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Abstract: Glycation of proteins by polysaccharides via the Maillard reaction improves the functional
properties of proteins in foods, such as solubility, heat stability, emulsification, foaming, and gelation.
Glycation is achieved by either the dry heating or the wet heating method, and considerable
research has been reported on the functionality of the reaction mixture as tested in foods. While the
characteristics of the glycates in foods have been well studied, the kinetics and equilibrium yield of
the protein-polysaccharide glycation reaction has received little attention. Industrial manufacture of
the glycates will require understanding the kinetics and yield of the glycation reaction. This work
examined the glycation of whey protein isolate (WPI) and glycomacropeptide (GMP) by using dextran
and the dry-heating method at 70 ◦C and 80% relative humidity. The disappearance of un-glycated
protein and the creation of glycated protein were observed using chromatographic analysis and
fluorescence laser densitometry of sodium dodecyl sulfate-polyacrylamide gels. Data were fit using a
first-order reversible kinetic model. The rate constants measured for the disappearance of un-glycated
protein by sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) (k = 0.33 h−1) and by chromatographic
analysis (k = 0.38 h−1) were not statistically different from each other for WPI-dextran glycation.
Dextran glycation of GMP was slower than for WPI (k = 0.13 h−1). The slower rate of glycation of
GMP was attributed to the 50% lower Lys content of GMP compared to WPI. Yield for the dry-heating
dextran glycation method was 89% for WPI and 87% for GMP. The present work is useful to the food
industry to expand the use of glycated proteins in creating new food products.

Keywords: conjugation; dairy; carbohydrates

1. Introduction

Glycation of proteins by the Maillard reaction is a promising food-grade method to modify food
proteins [1–6]. Glycated proteins have improved functional properties in foods such as superior
solubility, heat stability, emulsification, foaming, and gelation properties [3,7]. Glycation of proteins
may help people who suffer from food protein allergies by lowering IgE-binding capacity [8]. Glycation
uses the first step in the Maillard reaction to create a reversible Schiff-base linkage between the free
amino moiety in the protein and the carbonyl moiety in the polysaccharide [9–13]. The Schiff-base
linkage can be created via the dry-heating method [9,14] or the wet-heating method [15,16]. In the
dry-heating method, an aqueous mixture of the protein and polysaccharide is first dried and then
heated for a certain time (2 h to 9 days) at a fixed temperature (60 to 130 ◦C) and relative humidity (60
to 80%). In the wet-heating method, the aqueous solution is heated for a specific time (2 h to 2 days) at
a fixed temperature (60 to 95 ◦C).

Schiff base formation is a reversible condensation reaction that generates water as a by-product.
By Le Chatelier’s principle [17], the presence of water in the reaction mixture drives the reaction in

Foods 2019, 8, 528; doi:10.3390/foods8110528 www.mdpi.com/journal/foods

http://www.mdpi.com/journal/foods
http://www.mdpi.com
https://orcid.org/0000-0003-3365-0969
http://www.mdpi.com/2304-8158/8/11/528?type=check_update&version=1
http://dx.doi.org/10.3390/foods8110528
http://www.mdpi.com/journal/foods


Foods 2019, 8, 528 2 of 11

reverse, lowering yield. For example, the yield of glycation using the wet method is low (<5%) [15,16].
Subsequently yield was increased to 18% using a reaction time of 24 h at 60 ◦C [18]. The dry-heating
method uses a desiccator to remove water generated by the condensation reaction, shifting the chemical
equilibrium towards product formation, which increases yield. For example, whey protein-maltodextrin
powders heated for 2 h at 80 ◦C in a desiccator at 79% relative humidity formed substantial amounts of
glycates with little un-glycated protein remaining in the reaction mixture [14].

The purpose of the present study was to measure the time course and equilibrium yield of the
glycation reaction between dextran and whey protein isolate (WPI) or glycomacropeptide (GMP) using
the dry-heating method. The reaction between polysaccharides and proteins via the Maillard reaction
is different from the reaction between simple sugars and proteins. In either case, the Maillard reaction
pathway starts with the formation of a Schiff base between the free amino moiety in the protein and
the carbonyl moiety in the carbohydrate [19]. For simple sugars the Schiff base undergoes spontaneous
rearrangement to either an Amadori or Heyn’s compound [20]. Protein-polysaccharide glycation
products are not subject to post-Amadori–Maillard reaction steps [4]. The Maillard reaction stops at
Schiff base formation [15]. The protein-polysaccharide product is colorless and has no odor [4]. It was
not the purpose of the present work to explore the sequence of elementary chemical reactions that
make up the Maillard reaction pathway by using the tools of chemical kinetics. Rather, the present
work was aimed at measuring the time course and equilibrium yield of the glycate formation reaction
and extracting apparent rate constants using a simple mathematical model and a fitting procedure.

In order to determine the time course and equilibrium yield, a quantitative method was required
to measure the concentration of reactants (un-glycated protein and dextran) and products (glycated
protein) versus time. We used a new method for the chromatographic analysis of whey protein-dextran
glycation products and a complementary fluorescence laser densitometry method for this purpose.
The present work is important because producing glycates quickly and in high yield is essential for
delivering on the potential benefits of this new food-grade method for protein modification.

2. Materials and Methods

Whey protein isolate (WPI) and glycomacropeptide (GMP) were from Davisco Foods International
(Le Sueur, MN, USA). WPI contained 92.7% protein, 2.0% ash, 5.0% moisture, 0.0% lactose, and 0.3%
lipids. GMP contained 86% protein, 6.5% ash, 6.0% moisture, 1.0% lactose, and 0.5% lipids. Dialysis
for removal of the 1% lactose in GMP was deemed unnecessary based on past research [4]. Dextran
T10 was from Pharmacosmos Company (Holbaek, Denmark) and had an average molecular mass
of 5.2 kDa. Precast gels (Tris-Glycine, 4–20% linear gradient, 18 wells), pre-stained molecular mass
standards, Tris/glycine/SDS premixed buffer, Laemmli sample buffer, and Coomassie Blue G-250
stain were from Bio-Rad Laboratories (Hercules, CA, USA). Pierce GelCode glycoprotein staining
kit was from Thermo Fisher Scientific (Waltham, MA, USA). SYPRO Red Protein Gel Stain was from
Lonza Rockland (Rockland, ME, USA). Other chemicals were from Fisher Scientific (Pittsburgh, PA,
USA). Buffers were prepared at 22 ◦C. Centrifugal filter units (Amicon Ultra-15, 3 kDa) were from
MilliporeSigma (Burlington, MA, USA).

2.1. Synthesis of Glycated Proteins

Glycation was conducted using the dry-heating method. Dextran and WPI or GMP were dissolved
in 10 mM sodium phosphate buffer (pH 6.5) at a 3:1 mass ratio, resulting in a dextran-WPI molar ratio
of 10:1. The liquid reaction mixture was frozen, lyophilized and ground into a powder using a mortar
and pestle to form particles of about 0.1–3 mm diameter, and then dispensed into seven 20 mL glass
scintillation vials. All seven vials without caps were equilibrated to 85% relative humidity at 22 ◦C for
24 h in a desiccator containing saturated potassium chloride solution. One vial was taken before the
start of the reaction and capped. The remaining six un-capped vials were placed into a pre-heated
desiccator at 70 ◦C that contained saturated potassium chloride solution giving a relative humidity of
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80%. At time points of 1, 2, 4, 8, 16, and 32 h, one vial was taken from the desiccator and capped. The
seven vials were stored at −20 ◦C prior to analysis.

2.2. Gel Electrophoresis

Sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) gel electrophoresis was performed to
measure the progress of the glycation reaction, following the protocol of Bund et al. [18]. Dried reaction
products were fully dissolved in water, subjected to the SDS sample preparation procedure, loaded into
the gel, and visualized by Coomassie Blue staining. Precision Plus Protein Kaleidoscope Pre-stained
Protein Standards (ST) were also applied on the Coomassie gel as molecular mass makers. The ST
mixture contained ten recombinant proteins of molecular mass 10 to 250 kDa. A Pierce GelCode
glycoprotein staining kit was used for the detection of glycoproteins in the glycoprotein stained gel.

Coomassie and glycoprotein stained gels provided a qualitative result, but more quantitative
data were needed for the kinetic analysis. Therefore, fluorescence laser densitometry after staining
by SYPRO Red was used for protein quantification. Gels were scanned on TYHOON FLA 9000
laser densitometer (GE Healthcare, Piscataway, NJ, USA) in fluorescence mode using an excitation at
532 nm and emission at 610 nm. Bands were quantified using ImageQuantTL software (GE healthcare).
Calibration of band volume to protein concentration was accomplished by applying internal standards
to three lanes of the gel (lanes A, B, C). The internal standards consisted of three liquids each containing
known concentrations of ALA and BLG of 0.1 to 0.3 mg/mL such that the total was 0.4 mg/mL.

2.3. Chromatographic Analysis

Glycated samples of WPI were analyzed by cation exchange chromatography using a 5 mL HiTrap
MacroCap SP column from GE healthcare (Marlborough, MA, USA) connected to an ÄKTA Explorer
100 HPLC system (GE Healthcare). Glycated protein samples were reconstituted in 50 mM sodium
lactate, pH 4.0 (Buffer A) and syringe filtered using a 0.22 µm PVDF filter (MilliporeSigma, Burlington,
MA, USA). The chromatographic method consisted of 4 steps: (1) column equilibration using 5 column
volumes (CV) of buffer A; (2) loading the sample into the column using a 2 mL sample injection loop to
bind the glycated and un-glycated proteins to the column; (3) elution of the glycated protein using
12 CV of 40% buffer B (1 M NaCl in Buffer A); and (4) elution of unreacted un-glycated protein using
2.5 CV of 100% Buffer B. The column was then re-equilibrated using a 5 CV of buffer A and cleaned
using 0.1 M NaOH. Glycated protein eluted in the “low salt” peak (40% buffer B) and unreacted
un-glycated protein eluted in the “high salt” peak (100% buffer B). Unicorn 5.0 software was used to set
up the chromatographic method and calculate peak area at 280 nm (PA280). Protein (µg) ≈ 25 × PA280,
where 25 is the flow rate (5 mL/min) times the path length correction (10 mm/2 mm) for the detector
flow cell.

2.4. Kinetic Model of the Glycation Reaction

In Schiff base formation, free amino acids on the protein react reversibly with carbonyls on the
polysaccharide to produce glycated protein as shown in Equation (1) [4,9,21]:

P + D⇔ PD + W (1)

where P is un-glycated protein, D is dextran, PD is protein-dextran glycate, and W is water. Dextran
and water were in ten-fold molar excess or more in the present work and can be considered to be
constant. The kinetic equations are then shown in Equations (2) and (3) [22]:

[P] = [P]eq + ([P]0 − [P]eq) e−kt (2)

[PD] = [PD]eq (1 − e−kt) (3)
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where k is the apparent rate constant and [P] and [PD] are the concentrations of un-glycated protein
and protein-dextran glycate, respectively, at time t. The value of [P] at time zero is [P]0. The values of
[P] and [PD] at equilibrium (t→∞) are [P]eq and [PD]eq, respectively. In the present work, measured
values of [P] and [PD] versus time were used to obtain the fitted parameter values [P]eq, [PD]eq, and k.

2.5. Statistical Analysis

Equations (2) and (3) were fitted to the experimental data for the time course of the reaction by
nonlinear regression using the JMP Pro software, version 11 (SAS Institute, Gary, NC, USA) to obtain
the fitted parameter values [P]eq, [PD]eq, and k. Results were expressed as mean ± standard error.
Point-by-point comparisons between the data and the fitted equations were made by t-test using SAS
studio 3.5 (SAS Institute, Gary, NC, USA). The p-value was reported.

3. Results

3.1. Kinetics of Whey Protein Isolate-Dextran Glycation Using SDS-PAGE Analysis.

Samples from reaction times of 0, 1, 2, 4, 8, 16, and 32 h were analyzed by SDS-PAGE and stained
using Coomassie Brilliant Blue (Figure 1A) and glycoprotein stain (Figure 1B). The ten ST bands in
Figure 1A were from 10 pre-stained protein standards (10 to 250 kDa). The single ST band in Figure 1B
was from the glycoprotein horseradish peroxidase (44 kDa). At 0 h, the sample consisted mostly of
un-glycated alpha-lactalbumin (ALA, 14.4 kDa) and beta-lactoglobulin (BLG, 18.4 kDa), the main
proteins in bovine cheese whey [23]. Increasing the reaction time decreased the amount of un-glycated
ALA and BLG, and simultaneously increased the amount of glycated protein that appeared as a smear
band at higher molecular mass. The glycated protein smear band darkened in intensity and the
midpoint of the smear band shifted to a higher molecular mass as reaction time increased. By 32 h of
reaction time, the ALA and BLG bands were much smaller than at 0 h of reaction time, meaning that
most of the ALA and BLG had been glycated by dextran, and some of the glycated protein was larger
than the largest marker band of 250 kDa.
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Figure 1. SDS-PAGE result for whey protein isolate-dextran glycation after (A) Coomassie
Blue and (B) glycoprotein staining for reaction times of 0, 1, 2, 4, 8, 16, and 32 h at 70 ◦C.
ST = protein standards, ALA = alpha-lactalbumin, BLG = beta-lactoglobulin, SDS-PAGE = sodium
dodecyl sulfate-polyacrylamide.
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As shown in Figure 2, similarly prepared samples of different reaction times were separated by
SDS-PAGE and stained by SYPRO Red. A gradual disappearance of un-glycated ALA and BLG, and a
gradual appearance of the glycated protein smear band were observed, consistent with the results
shown in Figure 1.
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Figure 2. SDS-PAGE gel for whey protein isolate-dextran glycation after SYPRO Red staining of
reaction mixtures made at the indicated heating times, and of internal standards (lanes A, B, C).

The SYPRO Red stained gel of Figure 2 was analyzed by fluorescence laser densitometry.
Un-glycated protein was quantified by referencing lanes A, B, and C as internal standards of ALA
and BLG of known concentrations to construct a calibration curve. Results are shown in Figure 3.
Concentration is in units of grams of protein in the sample per liter of solution after dissolution of the
reaction mixture in water but before subjecting the liquid to the SDS sample preparation procedure.
Un-glycated protein (WPI) decreased as reaction time increased and reached completion in about 8
h. The data in Figure 3 were fit using the kinetic model of Equation (2). The fitted parameter values
were k = 0.33 ± 0.06 h−1 and [P]eq = 0.04 ± 0.03 g/L. There was no statistical difference between the
data points and the fit using the kinetic model (p > 0.05). The extent of glycation (ε) was calculated
from ε = 1 − [P]/[P]0 using the experimental data at each reaction time. At 8 h, ε = 0.89, or 89% of the
un-glycated protein had disappeared from the sample.
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Figure 3. Un-glycated WPI versus reaction time at 70 ◦C determined by laser fluorescence densitometry
(diamond markers) and the fit using the kinetic model of Equation (2) (solid line). Error bars are ±
standard deviation of triplicates of the entire procedure of Section 2.1.
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3.2. The Effects of Reaction Time on Glycation Using Chromatographic Analysis.

The SYPRO Red staining and laser fluorescence scanning method could be used to measure
the loss of un-glycated protein but not the creation of glycated protein because the smear band of
the glycated protein was not quantifiable. Therefore, the chromatographic method was used as an
independent check of the SDS-PAGE result for un-glycated protein and as the only way to measure the
simultaneous creation of glycated protein.

Figure 4 shows peak areas obtained using the chromatographic method. Example chromatograms
are shown in our previous publication [10]. Un-glycated protein decreased exponentially during the
first 8 h of reaction time. At 8 h, ε = 0.88, or 88% of the un-glycated protein had disappeared from the
sample. The high-salt peak area data for un-glycated protein were fit to the model of Equation (2) for
un-glycated protein. The fitted parameter values were k = 0.38 ± 0.06 h−1 and [P]eq 60 ± 30 mAU-min.
There was no statistical difference between the data points and the fit using the kinetic model (p > 0.05).
The rate constant (k) measured from the disappearance of un-glycated protein by chromatographic
analysis was not statistically differently from the rate constant (k) measured by SDS-PAGE analysis
(p > 0.05). In other words, by two independent analytical measures (SDS-PAGE and chromatography),
the same rate of reaction was observed.
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Figure 4. WPI-dextran glycation reaction at 70 ◦C determined by chromatographic analysis showing
the loss of un-glycated protein (triangles) and simultaneous formation of glycated protein (diamonds).
Un-glycated and glycated protein share the same Y-axis units (mAU-min). Also shown are the fit of the
data using the kinetic model of Equation (2) for un-glycated protein (solid line) and Equation (3) for
glycated protein (dotted line). Error bars are ± standard deviation of triplicates of the entire procedure
of Section 2.1. WPI = whey protein isolate.

The low-salt peak area data for glycated protein were fit to the model of Equation (3). The fitted
parameter values were k = 0.18 ± 0.03 h−1 and [PD]eq 850 ± 40 mAU-min. There was no statistical
difference between the data points and the fit using the kinetic model (p > 0.05) except for the data
point at 4 h for which the difference was marginal (p = 0.043). Compared to the rate constant for the
disappearance of un-glycated protein as measured by SDS-PAGE (k = 0.33 h−1) and by chromatographic
analysis (k = 0.38 h−1), the rate constant for creation of glycated protein (k = 0.18 h−1) was about half
the expected value.
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3.3. Kinetics of Glycomacropeptide-Dextran Glycation

The next subject of investigation was the glycation of GMP by dextran under the same reaction
conditions as the glycation of WPI by dextran. Figure 5 shows the glycoprotein stain of the SDS-PAGE
analysis of GMP-dextran samples taken at each reaction time. Samples taken at 0 h and 1 h show
the characteristic “king’s crown” shape of unreacted GMP [24], and no glycation products from the
dextran glycation reaction. GMP is naturally glycosylated by mucin-type carbohydrate chains at
seven different Thr residues [25] and stains by glycoprotein stain. At reaction times of 2, 4, and 8 h,
glycated GMP appears as seen by the increasingly larger smeared bands as time increases, and the
disappearance of the unreacted GMP. At reaction times of 16 h and 32 h, the unreacted GMP band
has nearly disappeared and the glycated GMP band represented by the smeared band has grown
substantially more intense and shifted up in molecular mass.
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Figure 7 contains the result of fluorescence laser densitometry of the SYPRO Red stained gel of
Figure 6. At 8 h of heating time, ε = 0.66%, or 66% of the un-glycated GMP had disappeared from the
sample. At 32 h, ε = 0.87, or 87% of the un-glycated GMP had disappeared. The chromatographic
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procedure did not work for GMP because of its low isoelectric point of 3.15 to 4.15 [26]. The data
for un-glycated GMP were fit using the model of Equation (2). The fitted parameter values were
k = 0.13 ± 0.02 h−1 and [P]eq = 1.50 ± 0.08 g/L. There was no statistical difference between the data
points and the fit using the kinetic model (p > 0.05). Dextran glycation of GMP was substantially
slower than dextran glycation of WPI.
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Figure 7. Un-glycated protein (GMP) versus reaction time at 70 ◦C determined by laser fluorescence
densitometry (diamond markers) and fit using the kinetic model of Equation (2) (solid line). Error bars
are ± standard deviation of triplicate experiments.

4. Discussion

This work examined the kinetics and yield of whey protein glycation using dextran and the
dry-heating method. Previous researchers have centered focus on the food properties of the un-purified
reaction mixture after heating, but the kinetics of the protein-polysaccharide glycation reaction has
been largely unstudied. The appropriate reaction time at 70 ◦C can be assessed by the reaction half-life
(t1/2). From the disappearance of un-glycated protein, glycation of WPI had t1/2 = 1.8 h for WPI as
measured by the chromatographic method, and t1/2 = 2.1 h for WPI as measured by the SDS-PAGE
method. These times are not greatly different than the work of Akhtar and Dickinson [14] where a
heating time of 2 h at 80 ◦C was used for the dry-heating method to glycate WPI using maltodextrin.

Glycation of GMP had t1/2 = 5.3 h at 70 ◦C as measured by the SDS-PAGE method. Conversion at
32 h was 87% for GMP. Glycation of GMP by dextran was substantially (61%) slower than glycation of
WPI, although yield was similar to WPI. GMP when pure has an unusual amino acid composition
compared to WPI. GMP is deficient in Asp, Leu, and Lys, compared to WPI, and is missing six amino
acids altogether: Cys, Tyr, Phe, Trp, His, and Arg [25]. Furthermore, GMP contains double the amount
of the following five amino acids compared to WPI: Thr, Ile, Pro, Ser, Val. Considering that Schiff base
formation involves primarily Lys, and to a lesser extent His and Trp [9], and that GMP has half the Lys
content of WPI, and no His and Trp, then it is logical that glycation of GMP was slower than for WPI.

The WPI-dextran and the GMP-dextran glycation reactions were well described by the kinetic
model. The reason the error bars were larger for Figure 7 than Figure 4 was the greater uncertainty in
calculating the band area for the irregular king’s crown shape of Figure 6 versus the regular rectangular
shape of Figure 2. For WPI-dextran, there were no statistical differences between the data points and
the fit using the kinetic model (p > 0.05) for 20 out of 21 time points. For GMP-dextran, there were no
statistical differences between the data points and the fit using the kinetic model for seven out of seven
time points (p > 0.05). These observations support the hypothesis that protein-dextran glycation using
the dry-heating method is an apparent first-order reversible reaction.
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For the WPI-dextran reaction, the rate constants measured for the disappearance of un-glycated
protein by SDS-PAGE (k = 0.33 h−1) and by chromatographic analysis (k = 0.38 h−1) were not statistically
different (p > 0.05). The rate constant for creation of glycated protein by chromatographic analysis
(k = 0.18 h−1) was about half the expected value. This discrepancy in the rate constant for creation of
glycated protein was because of the last two data points of Figure 4 (16 and 32 h) where the peak area
for glycated protein [PD] continued to rise, while the peak area for un-glycated protein [P] did not
continue to fall. It is possible that the protein extinction coefficient increases with glycation causing the
peak area at 280 nm for un-glycated and glycated protein to be different, especially at long times where
the extent of glycation is highest.

Yield was not previously measured for the dry-heating method. In the present work, yield for the
glycation of WPI by dextran at 8 h was 88% for un-glycated protein based on chromatographic analysis,
and 89% based on SDS-PAGE analysis. For comparison, the wet-heating method for dextran and WPI
had at best a yield of 18% using a reaction time of 24 h at 60 ◦C [18]. In summary, the dry-heating
method increased yield from 18% to nearly 90% and cut the reaction time from 24 h to 8 h for dextran
and WPI glycation. These results are not surprising if one considers that the glycation reaction is a
reversible condensation reaction. Condensation reactions eliminate water and should be run in a dry
state to achieve high yield.

5. Conclusions

This work examined the kinetics of the dry-heating method for the glycation of WPI and GMP by
dextran. The dry-heating method had a reaction half-life of about 2 h at 70 ◦C and about 90% yield.
The dry-heating method had a 5× higher yield than the wet-heating method. Glycation using the
dry-heating method was well described using a reversible first-order kinetic model. As the reaction
time increased, the amount of un-glycated protein fell exponentially, and the amount of glycated
protein rose exponentially. Glycation of GMP was slower than glycation of WPI. The half-life for GMP
glycation was about 5 h compared to 2 h for WPI glycation. This was attributed to the lower Lys
and other reactive amino acid content of GMP compared to WPI. The glycation reaction starts with
Schiff base formation which is a reversible condensation reaction that makes water. By Le Chatelier’s
principle, the presence of water in the reaction mixture drives the reaction in reverse, lowering yield.
This may explain why the dry-heating method of protein glycation by dextran was superior to the
wet-heating method in terms of speed and yield. It is important to note that reversible condensation
reactions can be driven in reverse (towards reactants in Equation (1)) by adding water. The reverse
reaction of Equation (1) happens when protein-dextran glycates in powder form are added to wet foods
such as beverages, emulsions, gels, and foams. In this case the glycates may fall apart by hydrolysis
and return to the form of the reactants: free un-glycated protein and dextran. Glycation of proteins by
dextran via the Maillard reaction is a food-grade method to improve the physical properties of proteins
for expanded use of proteins in foods. The present work is useful to the food industry to expand the
use of glycated proteins in creating new food products.
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