

^a Centre for Microbial and Plant Genetics, KU Leuven, 3000, Belgium

^b Amity institute of Biotechnology and Amity institute of Integrative Sciences and Health, Amity University

Haryana, NH-8, Panchgaon, Gurgaon, Haryana 122413, India

^c School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India

ARTICLE INFO

Article history: Received 24 January 2017 Received in revised form 16 March 2017 Accepted 31 March 2017 Available online 8 April 2017

Keywords: RNA directed DNA methylation pathway Alternative splicing RNA-Seq Arabidopsis thaliana

ABSTRACT

This article contains data on *RDM16* and *STA1* regulate differential usage of exon/intron in RNA directed DNA Methylation pathway (RdDM) (Sharma et al., 2016) [5]. This data include expression profiles of top 100 genes that has at least one exon or intron differentially expressed in three different contrast, i.e., WT (Wild type) *vs RDM16*, WT *vs STA1*, and *RDM16 vs STA1*. Also we included the alignment of *MORC6* protein to the ATPase-C family members that have conserved three ATP binding sites and conserved Mg2 + binding sites in the spliced exon.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Bioinformatics, Genomics				
More specific sub-	Alternative splicing, Differential Expression				
ject area					
Type of data	Figures. Table. Alignment				

DOI of original article: http://dx.doi.org/10.1016/j.gene.2017.01.027

* Corresponding author at: Centre for Microbial and Plant Genetics, KU Leuven, 3000, Belgium. *E-mail address:* ravidattasharma@gmail.com (R.D. Sharma).

http://dx.doi.org/10.1016/j.dib.2017.03.050

2352-3409/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

How data was acquired	Gene Expression Omnibus (GEO) id: GSE44635, URL: https://www.ncbi.nlm. nih.gov/geo/query/acc.cgi?acc=GSE44635 from the article [1]
Data format	Analyzed (Figs. 1–3, Alignment Figs. 4 and 5, Table 1)
Experimental	Secondary analysis of published data
factors	
Experimental	Computational analysis
features	
Data source	-
location	
Data accessibility	Accessible from this article

Value of the data

- The data from article [5] shows the expression profiles of the genes that contain at least one alternative splicing event in different conditions. This information will be useful for other researchers to understand the regulation of gene expression by alternative splicing.
- Alignment of MORC6 protein to the ATPase-C family simplifies the mechanism by which splicing factor RDM16 regulate the MORC6.
- This data provides the information of the genes that are affected in RdDM pathway by knockdown of RDM16 and STA1 splicing factors. This data will help other researcher to validate the findings of the exon/intron level analysis in RdDM pathway.

1. Data

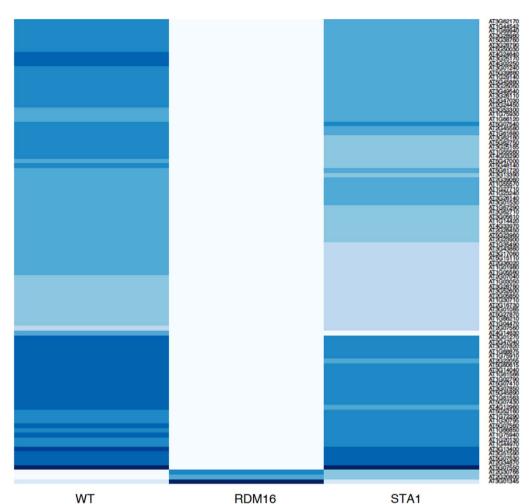
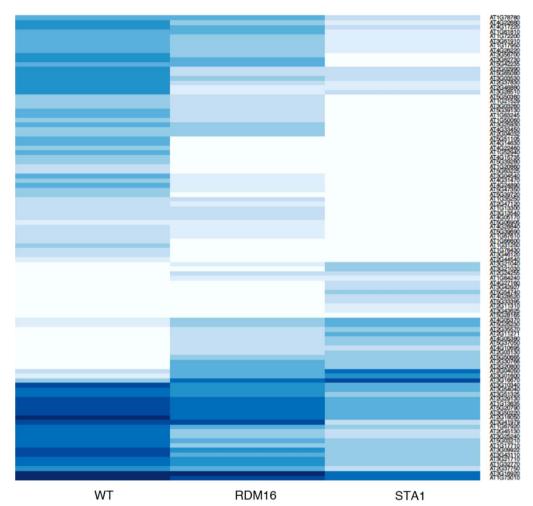

Figs. 1–3 depict expression profile of top 100 genes that has at least one exon or intron differentially expressed in WT vs *RDM16*, WT vs *STA1*, and *RDM16 vs STA1* respectively. The color key is given with Fig. 3.

Fig. 4: Figure shows the alignment of *MORC6* protein to the ATPase-C family members that have conserved three ATP binding sites at 8, 11 and 14th position of the alignment. There are few more ATP binding sites at 55–65, 104–107, 123–125, 166–169 but may not be contributing in the ATP binding since co-factor binding site is only available in the protein sequence that is coded by exon4 in *MORC6* (region highlighted in yellow).


Fig. 5: Figure shows the alignment of *MORC6* protein to the ATPase-C family members that have conserved Mg2 + binding site at 11th position of the alignment. Highlighted (yellow color) query sequence shows the protein sequence that is coded by exon4 in *MORC6*. ASP (D) and ASN (N) are essential amino acid for Mg^{2+} binding but do not contribute in it [7].

2. Experimental design, materials and methods

The experiment contains RNA-Seq samples in three conditions; WT (wild type), mutant RDM16 and STA1. The raw data were downloaded from Gene Expression Omnibus (GEO) with accession number GSE44635. The alignment of the reads were done using TopHat2 pipeline [2] (Table 1) and the reads were counted *via* featurecount function in Rsubread package [4]. We used edgeR in order to find the differentially expressed exons and introns [6]. Figs. 1–3 were prepared using in-built functions in R. The alignment of the *MORC6* protein to ATPase-C family members was done using ClustalX software [3]

Fig. 1. This figure depicts expression profile of top 100 genes that has at least one exon or intron differentially expressed in WT vs RDM16. Color key used in expression profiles of genes in different contrasts is given with Fig. 3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Depicts expression profile of top 100 genes that has at least one exon or intron differentially expressed in WT vs STA1. Color key used in expression profiles of genes in different contrasts is given with Fig. 3.

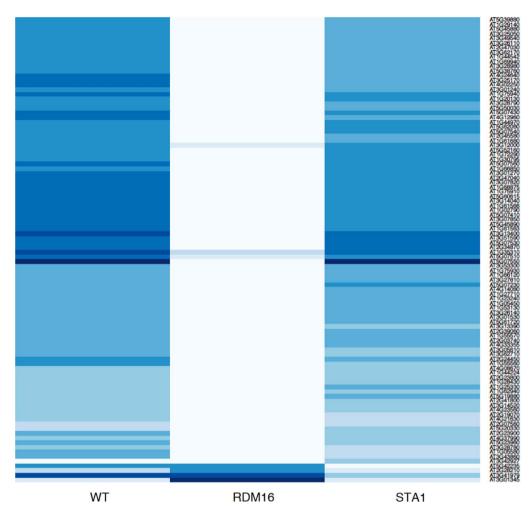
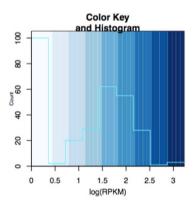



Fig. 3. Depicts expression profile of top 100 genes that has at least one exon or intron differentially expressed in RDM16 vs STA1. The color key is given with figure.

Color key used in expression profiles of genes in different contrasts (for fig. 1, 2 and 3).

		10	20	30	40	50	60	70	80
		*		.*	*	*	*	*	*
Feature 1		# # #					# # # ##		
1A4H	37	KEIFLRELISNASDA	Ldkiryks	lsdpkqletep	dLFIRITF	KpeqkVI	EIRDSGIGM	kaelinnlgt	iaksgt 111
query	129	afgAVAELLDNAVDE	SIgn	g	aTFVIVdkTI	Nprd-gatAL	LIQDDGGGM	ipqamrhcmgf	fgf 188
gi 7470847	532	LVELLTKLLDNAIKE	Tpt		nGRISIAV	DrpnpsqlEV	TITDTGRGIe	pnrletvfdr	fy 589
gi 12644105		LYKIFDEIIVNAADN							
gi 6016274		KEIFLRELISNASDA							
gi 17865492		KEIFLRELISNASDA							
gi 1708337		KEIFLRELISNASDA							
gi 17865496		HEIFLREIVSNAVDA							
gi 2495364		KDAFLRELISNASDA							
gi 1708314	33	KEIFLRELISNASDA	Ldkirfes	ltdkskldagp	eLFIRLVF	DktnkTI	SIIDSGVGMa	kadlvnnlgt	iarsgt 107
		90	100	110	120	130	140	150	160
		*		.*			*	*	*
Feature 1				####	#				
1A4H	112	kafmealsaga	advsmigqf	GVGFYSLFLVA	dRVQV1	SKsnddeqyi	wesnagg	sftv	rtldevn 174
query		sdk)							
gi 7470847		qeega							
gi 12644105		gnlltssnyddno							
gi 6016274		kaflstltrdgkg							
gi 17865492		1afktenesko							
gi 1708337		kefinnlkqdek							
gi 17865496		eeflekykdd							
gi 2495364		aelraglreaknaaa							
gi 1708314	108	kefmealqaga	advsmigqf	GVGFYSAYLVA	eKVIVI	TKhnddeqyi	wesqagg	sftv	rtrdvdg 170
		170							
		*							
Feature 1		## #							
1A4H		erigrGTILRLFL 1							
query	255	efnasagefktlg 2	267						
gi 7470847		nhGTQFHFTV (
gi 12644105		kkpdeYTKITFKP 2							
gi 6016274		aegsaGTCVVLHL 1							
gi 17865492		akesvGTEIRLKL]							
gi 1708337		kkeesGTEIKLYL 1							
gi 17865496		dkadrGTDIVMHI]							
gi 2495364		edapqGTSVTLHL]							

Fig. 4. Alignment of *MORC6* protein to the ATPase-C family members that have conserved three ATP binding sites at 8, 11 and 14th position of the alignment. There are few more ATP binding sites at 55–65, 104–107, 123–125, 166–169 but may not be contributing in the ATP binding since co factor binding site is only available in the protein sequence that is coded by exon4 in *MORC6* (region highlighted in yellow).

		10	20	30	40	50	60	70	80
		*	*	*	*	*	*	*	*
Feature 2		#							
1A4H		KEIFLRELISNASD							
query		afgAVAELLDNAVD							
gi 7470847		LVELLTKLLDNAIK							
gi 12644105		LYKIFDEIIVNAAD							
gi 6016274		KEIFLRELISNASD							
gi 17865492		KEIFLRELISNASD							
gi 1708337		KEIFLRELISNASD							
gi 17865496		HEIFLREIVSNAVD							
gi 2495364		KDAFLRELISNASD							
gi 1708314	33	KEIFLRELISNASD	ALdkirfes	tdkskldaqp	eLFIRLVP	DktnkTL	SIIDSGVGMa	kadlvnnlgt	iarsgt 107
		90	100	110	120	130	140	150	160
		*	*	*	*	*	*	*	*****
Feature 2									
1A4H		kafmealsag							
query		sdk							
gi 7470847		qeeg							
gi 12644105		gn11tssnyddn							
gi 6016274		kaflstltrdqk							
gi 17865492		1afktenesk							
gi 1708337		kefinnlkqdek							
gi 17865496		eeflekykd							
gi 2495364		aelraqlreaknaa							
gi 1708314	108	kefmealqag	advsmigqf	WGFYSAYLVA	eKVIVT	TKhnddeqyi	wesqagg	sftv	rtrdvdg 170
		170							
		*							
Feature 2									
1A4H		erigrGTILRLFL							
query		efnasagefktlq							
gi 7470847		nhGTQFHFTV							
gi 12644105	255	kkpdeYTKITFKP	267						
gi 6016274		aegsaGTCVVLHL							
gi 17865492		akesvGTEIRLKL							
gi 1708337		kkeesGTEIKLYL							
gi 17865496		dkadrGTDIVMHI							
gi 2495364		edapqGTSVTLHL							
gi 1708314	171	eqlgrGTKITLFL	183						

Fig. 5. Alignment of *MORC6* protein to the ATPase-C family members that have conserved Mg^{2+} binding site at 11th position of the alignment. Highlighted (yellow color) query sequence shows the protein sequence that is coded by exon4 in *MORC6*. ASP (D) and ASN (N) are essential amino acid for Mg^{2+} binding but do not contribute in it (Jorgensen et al. [7]).

 Table 1

 Summary of the TopHat2 alignment. (Values are in millions).

Sample	Pairs	Aligned pairs (%)	Multiple alignments (%)	Discordant alignments (%)	Concordant pairs (%)
WT	25.74	24.10 (93.6%)	1.51 (6.2%)	0.02 (0.1%)	24.08 (93.5%)
RDM-16	26.62	24.93 (93.7%)	1.69 (6.7%)	0.02 (0.1%)	24.91 (93.6%)
STA1	26.56	24.90 (93.8%)	2.15 (8.5%)	0.02 (0.1%)	24.88 (93.7%)

Acknowledgement

We would like to thank Prof. Vera van Noort, Computational System Biology Group, CMPG, KU Leuven, Belgium, for support and valuable suggestions.

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi. org/10.1016/j.dib.2017.03.050.

References

- C.F. Huang, D. Miki, K. Tang, H.R. Zhou, Z. Zheng, W. Chen, Z.Y. Ma, L. Yang, H. Zhang, R. Liu, X.J. He, J.K. Zhu, A Pre-mRNAsplicing factor is required for RNA-directed DNA methylation in Arabidopsis, PLoS Genet. 9 (9) (2013) e1003779.
- [2] D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, S.L. Salzberg, TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions, Genome Biol. 14 (4) (2013) R36.
- [3] M.A. Larkin, G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, D.G. Higgins, Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2007, pp. 2947–2948.
- [4] Y. Liao, G.K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics 30 (7) (2014) 923–930. http://www.ncbi.nlm.nih.gov/pubmed/24227677.
- [5] R.D. Sharma, B. Bogerts, N. Goyal, RDM16 and STA1 regulate differential usage of exon/intron in RNA directed DNA methylation pathway, Gene 609 (2017) 62–67. http://dx.doi.org/10.1016/j.gene.2017.01.027.
- [6] M.D. Robinson, D.J. McCarthy, G.K. Smyth, edgeR: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics 26 (1) (2010) 139–140.
- [7] P.L. Jorgensen, P.A. Pedersen, Structure-function relationships of Na+, K+, ATP, or Mg2+ binding and energy transduction in Na,K-ATPase, Biochim. Biophys. Acta - Bioenergy 1505 (1) (2001) 57–74. http://dx.doi.org/10.1016/S0005-2728(00) 00277-2.