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Abstract: Tumor differentiation is a therapeutic strategy aimed at reactivating the endogenous
differentiation program of cancer cells and inducing cancer cells to mature and differentiate into other
types of cells. It has been found that a variety of natural small-molecule drugs can induce tumor cell
differentiation both in vitro and in vivo. Relevant molecules involved in the differentiation process
may be potential therapeutic targets for tumor cells. Compared with synthetic drugs, natural small-
molecule antitumor compounds have the characteristics of wide sources, structural diversity and low
toxicity. In addition, natural drugs with structural modification and transformation have relatively
concentrated targets and enhanced efficacy. Therefore, using natural small-molecule compounds to
induce malignant cell differentiation represents a more targeted and potential low-toxicity means
of tumor treatment. In this review, we focus on natural small-molecule compounds that induce
differentiation of myeloid leukemia cells, osteoblasts and other malignant cells into functional cells
by regulating signaling pathways and the expression of specific genes. We provide a reference for
the subsequent development of natural small molecules for antitumor applications and promote the
development of differentiation therapy.

Keywords: tumor; differentiation; leukemia; solid tumor; natural small-molecule compounds

1. Introduction

Cancer is one of the major diseases threatening human health in the 21st century.
Statistical studies have shown that 19.3 million new cancer patients were diagnosed, and
10 million died from cancer in 2020. If the national incidence rate stays the same, there
will be 28.4 million cancer patients worldwide in 2040—47% higher than in 2020 [1]. A
tumor is a new organism formed by local tissue and cell proliferation under the action of
various tumorigenic factors. Because the new organism mostly presents space-occupying
massive processes, tumors are also known as vegetation. In addition to uncontrolled cell
proliferation and survival, the continuous loss of normal differentiation is also a feature of
most malignant cells [2]. Malignant tumors include carcinoma, sarcoma, hematopoietic and
lymphoid malignancies, etc. The conventional treatments of tumors include surgery, radio-
therapy, chemotherapy, targeted therapy, immunotherapy, traditional Chinese medicine
therapy, etc., which are aimed at killing tumor cells. However, killing tumor cells inevitably
damages normal cells, and tumor cells cannot be eliminated due to their migratory and
invasive nature. Tumor differentiation is a method aimed at reactivating the endogenous
differentiation program of cancer cells and inducing cancer cells to stop proliferation and
restore normal cell characteristics [3]. The molecular mechanisms involved in the differ-
entiation process are potential therapeutic targets for tumor cells, and the induction of
differentiation is an ideal outcome for both chemopreventive and therapeutic agents.
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Based on the fact that a tumor is a disease with disturbed cell differentiation and
impaired maturation, attempts to induce cancer cells to redifferentiate towards maturity
into structurally and functionally normal cells have gradually started to move from the
laboratory to the clinic. In 1961, Pierce first found that mouse testicular teratoma cells
could spontaneously differentiate into benign normal cells, which verified that malignant
tumors could be cured by inducing tumor cell differentiation, as proposed in the 1950s, and
research was initiated to induce tumor cell differentiation [4]. Then in 1975, Friend reported
that dimethyl sulfoxide induced erythrocyte differentiation and stimulated hemoglobin
synthesis in mouse leukemia cells, which confirmed the possibility of inducing differentia-
tion in vitro [5]. In addition, Wang Zhengyi found that symptoms of acute promyelocytic
leukemia (APL) were completely relieved by all-trans retinoic acid (ATRA) in 72% of pa-
tients in 1985, creating a precedent for the clinical application of differentiation-inducing
agents in the treatment of leukemia [6]. Now, APL can be cured by the combined treatment
of retinoic acid (RA) and arsenic.

According to the mechanisms of tumor differentiation, differentiation inducers can
be divided into endogenous and exogenous agents. The former refers to the chemicals
with the differentiation-inducing effect produced by tumor or host cells, such as colony-
stimulating factors and glucocorticoids; and the latter refers to the differentiation inducers
that cannot be produced by tumor or host cells but must rely on external supply, including
vitamins, nucleosides and their analogs, organic compounds, etc. At present, a variety
of compounds inducing the differentiation of cancer cells have been reported, such as
theophylline [7], trimeric glutaryl pentane [8] and 5,7-dimethoxycoumarin [9], which
can induce the differentiation of blood tumor cells or solid tumor cells by arresting their
proliferation through diverse mechanisms. More research shows that a large number of
differentiation-inducing agents have been found and synthesized all over the world.

However, the above agents also have certain limitations, such as causing adverse
reactions and drug resistance. It has been found that natural small-molecule compounds
widely present in plants, such as polyphenols, flavonoids, carotenoids, alkaloids, etc., have
a broad safety profile and therapeutic effects on a wide range of diseases; therefore, some
of them have entered clinical research, and many strategies have been proposed for their
improvement [2,10,11]. Myeloid leukemia cells are particularly sensitive to most of these
natural small-molecule compounds, which are induced to differentiate into morphologically
and functionally mature cells. The use of natural small-molecule compounds to induce
malignant cell differentiation represents a more targeted and potentially less toxic treatment
of oncological disease, which could provide hope for improved treatment of malignancies
by avoiding the significant side effects seen with conventional therapies.

This review focuses on natural small-molecule compounds that induce myeloid
leukemia cells, osteoblasts, and some other solid tumor cells to advanced stages of differen-
tiation by regulating signaling pathways and the expression of specific genes. In particular,
we aim to summarize the current status of research on natural small-molecule compounds
that show differentiation induction of malignant cells and their mechanisms (several natu-
ral compounds with a detailed mechanism of action are shown in Figure 1) and to provide
basic knowledge to facilitate the development of differentiation therapies. We used “small
molecules”, “natural compounds”, “tumors”, “hematologic tumors” or “solid tumors”
and “differentiation” or “differentiation therapy” or other relevant items as keywords in a
search of the PubMed database. In addition, the Clinicaltrials.gov database was searched
for relevant diseases to obtain clinical trials of natural compounds. No restrictions were set
on the date of publication of the literature.

Clinicaltrials.gov
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2. Hematologic Tumors

Hematologic tumor is a general term for a large group of malignant tumors that origi-
nate in the hematopoietic system. Common hematological tumors include various types
of leukemia, multiple myeloma and malignant lymphoma. Hematological malignancies
are a group of heterogeneous hematological tumors usually characterized by abnormal
production of blood cells (hematopoiesis) [12]. Although the clinical management of hema-
tologic malignancies has improved significantly over the past few years, the socioeconomic
costs are a concern. Meanwhile, many key challenges remain, such as recurrence, refractory
lesions, and morbidity and mortality associated with malignancy. If tumor cells can be
induced to differentiate and prevented from proliferating, their malignant potential could
be controlled. Therefore, differentiation therapy is a promising treatment method. A
successful example of this method is all-trans retinoic acid (ATRA) against acute myeloid
leukemia, which promotes the implementation of differentiation therapy. It is worth not-
ing that many natural small molecule compounds have shown significantly therapeutic
potential in promoting differentiation in myeloid leukemia (Table 1).

2.1. Myeloid Leukemia

Leukemia is a kind of malignant clonal disease of hematopoietic stem cells. Its in-
cidence rate is high (about 27,600 per 100,000 people) because of its diverse pathogenic
factors [13]. According to the data of global cancer statistics in 2020, leukemia ranks 15th
among all types of cancer, with 474,519 new cases (2020) and 311,594 deaths [1]. The classi-
fication of leukemias is more complex, and it is often clinically classified into myeloid and
lymphocytic leukemias based on different series of leukodystrophies. Myeloid leukemias
can in turn be divided into acute myeloid leukemia (AML) and chronic myeloid leukemia
(CML) based on the rapidity of the condition and the maturation of leukemic differentiation,
of which AML is the most common, accounting for more than 50%.
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2.1.1. Acute Myeloid Leukemia (AML)

Acute myeloid leukemia (AML) is mainly caused by chromosome translocation, which
produces fusion proteins with abnormal activity, resulting in cell-cycle imbalance and
failure of hematopoietic differentiation. The consequence of the replacement of normal
hematopoietic stem cells with tumor cells is a decrease in the number of blood cells,
anemia, thrombocytopenia and neutropenia. Although current treatment strategies provide
a reasonable possibility for the majority of patients to achieve complete remission, the
recurrence rate and subsequent disease-related mortality remain high [2]. In 2020, there
were 19,940 newly diagnosed AML cases, and 11,180 patients died of AML in the United
States [14]. The improvement of chemotherapy and maintenance therapy increased the
overall survival rate of young patients (less than 15 years old) to more than 60%; however,
in the end, 40% of people relapse and need salvage therapy.

Induction of cell differentiation has also become an important choice in cancer ther-
apy due to the cyclic imbalance and abnormal hematopoietic differentiation character-
istics of AML. The potential of AML differentiation agents has also been demonstrated
through the use of all-trans retinoic acid (ATRA), which has achieved significant clinical
success in a small number of AML patients with the acute promyelocytic leukemia (APL)
subtype [15,16]. In addition to synthetic drugs, a variety of plant-derived compounds
(phytochemicals) induce cell differentiation through a variety of mechanisms and show
antitumor activity. Many natural small molecules contribute to mediation of apoptosis, cell
cycle and differentiation through oxidative stress pathways. Reactive oxygen species (ROS)
are one of the key markers of differentiation; in this case, they are considered potential
therapeutic agents for the treatment of AML. Securinine is an alkaloid from the root of
the plant securinega suffruticosa. Securinine activates receptor tyrosine kinase (nRTK) to
induce HL-60 differentiation towards monocytes, with increased expression of CD11b
and CD14. Not only does securinine decrease the expression of transcription factors,
such as CCAAT/enhancer-binding proteins α (C/EBPα), C/EBPε, GATA-1 and cellular-
myelocytomatosis viral oncogene (c-myc), but it also initiates ROS-induced DNA damage
by activating the JNK/ERK pathway, which induces ATM/ATR and Chk1-dependent cell
differentiation. More importantly, securinine has also been reported to induce AML tumor
differentiation in primary leukemia patients, as well as in nude mice, showing potent
differentiation activity and potential for clinical application. At present, securinine has
been used for clinical treatment of neurological disorders, although it occasionally induces
epilepsy due to GABA. GABA activation does not adversely affect securinine’s activity to
induce AML differentiation. Therefore, this alkaloid could be considered as a potential ther-
apeutic agent of AML [17–20]. Coincidentally, diallyl disulfide (DADS), a major anticancer
active ingredient derived from garlic, can also induce leukemia cell differentiation via ROS
pathways in which CRT was downregulated and translocated, resulting in the release of
the creatine transporter (CRT) and C/EBP α mRNA interactions that promote C/EBP α
protein expression. It was previously believed that DADS exerted anticancer activity by
defending against carcinogen invasion and inhibiting proliferation of various cancer cells,
but the latest study showed that, apart from ROS pathways, DADS could also negatively
regulate the rac1-rock1-limk1-cofilin1 axis to induce leukemia cell differentiation to play
an anticancer role. In addition, DADS significantly inhibited the growth and induced the
differentiation of HL-60 cells in SCID mice [21–24]. Small-molecule natural compounds
that induce cancer cell differentiation via ROS pathways also include shikonin and ethyl
acetate extract (CAE). Shikonin, a major component of the herb comfrey, may interact with
biological targets through the formation of covalent bonds or as an electron transfer agent
in redox reactions to regulate redox homeostasis between cells via the Nrf2/ARE pathway,
thereby promoting differentiation and apoptosis in HL-60 cells. Low doses (<100 ng/mL)
of paclitaxel shift cells from proliferation to differentiation; however, higher concentrations
lead to cell death [25–27]. Another small-molecule natural compound is ethyl acetate extract
(CAE), an ethyl acetate extract from Caesalpinia sappan L, which differentially inhibits AML
cells in vitro in a concentration-dependent manner without toxic effects on normal cells and
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induces mitochondrial apoptosis, G2/M-phase cell cycle arrest and late cell differentiation
through reactive oxygen species [28].

Studies have shown that orphan nuclear receptor Nur77 is an important tumor sup-
pressor gene in AML and that deletion of Nur77 expression is a common feature in patients
with AML. Deletion of Nur77 leads to impaired differentiation of hematopoietic stem cells
and bone marrow progenitor cells, which contributes to development of AML. Targeted
activation of Nur77 expression has been shown to be a potential new intervention approach
in the treatment of AML. Ginsenoside 20(s)-Rh2 is a protopanaxadiol-type ginsenoside
and also one of the typical components of red ginseng. Ginsenoside 20(s)-Rh2 [29–31]
promotes Nur77 translocation from the nucleus to the mitochondria by activating the
Nur77-mediated death receptor pathway (Fas and DR5), followed by Nur77 interaction
with Bcl-2 to cause apoptosis. 20(S)-Rh2 induces AML cell differentiation via the Nur77-
mediated transcription factors c-Jun and JunB [32,33]. Like 20(s)-Rh2, CTD also induces
apoptosis and differentiation through a Nur77-mediated signaling pathway. Cantharidin
(CTD) is the main bioactive component of cantharidin. Recent studies have found that
CTD and its derivatives, such as Cantharidic acid and norcantharidin, inhibit leukemia
cell proliferation, induce apoptosis, cause cell cycle arrest and enhance the inhibitory ef-
fect of chemotherapeutic drugs [34–36]. Notopterol, a coumarin, is an active monomer
extracted from N. incisum with antipyretic, analgesic, and anti-inflammatory properties.
Notopterol [37–39] induces apoptosis, differentiation and G0/G1 cell cycle arrest in human
AML HL-60 cells. Notopterol markedly induces protein expression of c-Jun and JunB and
decreases c-myc, thereby inducing differentiation [40]. DT-13 is a new compound isolated
from Liriope muscari (Decne) Baily, which has strong cytotoxicity to a variety of solid tumors.
Similar to 20(S)-Rh2, Liriodendron chinense saponin C (DT-13) [41–43] induces apoptosis in
HL-60 and Kasumi-1 cells by upregulating Fas, FasL, DR5 and TRAIL through the expres-
sion of Kruppel-like factor 2 (KLF2). The restoration of KLF2 by DT-13 is highly correlated
with AMPK-related histone acetylation mechanisms. DT-13 significantly enriches Ace-H3
(AH3-120) in the promoter region of the KLF2 gene. In addition, KLF2 promotes differ-
entiation by upregulating the expression levels of the differentiation markers CD11b and
CD14 and the transcription factors C/EBPα and C/EBPβ. Therefore DT-13 may mediate
apoptosis and differentiation through AMPL-KLF2 [44]. DT-13 is classified by the Chinese
Ministry of Health as an herbal medicine due to its high efficiency and safety.

2.1.2. Chronic Myeloid Leukemia (CML)

Chronic myeloid leukemia (CML) is characterized by the abnormal accumulation of
immature leukemia mother cells in blood, bone marrow and spleen, which prevents the
terminal differentiation of myeloid cells but promotes the expression of BCR-ABL fusion
oncoprotein. BCR-ABL fusion protein plays a role in the imbalance of tyrosine kinase
activity, which activates proliferation and antiapoptotic signal pathways and leads to the
malignant expansion of pluripotent stem cells in bone marrow. Furthermore, BCR-ABL
fusion protein mediates downregulation of C/EBPα expression, which triggers a block in
the myeloid differentiation of CML cells. By inducing terminal differentiation, leukemic
cells may lose their ability to proliferate and form mature, functional cells. Therefore,
induction of differentiation is an ideal therapeutic strategy.

Unlike AML, CML cells are particularly sensitive to erythrocyte differentiation. Many
natural compounds, including apigenin and fagaronine or other anthracycline antibiotics
and HSP90 inhibitors, have been proved to induce CML cell differentiation into erythroid
lineage in vitro. These inducers work through different mechanisms, including direct or
indirect inhibition of BCR-ABL. Almost all these compounds activate the key erythroblast
transcription factor GATA-1. Apigenin [45,46] is considered to be a bioactive flavonoid
with anti-inflammatory and antioxidant effects. It upregulates the mRNA expression of the
erythroid transcription factor GATA-1 and alters the nuclear and cytoplasmic DTP distri-
bution, thereby affecting the nuclear translocation and localization of signaling molecules,
such as GATA-1. Long-term treatment with apigenin induced erythroid-like differentiation
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of K562 cells. Analysis of the structure–function relationships of the flavonoids showed
that apigenin-induced differentiation of K562 cells was due to the 2–3 double bonds and
hydroxyl groups in their structure. Apigenin mainly acts as a glucoside conjugate due
to its unstable pure form, and its conjugated form may be an important determinant of
its bioavailability and absorption [47,48]. Fagaronine, a benzo phenanthrene alkaloid ex-
tracted from Fagara zanthoxyloides Lam, exerts its differentiation activity by specifically
activating genes involved in the regulation of GATA-1 in the region of erythroid phenotypic
expression [49]. Wogonine [50–52] is a flavonoid extracted from Scutellaria baicalensis Georgi
that has a good curative effect in the treatment of hematological malignancies. Wogonine
inhibited BCR-ABL-mediated phosphorylation of MEK and ERK in K562 cells and in-
creased the expression of erythroblast differentiation genes by upregulating transcription
factor GATA-1 and enhancing the combination between GATA-1 and friend of GATA-1
(FOG-1). Differentiation was accompanied by cell cycle arrest in the G0/G1 phase, as well
as concomitant upregulation of p21 and downregulation of CDK4 and cyclin D1 [53].

Small-molecule tyrosine kinase inhibitors (TKIs) [54], such as imatinib, dasatinib, nilo-
tinib and ponatinib, have been developed to treat CML by blocking the kinase structural
domain of the BCR-ABL oncoprotein. However, there are a variety of adverse reactions
of these compounds, such as off-target and metabolic toxicity, due to the resistance of
BCR-ABL mutation to TKI treatment and the progression to advanced diseases. It is nec-
essary to seek new treatment strategies. Gambogic acid (GA) is a small molecule derived
from the Chinese herb Garcinia cambogia. It promotes apoptosis and differentiation in
imatinib-resistant chronic granulocytic leukemia cells through induction of proteasome
inhibition and caspase-dependent BCR-ABL downregulation. Studies on GA derivatives
found that GA derivatives lacking reactive α, β-unsaturated carbonyl groups were inef-
fective, suggesting that α, β-unsaturated carbonyl groups are important for the exertion
of GA activity [55–57]. Andrographolide (Andro), a major component of the medici-
nal plant Andrographis paniculata, promotes the differentiation of imatinib-sensitive and
imatinib-resistant CML cells through the production of ROS, which prompts BCR-ABL
downregulation and Hsp90 cleavage. The aliphatic ester enhances the cytotoxic activity
of Andro and the double bond between C-8 and C-17, in addition to the lactone and its
conjugated double bond, maybe the central structure in which it acts [58]. In general, Andro
and GA provide an alternative and complementary strategy for imatinib-resistant CML by
inhibiting BCR-ABL function through a different mechanism than that of imatinib [59–61].
8-hydroxydaidzein (8-OHD, 7,8,4′-trihydroxyisoflavone) is a hydroxylated derivative of
daidzein isolated from fermented soybean products. The o-dihydroxy group in the 8-OHD
structure has superior antioxidant and free radical scavenging activity and may be the key
moiety for its action. 8-OHD activates the mitogen-activated protein kinase (MAPK) and
nuclear clearance factor-κB (NF-κB) signaling pathways, thereby inducing autophagy, apop-
tosis and cycle arrest. In addition, 8-OHD induces degradation of BCR-ABL oncoprotein
and promotes early growth response 1 (EGR1)-mediated megakaryocyte differentiation,
which could be a potential compound for the treatment of CML [62,63]. Atractylodes
macrocephala (also known as white bamboo) is an important component of several tradi-
tional Chinese medicine prescriptions used to treat abdominal pain and gastrointestinal
diseases for thousands of years. The main active compound, atractylenolide I (ATL-I),
induces apoptosis and differentiation of human leukemia cells [64].
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Table 1. Myeloid leukemia differentiation therapy induced by natural compounds.

Tumor Compound Source Target Structure IC50/GI50/Concentration of
Induction of Differentiation Clinical Trial (Phase) Reference

AML Securinine Securinega suffruticosal ATM/ATK, chk1
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3. Multiple Myeloma (MM) and Osteosarcoma 
Multiple myeloma (MM) is a malignant tumor in which plasma cells proliferate ab-

normally. MM can cause organ damage, including osteolytic lesions, anemia, renal failure 
or hypercalcemia (clonal expansion of malignant plasma cells). To date, multiple myeloma 
is still considered incurable, accounting for about 10% of all hematological malignancies 
and 2% of all cancers (Cancer Research UK, 2018). In 2016, there were 138,509 incident 
cases worldwide (Cowan, 2018). Between 1990 and 2016, the incidence rate of the whole 
world increased by 126% and was closely related to age (Cancer Research UK 2018; Cowan 
2018) [65]. 

In MM disease, clonal malignant plasma cells accumulate in bone marrow, reduce 
osteoblast formation and stimulate osteoclasts to destroy the bone. Osteoblasts build 
bones by forming connective cell populations, and osteoclasts are large multinucleated 
cells that destroy bones. The functional balance of the two cell types is essential for bone 
maintenance and repair. Therefore, in addition to targeting myeloma cells to treat MM 
patients, osteoclasts and osteoblasts are also regarded as potential targets. At present, it 
has been proposed that drugs that induce osteoblast differentiation can be used as an al-
ternative therapy for MM treatment. Osteoblast differentiation requires the activity of 
transcription factor 2 (Runx2) and Osterix transcription factors, as well as growth factors. 

In MM therapy, natural small-molecule compounds act as differentiation agents for 
osteoblasts (Table 2). This study shows that resveratrol, silibinin, acerogenin A and bai-
calein can regulate the expression and activity of specific markers, including bone mor-
phogenetic proteins (BMPs) and key transcription factors Osterix and Runx2, to induce 
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3. Multiple Myeloma (MM) and Osteosarcoma

Multiple myeloma (MM) is a malignant tumor in which plasma cells proliferate
abnormally. MM can cause organ damage, including osteolytic lesions, anemia, renal failure
or hypercalcemia (clonal expansion of malignant plasma cells). To date, multiple myeloma
is still considered incurable, accounting for about 10% of all hematological malignancies
and 2% of all cancers (Cancer Research UK, 2018). In 2016, there were 138,509 incident
cases worldwide (Cowan, 2018). Between 1990 and 2016, the incidence rate of the whole
world increased by 126% and was closely related to age (Cancer Research UK 2018; Cowan
2018) [65].

In MM disease, clonal malignant plasma cells accumulate in bone marrow, reduce
osteoblast formation and stimulate osteoclasts to destroy the bone. Osteoblasts build
bones by forming connective cell populations, and osteoclasts are large multinucleated
cells that destroy bones. The functional balance of the two cell types is essential for bone
maintenance and repair. Therefore, in addition to targeting myeloma cells to treat MM
patients, osteoclasts and osteoblasts are also regarded as potential targets. At present,
it has been proposed that drugs that induce osteoblast differentiation can be used as an
alternative therapy for MM treatment. Osteoblast differentiation requires the activity of
transcription factor 2 (Runx2) and Osterix transcription factors, as well as growth factors.

In MM therapy, natural small-molecule compounds act as differentiation agents for
osteoblasts (Table 2). This study shows that resveratrol, silibinin, acerogenin A and baicalein
can regulate the expression and activity of specific markers, including bone morphogenetic
proteins (BMPs) and key transcription factors Osterix and Runx2, to induce differentiation.
Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, are often the
key regulators of bone formation and remodeling, and BMPs also play an important
role in the differentiation of hBMSCs into osteoblast-like cells [66]. Silibinin is a strong
antioxidant with a very strong hydrogen bonding of the 5-OH group to the adjacent oxo
group, which is conjugated to the aromatic ring and acts as a free electron pair donor for
the hydrogen bonding to the 5-OH group. Silibinin enhances osteoblast differentiation
of human bone marrow stromal cells by inducing the expression of BMPs and activating
BMP and Runx2 pathways through hydrogen bonding [67,68]. Acerogenin A (ACE) is
a natural compound isolated from Acer nikoense Maxim. In MC3T3-E1 and RD-C6 cells
and primary osteoblasts, ACE stimulates osteoblast differentiation via BMP action, which
is mediated by Runx2-dependent and Runx2-independent pathways. In addition, ACE
increases the expression of osteocalcin mRNA in which the hydroxyl groups of C-9 and C-11
may play a role [69,70]. Baicalein is a coumarin-like derivative extracted from Chinese herbs
that induces early osteoblast differentiation through activation of the MAP kinase/NF-κB
signaling pathway, and this activation is associated with increased expression of osteoblast
differentiation markers. In addition, baicalin induced the differentiation of MC3T3-E1 in
mouse osteoblasts [71–75]. Resveratrol (RSV) is a natural compound present in various
plant species that reduces the growth of myeloma cell lines (RPMI 8226 and OPM-2)
in a dose-dependent manner and inhibits ligand-receptor activator (RANKL)-induced
osteoclast differentiation. In addition, RSV induced the expression of the osteoblast markers
osteocalcin and osteoprotegerin in immortalized human bone marrow mesenchymal stem
cells (HMSC-TERT), leading to osteoblast differentiation [76–79]. Several studies on RSV
and its natural or synthetic analogues have highlighted the importance of 3,4-dihydroxyl
groups in the expression of cytotoxic and proapoptotic activity, suggesting that hydroxyl
groups are important for the expression of RSV activity. The RSV derivative STR50 is
currently being tested in phase II clinical trials for the treatment of MM. Icaritin is the
main constituent of Herba Epimedii. It has obvious inhibitory effects on a variety of blood
cancer cells, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML),
multiple myeloma (MM) and lymphoma. By inhibiting the JAK-STAT pathway, icaritin
induces cell differentiation, inhibits tumor cell migration and inhibits the growth of cancer
stem/progenitor cells. Besides, icaritin has an estrogen-like chemical structure, which can
induce MC3T3-E1 cell differentiation through estrogen receptor-mediated activation of
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ERK1/2 and p38 signaling [80–84]. Similarly, osteoblast differentiation and mineralization
induced by the estrogen receptor (ER) pathway can also be used to treat osteosarcoma. The
ER functions primarily as a DNA-binding transcription factor that regulates gene expression.

Osteosarcoma is the most common non-hematological skeletal malignancy in both
children and adults [85]. Although modern treatment schemes have combined multi-
ple approaches, such as chemotherapy, surgery and radiotherapy, the five-year survival
rate of osteosarcoma patients has been maintained at 60–70% since the 1970s [86,87]. Os-
teosarcoma has a high rate of metastasis and chemoresistance and therefore has a poor
prognosis. Although surgical techniques and implants have shown a steady progress,
current chemotherapeutic drugs associated with toxic side effects, including cardiotoxicity,
infertility and renal insufficiency, seem to be similar to those used 40 years ago [88]. This
highlights the urgent need for new therapies and drugs. Osteosarcoma cells share many
similar characteristics with undifferentiated osteogenic progenitor cells, including high
proliferative capacity, resistance to apoptosis and similar expression profiles of many os-
teogenic markers, such as connective tissue growth factor, Runx2, alkaline phosphatase
(ALP) and Osterix. Because more than 80% of osteosarcomas have histopathological differ-
entiation differences, new therapies based on non-cytotoxic induction of cell differentiation
response pathways may have good prospects.

Flavonoids are mainly derived from vegetables and herbs, which are widely found in
nature and have a very rich pharmacological activity. Recent studies have shown that both
natural and synthetic flavonoids show significant antitumor activity and are chemically sim-
ilar to estrogens, and some have been used as alternatives to estrogens [89]. In addition to
playing an important role in the reproductive system, estrogens also play an important role
in bone metabolism. The osteoprotective effects of estrogens are mainly attributed to their in-
hibition of bone resorption and stimulation of bone formation. Quercetin is one of the main
flavonoids. Some recent studies have shown that quercetin promotes osteoblast differenti-
ation [90–93]. Moreover, several flavonoids, including icaritin [94–98], genistein [99–102]
and kaempferol [103–105], have been shown to promote osteogenic differentiation by
regulating the expression of Runx2 and BMP-2 differentiation through their estrogenic
effects. For example, ugonin K is a flavonoid isolated from helminthochys zeylanica (L.) that
induces osteoblast differentiation through activation of the non-classical SRC signaling
pathway and the estrogen receptor-dependent classical pathway. It also efficiently induces
cell differentiation and mineralization in MC3T3-E1 mouse osteoblasts [106,107]. In addi-
tion, TGF-β1 has targeted induction of osteogenic differentiation, which may represent
a novel treatment strategy for osteosarcoma with fewer side effects. Galangin, a natural
flavonoid product, inhibits human osteosarcoma cell growth by inducing transforming
growth factor-β1-dependent osteogenic differentiation [108–110]. Similarly, the flavonoid
hyperoxides inhibit the proliferation of osteosarcoma cells by inducing G0/G1, and the
TGF-β signal pathway stimulates its osteogenic differentiation [111–113]. Coleusin factor is
a diterpenoid isolated from the roots of the tropical plant Coleus forskohlii. It can inhibit the
growth of osteosarcoma by inducing bone morphogenetic protein-2 (BMP-2)-dependent
differentiation [114]. The hormonally active form of vitamin D, 1,25-dihydroxyvitamin D3
(VD3), also has potent antiproliferative, proapoptotic and prodifferentiation effects in many
malignancies. VD3 and its analogs, such as osteosarcoma cell lines MG-63 and SaOS2,
also promote osteoblast differentiation. P73 is essential for VD3-mediated osteosarcoma
differentiation, and induction of p73 in response to DNA damage enhances VD3-mediated
osteosarcoma cell line differentiation [115–120].
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Table 2. Multiple myeloma (MM) and osteosarcoma differentiation therapy induced by natural compounds.

Tumor Compound Source Target Structure
IC50/GI50/Concentration

of Induction of
Differentiation

Clinical Trial (Phase) Reference

MM Silibinin silymarin BMP, Runx2
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Table 2. Cont.

Tumor Compound Source Target Structure
IC50/GI50/Concentration

of Induction of
Differentiation

Clinical Trial (Phase) Reference

Genistein Legumes and bean
products

BMP2/
SMAD5/Runx2
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4. Other Tumors

Many natural small-molecule compounds have antitumor and differentiation-promoting
effects in a variety of tumors (Table 3). For example, kaempferol and genistein promote not
only osteoblast differentiation but also melanoma differentiation. Melanoma is a type of can-
cer caused by the malignant transformation of melanocytes. Melanin production is thought
to be a major marker of differentiation in melanoma models. For melanoma, many cell lines
considered to represent the “blocked” stage of melanoma differentiation have been isolated
and studied. Finding new cancer-specific differentiation inducers and clarifying the basis
of cancer cell differentiation provides support for the development of improved melanoma
therapy. An early study showed that theophylline (1,3-dimethylxanthine; Theo) induced
the maturation and differentiation of B16 melanoma cells by activating cAMP-dependent
protein kinase A and inducing phosphorylation of cAMP response element-binding pro-
protein (CREB) [121–123]. Isoliquiritigenin (ISL) from licorice can induce the differentia-
tion of mouse melanoma B16F10 cells [3,124–126]. Recent studies have shown that three
isopentenyl flavonoids in GF-1, GF-4 and GF-9 in licorice roots can significantly induce
the differentiation of B16-F10 melanoma cells. In addition, kaempferol [127–131], genis-
tein [132–134] and 3′3-diindolylmethane (DIM) [135,136] inhibit the viability of melanoma
cells and induce apoptosis and differentiation of malignant melanoma cells mediated by
reactive oxygen species and endoplasmic reticulum stress [137].

Neuroblastoma is the most common extracranial solid tumor in children, accounting
for about 15% of all cancer-related deaths in children [138]. The prognosis is related to
patient age, MYCN oncogene amplification and tumor differentiation. Retinoic acid (RA)
is used as a differentiation agent for maintenance therapy of high-risk neuroblastoma
(NB), but its use is limited by its related toxicity. Natural compounds can avoid the lim-
itations of toxicity and have great potential. Kaempferol (KFL) induces differentiation
of neuroblastoma cells via the IRE1α-XBP1 pathway [139,140]. Melatonin (N-acetyl-5-
methoxytrimethylamine) is an endocrine hormone mainly released by the pineal gland.
Melatonin promotes the differentiation of neuroblastoma cells by activating cell phagocy-
tosis induced by hyaluronate synthase 3 (HAS3) [141–145]. Tinospora cordifolia (TCE) has
a strong ability to resist metastasis and induce differentiation in neuroblasts, and IMR-32
cells can be induced by treatment with higher concentrations of TCE. Studies have shown
that TCE or phytochemicals derived from this plant can be used as safe pharmacologi-
cal agents together with conventional drugs [146,147]. Chlorogenic acid (CA) is a plant
compound isolated from Eucommia ulmoides, honeysuckle and other plants. In glioma cells,
CA increases the expression of specific differentiation biomarkers Tuj1 and GFAP to in-
duce differentiation. The therapeutic effect of CA in glioma cells is equivalent to that of
temozolomide [148–150].

Glioblastoma is the most common and invasive primary brain tumor. It is the most
malignant brain tumor, with a very poor prognosis. The current standard of care for pa-
tients with GBM includes tumor resection, followed by temozolomide radiotherapy and
chemotherapy. However, due to the highly invasive nature of the tumor, it is almost impos-
sible to remove completely. In addition, stem-like tumor cells resistant to chemotherapy
and radiotherapy were found to regroup in the tumor cavity, resulting in tumor recurrence
and drug resistance. The prognosis of patients with GBM remains very poor, with a median
survival of 9.9 to 15 months.

Differentiation therapy has been proposed as a promising strategy for GBM treat-
ment because after differentiation, GBM cells lose tumorigenicity and become sensitive
to chemotherapy and radiotherapy [151]. Resveratrol promotes differentiation and in-
hibits the tumorigenic and self-renewal capacity of glioma stem cells (GSCs). Studies have
demonstrated that Nanog is a key factor in the maintenance of GSCs and that resveratrol
induces phosphorylation-dependent activation of p53, leading to Nanog degradation in
GSCs, which may overcome treatment resistance in GSCs [152–155]. Xanthone-rich extract
from Gentiana dinarica transformed roots, and its active component, norswertianin, induce
autophagy and ROS-dependent differentiation of the human glioblastoma cell line [156,157].



Molecules 2022, 27, 2128 14 of 25

Similarly, curcumin [158,159] can significantly induce differentiation of glioma-initiating
cells (GICs) in vivo and in vitro through the induction of autophagy. Thus, curcumin can
be used as an adjuvant to conventional chemotherapy in the treatment of GBM [160]. Fal-
carindiol (FAD) is a polyacetylene found in many dietary plants and has shown a variety
of physiological activities, such as anti-inflammatory, antibacterial and hepatotoxic inhibi-
tion. FAD has an anticancer effect on glioblastoma cells by inducing the differentiation of
glioblastoma stem cells and activating the apoptosis pathway of glioblastoma cells [161].

Table 3. Other tumor differentiation therapy induced by natural compounds.

Tumor Compound Source Target Structure

IC50/GI50/
Concentration
of Induction of
Differentiation

Clinical Trial
(Phase) Reference

Melanoma Theo Camellia
sinensis (L.)

MEK1/2,
Wnt/β-
Catenin
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5. Discussion

One of the most important characteristics of cancer is the loss of differentiation; there-
fore, cancer is considered to be a disease of cell differentiation. Differentiation-related
preclinical models were developed as early as the 1980s [162]. The concept of induc-
ing cancer cell differentiation and cell proliferation arrest has become an alternative to
cytotoxic chemotherapy. The purpose of this therapy is not to eliminate cells through cyto-
toxic and non-selective drug activity but to regulate the expression of signaling pathways
and specific genes to guide cancer cells into higher stages of differentiation and reverse
growth/differentiation, thereby reprogramming malignant cells into functional cells with
different subtoxic doses.

In recent years, a large number of natural compounds have been reported, with good
activity in tumor prevention and treatment, inducing tumor cell differentiation and apop-
tosis through a variety of mechanisms and inhibiting tumor cell cycle and proliferation
(Figure 2). The mechanisms by which natural antitumor compounds work against tumors
vary, but in general, they directly induce the expression of proteins associated with tumor
cell differentiation or differentiation of cells with blocked differentiation, leading to antitu-
mor effects. The natural small-molecule compounds used for the treatment of AML, such as
securinine, CAE, DADS, etc., induce apoptosis and differentiation by inducing intracellular
oxidative stress. In addition, 20(s)-Rh2, CTD, DT-13 and notopterol inhibit tumor cell pro-
liferation and induce apoptosis and differentiation through cell cycle arrest. Compared to
AML, natural small-molecule compounds exhibit different molecular mechanisms in CML
cells, especially sensitivity to erythroid differentiation. Fagaronine, apigenin, and wogonin
induce erythroid differentiation or indirectly inhibit BCL-ABL, activating the key erythroid
factor GATA-1 and increasing the expression of erythroid differentiation genes. There
are also many natural small-molecule compounds, such as GA, andro, 8-OHD and ATL-I,
which play an antitumor role by inducing apoptosis and differentiation of CML cells. In
MM disease, the accumulation of clonal malignant plasma cells in the bone marrow reduces
osteoblast formation and stimulates osteoclasts to destroy bone. RSV, ACE, silibinin and
baicalein have been shown to enhance osteoblast differentiation of human bone marrow
stromal cells by regulating the expression and activity of specific markers, including bone
morphogenetic proteins (BMPs) and other key transcription factors. Induction of osteoblast
differentiation can therefore be used as an alternative therapy to MM treatment. Meanwhile,
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induction of osteoblast differentiation is also an effective treatment for osteosarcoma. In
the treatment of osteosarcoma, several flavonoids, including ugonin K, icaritin, genistein
and KFL, promote osteoblast differentiation through their estrogenic effects, whereas galan-
gin and hyperoside induce osteogenic differentiation by targeting TGF-β1. Furthermore,
hyperoside and vitamin D3 induce osteogenic differentiation by inhibiting the entire cell
cycle process, inducing apoptosis in osteosarcoma cells and driving the cells to a more
differentiated phenotype. A significant proportion of natural small-molecule compounds
that induce differentiation of tumor cells are also found in other types of tumors. Studies
have shown that KFL, genistein and DIM induce apoptosis and differentiation of malignant
melanoma cells mediated by reactive oxygen species and endoplasmic reticulum stress
through their inhibitory effects on melanoma cell viability. In addition, theophylline and
ISL induce B16 melanoma cell maturation and differentiation. CA, KFL, melatonin and TCE
promote neuroblastoma cell differentiation, and norswertianin, FAD and curcumin promote
GBM cell differentiation. Among the 36 natural antitumor compounds mentioned in this
article, 25 have in vivo anticancer effects, 15 are in clinical trials and one is FDA-approved
for use.
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In general, although many methods and techniques such as surgery, radiotherapy,
chemotherapy, targeted therapy, immunotherapy and Chinese medicine therapy have been
used for tumor treatment, most patients still face problems, such as disease recurrence
and drug resistance. The development and research of natural small-molecule compounds
provide a good solution for prolonging the remission period and improving the survival
rate. Natural compounds are an important resource for modern drug development. From
1981 to 2019, 59% of newly approved small-molecule drugs (1123 in total) were derived
from natural compounds and their derivatives [163,164]. Natural-molecule medicine and
its preparations used under the guidance of modern medical theory have their unique
advantages in treatment. Firstly, natural drugs come from nature, with wide sources
and few toxic side effects. The material basis and in vivo mechanism of action of natural
drugs are relatively clear, quality-controlled and safe, and natural drugs have shown
high antitumor activity [165]. In addition, under the guidance of modern drug theory,
natural drugs modified and transformed in structure have relatively concentrated targets,
enhanced efficacy and richer forms of clinical application. For example, the combined
use of modified and transformed natural molecule medicine with conventional anticancer
drugs can provide relevant advantages of therapeutic efficacy by sensitizing malignant
cells to drugs and overcoming drug-induced resistance in cancer.

Nevertheless, natural small molecules have several shortcomings. In many preclinical
studies, pharmacokinetics and pharmacodynamics have not been well addressed, especially
when natural compounds are combined with conventional drug therapy. This is because
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the heterogeneity and often combinatorial nature of natural compounds make it difficult to
distinguish between the cause and the exact mechanism of action and exact information on
the target in the numerous experimental studies, which once hampered research into the
development of natural antitumor drugs. Most phytochemicals exhibit poor stability in
their natural form. Some natural small-molecule compounds may also cause side effects,
including headache, dizziness, nausea, diarrhea and liver dysfunction. The most important
barrier to the clinical use of natural small molecules is that most natural small molecules
are fat-soluble, and their low solubility in water and poor internal absorption and rapid
metabolism contribute to their low bioavailability. Despite this, many scientists are still
actively involved in the development and research of natural small-molecule drugs and
have provided some current and future strategies for the development of effective and safe
natural antitumor drugs.

1. Using medicinal chemistry, natural small-molecule compounds can be structurally
modified and optimized to obtain new chemical entities with high drug resistance
and low toxic side effects.

2. Using computer simulations of the drug screening process to predict the likely activity
of compounds allows multiple biologically relevant pathways to be probed in a target-
agnostic manner, which allows for targeted screening and greatly reduces the number
of compounds to be experimentally screened, thereby shortening development cycles
and saving money.

3. The development of innovative target-prediction tools to help identify biomolecular
targets or potential off-target effects of drugs may help to determine the biological
activity of natural products and guide the biochemical screening of natural products
to reduce the number of experiments and save valuable resources.

4. Establishing sound testing methods and experimental approaches to promote drug
development, improving methods for purification of active ingredients in natural
compounds and extracting key components for subsequent experiments.

5. The search for or development of lead compounds for novel drugs with improved
pharmacokinetic profiles through the study of natural product molecules with specific
active backbones, active moieties and excellent biological activity.

6. Diverse and well-established animal or neural models are established for screening,
development and validation.

Although much research has been conducted to treat cancer, the incidence and mor-
tality of cancer continue to rise, and effective treatment remains a formidable challenge.
The drugs currently used for treatment have very strong adverse side effects, such as
vomiting, bone marrow suppression and liver dysfunction. Inducing the differentiation of
malignant cells into functional cells is an effective alternative approach to treating tumors,
where natural small-molecule compounds play an important role in inducing tumor cell
differentiation due to their wide availability and low toxicity. However, problems encoun-
tered in clinical studies need to be addressed to improve the use of natural compounds in
effective cancer treatment. Overall, natural small-molecule compounds, as new anticancer
properties and mechanisms continue to be revealed, hold outstanding promise for future
cancer differentiation therapy.

6. Conclusions

In this paper, we summarized various natural small-molecule compounds inducing
differentiation in myeloid leukemia cells, osteoblasts and some solid tumor cells. This may
promote the research of differentiation therapy, improve therapeutic efficiency and reduce
drug resistance and cytotoxic side effects, etc.
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Abbreviations

ACE Acerogenin A
ALP Alkaline phosphatase
AML Acute myeloid leukemia
Andro Andrographolide
APL Acute promyelocytic leukemia
ATL-I Atractylodes lactone I
ATRA All trans-retinoic acid
BC Blast crisis
BMP-2 Bone morphogenetic protein-2
BMPs Bone morphogenetic proteins
CA Chlorogenic acid
CAE Ethyl acetate extract
CAPE Caffeic acid phenethyl ester
C/EBPα CCAAT/Enhancer-Binding Proteins -α
CCND2 cell cycle protein D2
CDK6 Cyclin-dependent kinase 6
CML Chronic myeloid leukemia
c-myc Cellular-myelocytomatosis viral oncogene
CTD Cantharidin
DADS Diallyl disulfide
DIM 3′3-diindolylmethane
DT-13 Liriodendron chinense saponin C
EGR1 Early growth response 1
ER Estrogen receptor
FAD Falcarindiol
FDA Food and Drug Administration
FOG-1 friend of GATA-1
GA Gambogic acid
GATA-1 GATA Binding Protein 1
GBM Glioblastoma
GICs Glioma-initiating cells
HAS3 Hyaluronate synthase 3
ISL Isoliquiritigenin
KFL Kaempferol
KLF2 Kruppel-like factor 2
MAPK Mitogen activated protein kinase
MM Multiple myeloma
NB Neuroblastoma
NF-κB Nuclear factor-κB
OCN Osteocalcin
RA Retinoic acid
ROS Reactive oxygen species
RSV Resveratrol
RTK Receptor tyrosine kinase
Runx2 Transcription factor 2
TBM Tubeimosides
TCE Tinospora cordifolia
TGF-β transforming growth factor beta
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Tho Theophylline
TKIs Tyrosine kinase inhibitors
VD3 1,25-dihydroxyvitamin D3
8-OHD 8-hydroxydaidzein
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