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This article contains data on RDM16 and STA1 regulate differential
usage of exon/intron in RNA directed DNA Methylation pathway
(RdDM) (Sharma et al., 2016) [5]. This data include expression
profiles of top 100 genes that has at least one exon or intron dif-
ferentially expressed in three different contrast, i.e., WT (Wild
type) vs RDM16, WT vs STA1, and RDM16 vs STA1. Also we included
the alignment of MORC6 protein to the ATPase-C family members
that have conserved three ATP binding sites and conserved Mg2þ
binding sites in the spliced exon.

& 2017 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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Value of the data

� The data from article [5] shows the expression profiles of the genes that contain at least one
alternative splicing event in different conditions. This information will be useful for other
researchers to understand the regulation of gene expression by alternative splicing.

� Alignment of MORC6 protein to the ATPase-C family simplifies the mechanism by which splicing
factor RDM16 regulate the MORC6.

� This data provides the information of the genes that are affected in RdDM pathway by knockdown
of RDM16 and STA1 splicing factors. This data will help other researcher to validate the findings of
the exon/intron level analysis in RdDM pathway.
1. Data

Figs. 1–3 depict expression profile of top 100 genes that has at least one exon or intron differ-
entially expressed in WT vs RDM16, WT vs STA1, and RDM16 vs STA1 respectively. The color key is
given with Fig. 3.

Fig. 4: Figure shows the alignment of MORC6 protein to the ATPase-C family members that have
conserved three ATP binding sites at 8, 11 and 14th position of the alignment. There are few more ATP
binding sites at 55–65, 104–107, 123–125, 166–169 but may not be contributing in the ATP binding
since co-factor binding site is only available in the protein sequence that is coded by exon4 in MORC6
(region highlighted in yellow).

Fig. 5: Figure shows the alignment of MORC6 protein to the ATPase-C family members that have
conserved Mg2þ binding site at 11th position of the alignment. Highlighted (yellow color) query
sequence shows the protein sequence that is coded by exon4 in MORC6. ASP (D) and ASN (N) are
essential amino acid for Mg2þ binding but do not contribute in it [7].
2. Experimental design, materials and methods

The experiment contains RNA-Seq samples in three conditions; WT (wild type), mutant RDM16
and STA1. The raw data were downloaded from Gene Expression Omnibus (GEO) with accession
number GSE44635. The alignment of the reads were done using TopHat2 pipeline [2] (Table 1) and
the reads were counted via featurecount function in Rsubread package [4]. We used edgeR in order to
find the differentially expressed exons and introns [6]. Figs. 1–3 were prepared using in-built func-
tions in R. The alignment of the MORC6 protein to ATPase-C family members was done using ClustalX
software [3]
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Fig. 1. This figure depicts expression profile of top 100 genes that has at least one exon or intron differentially expressed in WT
vs RDM16. Color key used in expression profiles of genes in different contrasts is given with Fig. 3. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. Depicts expression profile of top 100 genes that has at least one exon or intron differentially expressed in WT vs STA1.
Color key used in expression profiles of genes in different contrasts is given with Fig. 3.
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Fig. 3. Depicts expression profile of top 100 genes that has at least one exon or intron differentially expressed in RDM16 vs
STA1. The color key is given with figure.
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Color key used in expression profiles of genes in different contrasts (for fig. 1, 2 and 3).



Fig. 4. Alignment of MORC6 protein to the ATPase-C family members that have conserved three ATP binding sites at 8, 11 and
14th position of the alignment. There are few more ATP binding sites at 55–65, 104–107, 123–125, 166–169 but may not be
contributing in the ATP binding since co factor binding site is only available in the protein sequence that is coded by exon4 in
MORC6 (region highlighted in yellow).
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Fig. 5. Alignment of MORC6 protein to the ATPase-C family members that have conserved Mg2þ binding site at 11th position of
the alignment. Highlighted (yellow color) query sequence shows the protein sequence that is coded by exon4 in MORC6. ASP
(D) and ASN (N) are essential amino acid for Mg2þ binding but do not contribute in it (Jorgensen et al. [7]).

Table 1
Summary of the TopHat2 alignment. (Values are in millions).

Sample Pairs Aligned pairs (%) Multiple alignments (%) Discordant alignments (%) Concordant pairs (%)

WT 25.74 24.10 (93.6%) 1.51 (6.2%) 0.02 (0.1%) 24.08 (93.5%)
RDM-16 26.62 24.93 (93.7%) 1.69 (6.7%) 0.02 (0.1%) 24.91 (93.6%)
STA1 26.56 24.90 (93.8%) 2.15 (8.5%) 0.02 (0.1%) 24.88 (93.7%)
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