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Abstract For a patient who is facing a treatment decision, the added value of informa-
tion provided by a biomarker depends on the individual patient’s expected response to
treatment with and without the biomarker, as well as his/her tolerance of disease and
treatment harm. However, individualized estimators of the value of a biomarker are
lacking. We propose a new graphical tool named the subject-specific expected bene-
fit curve for quantifying the personalized value of a biomarker in aiding a treatment
decision. We develop semiparametric estimators for two general settings: (i) when
biomarker data are available from a randomized trial; and (ii) when biomarker data
are available from a cohort or a cross-sectional study, together with external infor-
mation about a multiplicative treatment effect. We also develop adaptive bootstrap
confidence intervals for consistent inference in the presence of nonregularity. The
proposed method is used to evaluate the individualized value of the serum creatinine
marker in informing treatment decisions for the prevention of renal artery stenosis.

Keywords Adaptive bootstrap · Biomarker · Cost-benefit · Semiparametric
location-scale model · Subject-specific expected benefit · Treatment selection

1 Introduction

Advances in lab technology have led to the discovery of a large number of biomarkers
and medical tests that are potentially useful for guiding treatment decisions. However,
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these biomarkers and testsmaybe costly, invasive, or otherwise burdensome.Examples
include the Oncotype Dx test for predicting the response to adjuvant chemotherapy,
which currently costs around $4,000 USD (http://www.breastcancer.org/symptoms/
testing/types/oncotype_dx), andAmniocentesis in pregnantwomen for detecting chro-
mosomal abnormality, which is associated with a risk of miscarriage. Therefore, when
a biomarker or test is optional, patients and clinicians must determine whether the bio-
marker provides useful information for treatment selection beyond readily available
information such as patient demographics and standard test results. Hereafter, we use
the term “covariate” for any other readily available patient information.

To make an informed decision regarding whether to have a biomarker-based diag-
nostic test, it is important to understand how the test affects a patient’s clinical conse-
quence. In particular, one needs to quantify the impact of the additional marker using
a metric that is intuitive and interpretable to patients. The metric should also flexibly
account for individual differences to facilitate personalized decisionmaking. Classical
statistical measures for biomarker evaluation are not satisfactory for this purpose. For
example, common measures of classification performance like sensitivity, specificity,
and the receiver operating characteristics curve [22,35] are not directly relevant for
individual patients’ decision making because they are defined conditional on disease
status and do not reflect an individual’s risk of disease. Common measures of risk
prediction performance like the predictiveness curve [16,23] and positive and nega-
tive predictive values [1] are informative about disease risk, but by themselves do not
account for other important information for decision making such as the effects of
available treatments on the targeted disease and additional treatment costs (e.g., the
side effect and the monetary cost). Many other recent measures of a marker’s value
in a treatment decision, e.g., the overall reduction in the disease rate through treat-
ment selection [27,31–34], the conditional distribution of the risk difference between
comparative interventions in a population [7,14,18] and in the marker-positive group
[9,34], focus on the marker’s average effect on the entire population only with respect
to the burden of the targeted disease.

There are multiple factors affecting a patient’s clinical consequence, including
the patient’s expected disease outcome with or without treatment and the patient’s
tolerance of the disease harm and the treatment harm. Decision theory provides an
appealing framework for incorporating these cost-benefit considerations into model
evaluation and has received much attention in recent years. Examples include the
decision curve analysis developed for characterizing the performance of disease risk
prediction models [2,29] and the net benefit for characterizing treatment effect predic-
tion models [4,25,30]. Nevertheless, existing work in this paradigm focuses primarily
on quantifying the average value of a marker to the whole population for guiding indi-
vidualized treatment selection instead of allowing the evaluation of the marker value
itself to be individualized. For example, the decision curve quantifies a risk prediction
model’s utility in units of the benefit for a true positive, which does not account for
patient-specific treatment effects. The net benefit quantifies the utility of a marker-
based treatment-selection strategy in units of the disease harm, which is intuitive and
easy to communicate to patients and clinicians. The utility, however, is measured rel-
ative to the strategy of no treatment, which may not be a patient’s best choice based
on the available covariate information.
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In this paper, we propose a new statistical measure, the subject-specific expected
benefit curve, for characterizing the additional value of a biomarker to individual
patients from a cost-benefit perspective. As will be shown in Sect. 2, it is built upon
an existing decision-theoretic framework [17,25,30] but is expanded to allow individ-
ualized evaluation of a marker by accounting for individual differences in treatment
effect on disease and in tolerance of disease and treatment harm. In particular, this
curve quantifies the personalized expected benefit of measuring a marker, which is
defined as the reduction in the minimum total disease and treatment cost by incorpo-
rating themarker information into an individual’s treatment decision. The points on the
curve are defined conditional on an individual’s baseline covariates and one’s choice
of treatment/disease cost ratio. We develop semiparametric estimators for this mea-
sure that are broadly applicable to both randomized trials and cohort or cross-sectional
studies. We also develop adaptive bootstrap confidence intervals that are consistent
even in the nonregular setting in which a subject’s specific treatment/disease cost ratio
coincides with one’s expected treatment effect on disease outcome.

In Sect. 2, we introduce the concept of the subject-specific expected benefit curve.
We develop estimation methods and theoretical results for both randomized trials and
cohort studies. We examine finite sample performance of the proposed estimators
using simulation studies in Sect. 3. In Sect. 4, we apply the proposed methodology
to demonstrate the personalized evaluation of serum creatinine as a biomarker for
guiding treatment decision in preventing renal stenosis. Concluding remarks are made
in Sect. 5.

2 Method

Let D denote an undesirable binary outcome that we call “disease,” coded 0 for non-
diseased and 1 for diseased. Assume that there is a treatment available, and let A = 1, 0
indicate the decision or recommendation for a subject to have or not have the treatment
based on some model. Let X denote baseline subject covariates, possibly multivariate,
which can be used to inform the treatment decision. Suppose there is a biomarker
or a marker combination Y that, if measured, has the potential to further inform the
treatment decision. If the marker is costly to measure, the decision to collect the
marker should be informed by an estimate of the individual-specific benefit offered by
the marker. In our motivating example of serum creatinine evaluation, a female subject
must decide whether to use renal angioplasty to prevent renal stenosis. A model based
on her baseline characteristics X , such as age, body mass index, smoking status, etc.,
can be used to predict the probability of having renal stenosis with or without the
treatment. Based on this prediction, she can then incorporate her tolerance of the side
effects of renal angioplasty to make a treatment decision. If she was also offered the
option of having a lab test measuring serum creatinine level, Y , she should only opt
to have the lab test if the predictive model incorporating both Y and X performs
significantly better than the model using X alone so as to justify the cost of the test.

We propose to quantify the individual-specific value of a biomarker with the
expected reduction in an individual’s total disease and treatment cost as the result
of measuring the biomarker, under the assumption that an individual would make the
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optimal treatment decision based on available information either before or after the
biomarker measurement. To put the disease cost and the treatment cost on a common
scale, we follow the decision-theoretic framework of [30] by allowing each individual
to input a ratio of the cost per treatment relative to the cost per disease event, namely
δ, which reflects the individual’s tolerance of the treatment burden relative to his/her
tolerance of the disease burden.

Define the cost per targeted disease event as one so that the total disease and
treatment cost will be represented in units of the burden per disease event. For a
subject with covariate X = x , this total cost, given a treatment decision rule A that is
a function of either X alone or X plus Y , can be computed as follows.

Let D(1) and D(0) indicate the potential disease outcome if a subject does or
does not receive the treatment. First, if a subject with covariates X = x makes a
treatment decision based on X alone, i.e., A = A(X), then his/her expected disease
rate if receiving/not receiving treatment according to decision rule A(x) would equal∑1

a=0 I {A(x) = a}E{D(a)|X = x}, where I () is the indicator function; the corre-
sponding cost of treatment is δ× A(x) since the cost of treatment will only be incurred
when A(x) = 1. As a result, the total disease and treatment cost based on A(X) equals

1∑

a=0

I {A(x) = a}E{D(a)|X = x} + δ × A(x). (1)

The optimal treatment-selection rule, say Aopt(x), that minimizes (1) is

Aopt(x) = argmina E{D(a)|X = x} + δ × a = I {�(x) > δ},

where �(x) = E{D(0)|X = x} − E{D(1)|X = x} is the risk difference between
non-treated and treated conditional on X = x . That is, a subject will choose to treat
the disease only if one’s risk difference is greater than the cost ratio δ and will not treat
otherwise. Equivalently, δ is the risk difference at which the treatment benefit (i.e., the
risk difference for disease) exactly compensates for harm of treatment [30]. The total
disease and treatment cost given Aopt(x) equals

Cost1x (δ) = E{D(0)|X = x} − [�(x) − δ]+, (2)

where [u]+ = max(0, u) is the positive-part function.
Second, if a subjectwith X = x makes a treatment decision based on both covariates

and the additional marker, i.e., A = A(X,Y ), then the total disease and treatment cost
is

P{A(X,Y ) = 0|X = x} × E{D(0)|A(X,Y ) = 0, X = x}
+ P{A(X,Y ) = 1|X = x} × E{D(1)|A(X,Y ) = 1, X = x}
+ δ × P{A(X,Y ) = 1|X = x}

= E [D(0) × I {A(X,Y ) = 0}|X = x]

+ E [D(1) × I {A(X,Y ) = 1}|X = x] + δ × E{A(X,Y )|X = x}
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= E{D(0)|X = x} − E{D(0) × A(X,Y )|X = x} + E{D(1) × A(X,Y )|X = x}
+ δ × E{A(X,Y )|X = x}

= E{D(0)|X = x} − E {A(X,Y ) × [E{D(0)|Y, X} − E{D(1)|Y, X}] |X = x}
+ δ × E{A(X,Y )|X = x}

= E{D(0)|X = x} − E [A(X,Y ) × {�(X,Y ) − δ}|X = x] . (3)

It follows that the treatment-selection rule that minimizes (3), say Aopt(x, y), is

Aopt(x, y) = argmina − a × {�(x, y) − δ} = I {�(x, y) > δ},

where �(x, y) = E{D(0)|X = x,Y = y} − E{D(1)|X = x,Y = y} is the risk
difference between non-treated and treated conditional on X = x and Y = y. Cor-
responding total cost due to either disease or treatment for a subject with X = x
equals

Cost2x (δ) = E{D(0)|X = x} − E
[{�(X,Y ) − δ}+|X = x

]
. (4)

We define the expected benefit for a subject with covariates X = x and cost ratio δ

as the reduction in the minimum total cost by adding marker Y into the disease risk
model conditional on X :

EBx (δ) = Cost1x (δ) − Cost2x (δ) = E
[{�(X,Y ) − δ}+|X = x

]− [�(x) − δ]+. (5)

The subject-specific expected benefit curve is defined as the curve of EBx (δ) versus
δ. One can also plot EBx (δ)/Cost1x (δ) versus δ to show the relative reduction in cost
by measuring Y . Examples of the curves of Cost1x (δ) and Cost2x (δ) for different x
levels are displayed in Fig. 1a, which will be discussed later in the data example.
Corresponding curves of EBx (δ) and EBx (δ)/Cost1x (δ) versus δ are displayed in Fig.
1b and c. Note that a change-point exists in the curve of Cost1x (δ) versus δ and in the
subject-specific expected benefit curves, where there is a dramatic change in the shape
of the curve. This point corresponds to δ = �(x), the treatment effect conditional
on X = x , which is the specific cost ratio where a subject’s optimal treatment absent
biomarker Y changes.

2.1 Estimation

In this section, we consider estimation of EBx (δ) and EBx (δ)/Cost1x (δ), the subject-
specific expected benefit on absolute and relative scales. We develop semiparametric
estimation methods for data either from a randomized trial or from a cohort or cross-
sectional study.

2.1.1 Estimation with Data from a Randomized Trial

Biomarker studies nested within randomized trials are natural sources for estimating
the subject-specific expected benefit curve. Let T = 0, 1 indicate the assignment to
the untreated and the treated arm respectively in a two-arm randomized trial. Suppose
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Fig. 1 Subject-specific cost curves (a), expected benefit curves (b), and curves of relative reduction in cost
by measuring serum creatinine in guiding the treatment of stenosis (c)

we observe i.i.d. samples of (Yi , Xi , Ti , Di ), i = 1, . . . , n, one observation for every
participant in the trial. The estimation of cost and expected benefit consists of two
steps: (i) estimation of the disease risk conditional on T, X,Y and (ii) estimation of
the distribution of Y conditional on X .

The task in the first step is to estimate E{D(0)|X,Y } and �(X,Y ). We make
the following assumptions: (i) stable unit treatment value assumption (SUTVA) and
consistency: {D(0),D(1)} of one subject is independent of the treatment assign-
ments of other subjects, and the observed outcome is equal to the potential outcome
under treatment actually received; (ii) ignorable treatment assignments assumption:
T ⊥ D(0), D(1)|X,Y . Assumption (i) is plausible in trials where participants do not
interactwith one another, and assumption (ii) is ensured by randomization.Under these
assumptions, E{D(t)|X,Y } = E{D(t)|X,Y, T } = E(D|X,Y, T = t) for t = 0, 1,
and �(X,Y ) = E(D|X,Y, T = 0) − E(D|X,Y, T = 1). Thus, E{D(0)|X,Y } and
�(X,Y ) can be estimated by modeling the disease risk as a function of T , X , and Y .
We adopt a generalized linear model (GLM)

g{P(D = 1|X,Y, T )} = θ0 + θ1T + θ ′
2X + θ3Y + θ ′

4XT + θ5YT,

123



Stat Biosci (2016) 8:43–65 49

where g is a link function such as logit link or inverse normal-CDF link. We derive θ̂

as the maximum likelihood estimator (MLE) of θ .
In the second step, there are many options to estimate the distribution of Y condi-

tional on X . Here we adopt a semiparametric location-scale model [12] for the distrib-
ution of Y conditional on X = x : Yi = μ(Xi )+σ(Xi )εi and F0(s) = P(ε ≤ s), such
that Fx (y) = P(Y ≤ y|X = x) = F0 [{y − μ(x)}/σ(x)], where F0 is some baseline
residual distribution with mean 0 and variance 1, μ(X) and σ(X) are the location and
scale functions, respectively.

Letμ(x) = γ ′U (x) and log{σ(x)} = η′W (x)withU (x) andW (x) being specified
functions of x . For example, for binary X , U (X) and W (X) could be (1, X), while
for continuous X , U (X) and W (X) could be a B-spline basis for X . As in [12], we
use the following estimating equations for γ and η:

n∑

i=1

{
∂

∂γ
μ(Xi )

}
Yi − μ(Xi )

var(Yi )
= 0,

n∑

i=1

{
∂

∂η
σ 2(Xi )

}
(Yi − μ(Xi ))

2 − σ 2(Xi )

var
[{Yi − μ(Xi )}2

] = 0.

Write Ui = U (Xi ) and Wi = W (Xi ), then under the Gaussian higher moment
relationship var

[{Yi − μ(Xi )}2
] = 2var(Yi )2 [12], the above estimating equations

equal

n∑

i=1

Ui (Yi − γ ′Ui )/σ
2(Xi ) = 0,

n∑

i=1

Wi

{
(Yi − γ ′Ui )

2 − σ 2(Xi )
}

/σ 2(Xi ) = 0,

fromwhich we can solve for γ̂ and η̂. We then estimate F0 empirically using residuals
ei = {Yi − γ̂ ′Ui

}
/exp

(
η̂′Wi

)
, i = 1, . . . , n.

Finally, note that in (2) and (5), �(x) can be represented as EY |x {�(x,Y )}, the
expectation of �(X,Y ) conditional on X = x . Thus, we estimate Cost1x (δ) in (2) and
EBx (δ) in (5) with

̂Cost
1
x (δ) = 1

n

n∑

i=1

̂Risk
{
x,Y 


i (x)
}−

[
1

n

n∑

i=1

�̂
{
x,Y 


i (x)
}− δ

]

+
,

ÊBx (δ) = 1

n

n∑

i=1

[
�̂
{
x,Y 


i (x)
}− δ

]

+ −
[
1

n

n∑

i=1

�̂
{
x,Y 


i (x)
}− δ

]

+
, (6)

where Y 

i (x) = γ̂ ′U (x) + exp

{
η̂′W (x)

}
ei , ̂Risk(X,Y ) = P̂(D = 1|T = 0, X,Y )

is the estimated risk of disease, and �̂(X,Y ) is the estimated risk difference between
untreated and treated conditional on X and Y based on MLE θ̂ .
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2.1.2 Estimation with Data from a Cohort or Cross-sectional Study

Under the SUTVA, consistency, and ignorable treatment assignments assumptions, the
subject-specific expected benefit curve can also be derived when we have biomarker
data from a cohort or a cross-sectional study that can be used to estimate risk prediction
models, if in addition we have external information about a multiplicative treatment
effect. The latter canbeobtained, e.g., fromhistorical data or fromadifferent study.The
assumptionof a relative risk rr ∈ (0, 1) for treated versus untreated has frequently been
made in evaluating the use of riskmodels for recommending therapy, including theGail
model for advising the use of tamoxifen to prevent breast cancer [3,10,11]. It implicitly
requires a monotone treatment effect, i.e., in terms of the disease, the treatment will
not cause harm [17]. This multiplicative treatment effect assumption implies a one-
to-one correspondence between the risk of disease in the population and the risk
difference between untreated and treated, i.e., �(X,Y ) = Risk(X,Y ) × (1 − rr),
where Risk(X,Y ) = P{D(0) = 1|X,Y }. In other words, in this scenario, we can
interpret the subject-specific expected benefit for an individual as the reduction in the
total disease and treatment cost by measuring the biomarker, under the condition that
a subject with a treatment/disease cost ratio δ opts to take treatment whenever the
predicted disease risk is greater than a threshold value of δ/(1 − rr).

Estimation of Cost1x (δ) and EBx (δ) again consists of two steps. In the first step, we
model the disease risk as a function of X and Y using a GLM g{P(D = 1|X,Y )} =
θ0 + θ ′

1X + θ2Y . In the second step, we model the distribution of Y conditional on
X using a semiparametric location-scale model as in Sect. 2.1.1. Finally, we estimate
Cost1x (δ) and EBx (δ) as in (6), where we estimate �̂(x, y)witĥRisk(x, y)× (1−rr).

We note that the proposed estimation procedures can be easily extended to allow
for subsampling of Y , e.g., when the biomarker is only measured from a case-control
sample nested within a randomized trial or a cohort study. Let pi be the probability
of sampling Y from the i th subject in the study, we can estimate the subject-specific
expected benefit curve by weighting the contribution of subject i inversely by pi when
estimating both the risk model and the conditional biomarker distribution.

Note that in the special casewhere X is discrete and sample sizes amongeach X level
are large, the expected benefit of a marker conditional on a particular X = x can be
estimated bymodeling the disease risk as a function ofY and estimating the distribution
of Y [15] within each stratum of X separately. This approach, however, does not use
data as efficiently, nor is it applicable when X is continuous. The semiparametric
approach, in contrast, provides a way to borrow information across levels of X and
applies to general X including both discrete and continuous components.

2.2 Inference

In this section, we develop confidence intervals for the subject-specific expected ben-
efit. Let ρ1x = P(D = 1|T = 1, X = x) and ρ0x = P(D = 1|T = 0, X = x)
indicate the prevalence of D conditional on X = x with or without treatment,
respectively. Under standard regularity conditions (RCs) specified in Appendix, when
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�(x) = ρ0x −ρ1x �= δ, ̂Cost
1
x (δ) and ÊBx (δ) are asymptotically normally distributed

as stated in Theorems 1 and 2.

Theorem 1 Assume RCs, when δ �= ρ0x −ρ1x ,
√
n
{
̂Cost

1
x (δ) − Cost1x (δ)

}
converges

to a mean-zero normal random variable as n → ∞.

Theorem 2 Assume RCs, when δ �= ρ0x −ρ1x ,
√
n
{
ÊBx (δ) − EBx (δ)

}
converges to

a mean-zero normal random variable as n → ∞.

Proofs of Theorems 1 and 2 follow from standard arguments and are sketched in

Appendix. We also provide expression for the asymptotic variances of ̂Cost
1
x (δ) and

ÊBx (δ) in the Appendix. The asymptotic normality of ÊBx (δ)/̂Cost
1
x (δ), the estimator

of the relative cost reduction, follows from the Delta method when δ �= ρ0x − ρ1x .

When δ = ρ0x − ρ1x , it can be shown that
√
n

([∑n
i=1 �̂{x,Y 


i (x)}/n − δ
]

+

− (ρ0x −ρ1x − δ)+
)

, a constituent of
√
n
{
̂Cost

1
x (δ) − Cost1x (δ)

}
and

√
n
{
ÊBx (δ)−

EBx (δ)
}
, converges to a mixture of 0 and a truncated normal distribution. As a result,

asymptotic normality of ÊBx (δ),̂Cost
1
x (δ), or ÊBx (δ)/̂Cost

1
x (δ) no longer holds. Even

in the scenario where asymptotic normality of these estimators does hold, we recom-
mend the bootstrap for constructing confidence intervals since computation of asymp-
totic variances of these estimators requires numerical differentiation.

The foregoing abrupt change in the limiting distribution at δ = ρ0x − ρ1x signals
nonregularity, which is anticipated by the nonsmoothness of the max operator [13,28].
Thus, standard bootstrap percentile confidence intervals can lead to undercoverage
when δ 
 ρ0x − ρ1x [8]; to avoid undercoverage, we develop an adaptive bootstrap
confidence interval by extending the ideas of [5,21,26] Specifically, we use a pretest
to determine if ρ0x − ρ1x 
 δ. If the test rejects, then there is strong evidence that
δ is different from ρ0x − ρ1x and we apply the standard percentile bootstrap; if the
test accepts, we use a projection interval formed as the union of bootstrap intervals as
described below.

Let b = 1, . . . , B index bootstrap samples drawn from the original data with
replacement. We add a superscript b, to indicate that a statistic has been computed
using a bootstrap sample. We construct an adaptive projection confidence interval

as follows. For any r ∈ R define ÊB
b
x,r (δ) = ∑n

i=1

[
�̂b
{
x,Y 
b

i (x)
}− δ

]

+ /n −
[∑n

i=1 �̂b
{
x,Y 
b

i (x)
}
/n − δ

]
×I (r ≥ 0),̂Cost

1b
x,r (δ)=

∑n
i=1

̂Risk
b {

x,Y 
b
i (x)

}
/n−

[∑n
i=1 �̂

{
x,Y 
b

i (x)
}
/n − δ

]
× I (r ≥ 0). Let ζEBx (δ),κ (r) and ζCost1x (δ),κ

(r) denote

(1 − κ) × 100% percentile bootstrap confidence intervals formed by taking empiri-

cal percentiles of ÊB
b
x,r (δ) and ̂Cost

1b
x,r (δ) over bootstrap samples, respectively. Let

�x,α(δ) denote an asymptotically valid (1 − α) × 100% confidence interval for
ρ0x −ρ1x − δ. The (1− κ −α)× 100% projection intervals for EBx (δ) and Cost1x (δ)
are given respectively by

⋃
r∈�x,α(δ) ζEBx (δ),κ (r) and

⋃
r∈�x,α(δ) ζCost1x (δ),κ

(r).
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We construct an adaptive bootstrap CI for EBx (δ) or Cost1x (δ) by constructing a
standard 95%bootstrap percentile intervalwhen |ρ̂0x−ρ̂1x−δ| > τn , and constructing
a projection interval described above with κ + α = 5% otherwise, where τn is a
sequence of positive constants satisfying τn → 0 and

√
nτn → ∞. As presented in

Theorem 3, this adaptive bootstrap CI will have asymptotic coverage equal to 95%
when ρ0x − ρ1x �= δ and be conservative otherwise. In this sense, the interval is
adaptive.

Theorem 3 Let τn be a sequence of positive random variables satisfying τn → 0 and√
nτn → ∞almost surely as n → ∞.DefineAx,α(δ) = �x,α(δ) if |ρ̂0x−ρ̂1x−δ| ≤ τn

and ρ̂0x − ρ̂1x − δ otherwise. Let Pb denote probability taken with respect to the
bootstrap sampling algorithm, conditional on the observed data. Assume RCs, we
have

1. Pb
(
Cost1x (δ) ∈⋃r∈Ax,α(δ) ζCost1x (δ),κ

(r)
)

≥ 1 − α − κ + op(1);

2. Pb
(
EBx (δ) ∈⋃r∈A(c) ζEBx (δ),κ (r)

)
≥ 1 − α − κ + op(1),

where for |ρ̂0x − ρ̂1x − δ| > τn,
⋃

r∈Ax,α(δ) ζCost1x (δ),κ
(r) and

⋃
r∈A(c) ζEBx (δ),κ (r)

refer to standard 95% bootstrap confidence intervals for Cost1x (δ) and EBx (δ). If
ρ0x − ρ1x �= δ then the right hand side of the foregoing inequalities can be replaced
with equalities. A proof of Theorem 3 is sketched in Appendix.

3 Simulation Studies

In this section, we conduct simulation studies to investigate performance of the pro-
posed estimators. Suppose we have a continuous covariate X and a continuous bio-
marker Y that jointly follow a bivariate normal distribution with mean 0, standard
deviation 0.5 each, and correlation 0.2. We consider two simulation settings: one from
a randomized trial and the other from a cohort/cross-sectional study. We consider
the estimation of EBx (δ) and EBx (δ)/Cost1x (δ) for x equal to the 25, 50, and 75%
percentiles in the distribution of X .

In the first setting, we consider a two-arm 1:1 randomized trial where the risk of
a binary disease D conditional on X , Y and T follows a linear Probit model P(D =
1|T, X,Y ) = �(−0.8 − 0.4T + 0.5X + 0.5Y − 0.5XT − YT ). The differences in
disease prevalence between untreated and treated (ρ0x − ρ1x ) conditional on the 25,
50, and 75% percentiles of X are 0.165 − 0.129 = 0.036, 0.219 − 0.122 = 0.097,
and 0.280 − 0.115 = 0.165, respectively.

In the second setting, we consider a cohort/cross-sectional study where subjects
receive no treatment. Suppose the risk of a binary disease D conditional on X and
Y in the cohort follows a linear Probit model P(D = 1|T = 0, X,Y ) = �(−1.5 +
2X−3Y ).Moreover, suppose the treatment under consideration has a relative risk rr =
40%. The differences in disease prevalence between untreated and treated conditional
on the 25, 50, and 75% percentiles of X are 0.133−0.080 = 0.053, 0.199−0.119 =
0.080, and 0.281 − 0.168 = 0.113, respectively.

In each simulation setting, sample sizes of 200, 500, and 2000 are used. Stan-
dard bootstrap and adaptive bootstrap confidence intervals are constructed with 1,000
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resamples. For the adaptive CI, we use α = 0.01 and use the projection interval when
|ρ̂0x −ρ̂1x −δ| < ŜE(ρ̂0x −ρ̂1x )×max{n0.05,�−1(0.975)}, where�−1 is the quantile
of the standard normal distribution and ŜE(ρ̂0x − ρ̂1x ) is estimated from a standard
bootstrap procedure with the disease risk model and the conditional distribution of Y
re-estimated in each resampled data.

Performances of our semiparametric estimators of EBx (δ) and EBx (δ)/Cost1x (δ)
for simulation setting 1 are presented in Tables 1 and 2 for X equal to its 25 and 50%
percentiles. Corresponding results for simulation setting 2 are presented in Tables 3
and 4. In general, our estimators have minimal bias with a sample size as large as
200. Coverage of the percentile bootstrap CI is close to the nominal level when δ is
away from ρ0x −ρ1x . An undercoverage, however, is observed for standard percentile
bootstrap CI when δ is close to ρ0x − ρ1x , which is not alleviated with the increase
of sample size. The adaptive bootstrap CI fixes the undercoverage problem. The same
pattern is observed for X equal to its 75% percentile (results omitted).

4 Example

We illustrate the methodology by evaluating serum creatinine as a risk prediction
marker for renal artery stenosis in hypertensive patients from a cohort study. The
original cohort consists of 426 hypertensive patients undergoing renal angiography
[19,20].Baseline risk ismodeledwith age, smoking status (ever versus never), and their
interaction, gender, recent onset of hypertension, body mass index (BMI), abdominal
bruit, atherosclerosis disease, and hypercholesterolaemia.

Suppose an individual patient needs to determine whether measuring serum crea-
tinine is useful in guiding the treatment of renal artery stenosis. Here, for illustrative
purposes, we assume the presence of a treatment that can lead to a 30% reduction
in the risk of stenosis. The treatment also has additional costs associated with it. An
example of the treatment could be the renal angioplasty, which can stabilize a patient’s
renal function but has the potential risk of causing bleeding, additional kidney damage,
and total renal failure. The value of serum creatinine in guiding the choice of ther-
apy differs across individuals because of differences in individual patients’ baseline
risk, distribution of serum creatinine conditional on baseline covariates, and tolerance
about treatment harm relative to disease harm. To illustrate the personalized benefit
of serum creatinine, we display the subject-specific cost and expected benefit for two
individuals using the method described in Sect. 2.1.2. We model the risk of stenosis
conditional on baseline covariates and serum creatinine using a linear logistic model,
and model the distribution of serum creatinine conditional on baseline covariates with
a location-scale model. For the latter, a multiple linear regression model is used for the
location parameter conditional on baseline covariates, and a constant scale parameter
is assumed. Subject 1 is a 33-year-old male with BMI 19.9 kg m−2 who has a smoking
history. His baseline risk of renal stenosis is 15.7%. Subject 2 is a 65-year-old female
with BMI 26.0 kg m−2 who has vascular diseases. Her baseline risk is 38.3%.

Figure 1a shows the minimum total disease and treatment cost for each subject
as a function of the cost ratio δ with or without the serum creatinine measurement.
Corresponding subject-specific expected benefit curves are shown in Fig. 1b, and the
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curves of the relative reduction in cost bymeasuring serum creatinine are shown in Fig.
1c. These curves provide useful information to an individual for determining whether
to have the new marker measured. For example, if subject 2 has a high tolerance for
treatment cost with a cost ratio δ = 5%, she will have an expected benefit of 1e−4
[with 95% CI (0, 0.005)] and a relative cost reduction of 0.04% [95% CI (0–2.6%)]
by measuring serum creatinine, which might be deemed too minimal to justify the
measurement of the marker. In contrast, if subject 1 has the same cost ratio of 5%,
his expected benefit will be 0.007 [95% CI (4e−4, 0.068)], amounting to a relative
cost reduction of 5.2% [95% CI (0.2, 32.6%)], which may be large enough for him to
choose the marker measure. On the other hand, suppose subject 1 has a low tolerance
for treatment cost with δ = 15%, his expected benefit will decrease to 0.002 [95%
CI (0, 0.012)], which corresponds to 1.3% reduction in cost [95% CI (0, 4.3%)] by
measuring serum creatinine. At this cost ratio, subject 2 will have a higher expected
benefit of 0.022 [95% CI (0.002, 0.083)] with a relative cost reduction of 5.9% [95%
CI (0.5, 26.7%)].

In practice, given an individual’s baseline covariates, the subject-specific expected
benefit curves can be generated. The individual can then find out the value ofmeasuring
the additional marker by inputting his/her choice of the cost ratio δ or a range of δ, to
assist with the decision regarding the diagnostic test.

5 Concluding Remarks

A biomarker that is useful in guiding treatment decisions for the general popula-
tion will have different values to individual patients due to individual differences in
their responses to treatment and in their tolerances of the disease harm and treatment
harm. In this paper, we propose new graphical tools for personalized evaluation of
a biomarker’s value in guiding clinical decisions from a cost-benefit perspective. In
particular, based on an individual’s baseline covariate level and personal input of treat-
ment/disease cost ratio, we propose to evaluate the biomarker-elicitated reduction in
total disease and treatment cost, assuming a person will make the most cost-effective
treatment decision before and after measuring the biomarker. Besides the absolute
reduction in cost, the relative reduction is also recommended to help with personal
decision making. In practice, a subject can compare the expected benefit of a bio-
marker with the cost of measuring the marker to make a final judgment call about
whether to have the biomarker measured.

A caveat in cost-benefit analyses at a population level is the choice of the treat-
ment/disease cost ratio, which is typically difficult to fix across individuals. Different
approaches have been taken to reach a common cost ratio. For example, in the setting
where treatment harm is characterized by other diseases caused by the treatment, one
can estimate the cost ratio using data on different types of disease outcomes, under an
assumption about the relative severity between the targeted disease events and the side
effect of treatment [10]; other researchers have proposed to elicit a common cost ratio
across subjects using a questionnaire [30]. For personalized evaluation of a biomarker,
on the other hand, allowing for subject-specific input of the cost ratio is important in
order to flexibly account for individual differences. The expected benefit conditional
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on covariates and a personal input δ essentially quantifies the value of measuring the
marker to individuals in the population who have the same potential disease risk and
cost ratio as this particular subject.

Estimators for our proposed measures were derived both in a randomized trial
settingwhere the disease risk ismodeled as a function of themarker, the covariates, and
the treatment, and in a cohort study setting where the disease risk model in the absence
of treatment is modeled as a function of the marker and the covariates. An adaptive
bootstrap procedure was developed for inference to account for nonsmoothness in the
estimands.

While described in a personalized decision setting, the methods we developed can
be readily applied to evaluate the value of biomarkers in treatment decision making
among sub-populations, which can differ with respect to baseline covariates and cost
ratio.
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Appendix

Proof of Theorems 1 and 2

Let θ be the parameters for GLM model: P(D = 1|T, X,Y ) = G(T, X,Y ; θ) (for
a randomized trial) or P(D = 1|T = 0, X,Y ) = G(X,Y ; θ) for a cohort/cross-
sectional study. Denote Risk(X,Y ) = P(D = 1|T = 0, X,Y ) as Risk(X,Y ; θ),
�(X,Y ) = P(D = 1|T = 0, X,Y ) − P(D = 1|T = 1, X,Y ) as �(X,Y ; θ). Let θ̂
be the estimate of θ , we make the following assumptions:

Assumptions

(i)
√
n(θ̂n − θ0) = n− 1

2
∑n

i=1 �2i + op(1), where �2i , i = 1, . . . , n are indepen-
dently identically distributed variables with E(�2i |Yi , Xi ) = 0 and var(�2i ) ≡
σ 2(θ0).

(ii) Risk(X,Y ; s) is differentiable at s = θ , X = x , and Y = y ∈ R for almost all
x, y.

(iii) �(X,Y ; s) is differentiable at s = θ , X = x , and Y = y ∈ R for almost all x, y.
(iv) F0(.) is differentiable everywhere with positive derivative f0.
(v) E

[{�(X,Y ; s) − δ}+ |X] is differentiable with respect to s at s = θ , X = x for
almost all x .

(vi) E

{(
�
[
x,
{
Y − s′U (X)

}× exp{t ′W (x)}
exp{t ′W (X)} + s′U (x); θ

]
− δ
)

+

}

is differentiable

with respect to s and t at s = γ , t = η.

Let γ̂ , η̂ be the solutions to

n∑

i=1

Ui (Yi − γ ′Ui )/σ
2
X = 0,
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and

n∑

i=1

Wi

[(
Yi − γ ′Ui

)2 − σ 2
X

]
/σ 2

X = 0.

Then, through Taylor expansion,√
n
(
γ̂ − γ

) 
 1√
n
X

−1
1

∑n
i=1Ui (Yi − γ ′Ui )/e2η

′Wi , where X1 is limit of X̄1 =
1
n

∑n
i=1UiUT

i /e2η
′Wi , and

√
n
(
η̂ − η

)
 1√
n
X

−1
2

∑n
i=1 Wi

[(
Yi − γ ′Ui

)2 −e2η
′Wi

]
/

e2η
′Wi , where X2 is limit of X̄2 = 1

n

∑n
i=1 2WiWT

i

(
Yi − γ ′Ui

)2
/e2η

′Wi .
By the standard central limit theorem,

√
n
(
γ̂ − γ

)
and

√
n
(
η̂ − η

)
converges in

distribution to a mean 0 multivariate normal random variable.
Denote F̂0(c) = 1

n

∑n
i=1 I

(
Yi−γ̂ ′Ui

eη̂′Wi
≤ c
)
, F̂X (c) = F̂0(

c−γ̂ ′U
eη̂′W ), then F̂−1

X (v) =
F̂−1
0 (v) × eη̂′W + γ̂ ′U for v ∈ (0, 1).
By functional central limit theorem [24] that for any η > 0,

1√
n

∑n
i=1

[

I (
(
Yi−γ ∗′Ui

eη∗′Wi
≤ c
)

− F0

(
ceη∗′Wi +(γ ∗−γ )′Ui

eη′Wi

)]

, (c, γ ∗, η∗) ∈ [F−1
0 (a),

F−1
0 (b)] × Dγ ∗,η∗

η , converges in distribution to a Gaussian process, where Dγ ∗,η∗
η ={

γ ∗, η∗ : ‖(γ ∗, η∗)T − (γ, η)‖ ≤ η
}
, for 0 < a < b < 1. It then follows from the

equicontinuity [6,24] of the foregoing process and the consistency of γ̂ and η̂ that

supc∈[F−1
0 (a),F−1

0 (b)]

∣
∣
∣
∣
∣

1√
n

n∑

i=1

[

I

(
Yi − γ̂ ′Ui

eη̂′Wi
≤ c

)

− F0

{
ceη̂′Wi+(γ̂−γ )′Ui

eη′Wi

}

− 1√
n

n∑

i=1

[

I

(
Yi − γ ′Ui

eη′Wi
≤ c

)

− F0(c)

]∣∣
∣
∣
∣
→ 0

in probability. Thus,

√
n
{
F̂0(c) − F0(c)

}


 1√
n

n∑

i=1

[

I

(
Yi − γ ′Ui

eη′Wi
≤ c

)

− F0(c) + F0

{
ceη̂′Wi+(γ̂−γ )′Ui

eη′Wi

}

− F0(c)

]


 1√
n

n∑

i=1

[

I

(
Yi − γ ′Ui

eη′Wi
≤ c

)

− F0(c) + f0(c)

{
U ′
i

eη′Wi
(γ̂ − γ ) + cW ′

i (η̂ − η)

}]


 1√
n

n∑

i=1

[

I

(
Yi − γ ′Ui

eη′Wi
≤ c

)

− F0(c) + f0(c)
{
(X′

3X
−1
1 Ui )(Yi − γ ′Ui )/e

2η′Wi

+ c(X′
4X

−1
2 Wi )

[(
Yi − γ ′Ui

)2 − e2η
′Wi
]
/e2η

′Wi
}]

,

whereX3 is the limit of X̄3 =∑n
i=1

Ui

eη′Wi
/n, andX4 is the limit of X̄4 =∑n

i=1 Wi/n.

123



Stat Biosci (2016) 8:43–65 61

From the functional central limit theorem, we see that
√
n
{
F̂0(c) − F0(c)

}
con-

verges in distribution to a mean 0 Gaussian process. It then follows from a Taylor

series expansion and the stochastic equicontinuity of
√
n
{
F̂0(c) − F0(c)

}
that

√
n
[{

F̂−1
x (v)

}
− F−1

x (v)
]

= √
n
[(

F̂−1
0 (v) × eη̂′w + γ̂ ′u

)
− F−1

x (v)
]

= √
neη′w

{
F̂−1
0 (s) − F−1

0 (s)
}

+ √
nF−1

0 (s)eη′ww(η̂ − η) + √
nu(γ̂ − γ )


 − 1√
n

eη′w

f0(F
−1
0 (s))

n∑

i=1

[

I

(
Yi − γ ′Ui

eη′Wi
≤ F−1

0 (v)

)

− v + f0(F
−1
0 (v))

×
{

(X3 − u)′(X−1
1 Ui )(Yi − γ ′Ui )

e2η′Wi

+ F−1
0 (v)

(X4 − F−1
0 (s)w)′(X−1

2 Wi )
[(
Yi − γ ′Ui

)2 − e2η
′Wi

]

e2η′Wi

⎫
⎬

⎭

⎤

⎦ .

(i) For estimation of Cost1x (δ), we have

√
n
(
̂Cost

1
x − Cost1x (δ)

)

= √
n

⎡

⎣1

n

n∑

i=1

̂Risk(x,Y 

i (x)) −

{
1

n

n∑

i=1

�̂(x,Y 

i (x)) − δ

}

+

⎤

⎦

−√
n
[
ρ0x − {�(x) − δ}+

] = A − B,

where,

A = √
n

{
1

n

n∑

i=1

̂Risk(x,Y 

i (x)) − EY |x {E(D|X = x, T = 0,Y )}

}

= √
n

{
1

n

n∑

i=1

̂Risk(x,Y 

i (x)) − 1

n

n∑

i=1

Risk(x,Y 

i (x))

}

+√
n

{
1

n

n∑

i=1

Risk(x,Y 

i (x)) − EY |x {E(D|X = x, T = 0,Y )}

}


 √
n

[∫
̂Risk

{
x, F−1

x (s)
}
ds −

∫

Risk
{
x, F−1

x (s)
}
ds

]

+√
n

[∫

Risk
{
x, F̂−1

x (s)
}
ds −

∫

Risk
{
x, F−1

x (s)
}
ds

]
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∫

∂Risk
{
x, F−1

x (s), θ
}

∂θ

√
n(θ̂ − θ)ds

+
∫

∂Risk(x, y)

∂y
|y=F−1

x (s)

√
n
{
F̂−1
x (s) − F−1

x (s)
}
ds,

B = √
n

[{
1

n

n∑

i=1

�̂(x,Y 

i (x)) − δ

}

× I
{
�̂(x,Y 


i (x)) > δ
}

− {�(x) − δ} × I {�(x) > δ}]

which when �(x) �= δ


 I {�(x) > δ} √
n

{
1

n

n∑

i=1

�̂(x,Y 

i (x)) − �(x)

}


 I {�(x) > δ} × √
n

[∫

�(x, F−1
x (s))ds −

∫

�(x, F−1
x (s))ds

]


 I {�(x) > δ} ×
∫

∂�(x, y)

∂(y)
|y=F−1

x (s) × √
n
{
F̂−1
x (s) − F−1

x (s)
}
ds.

(ii) For estimation of EBx (δ), we have

√
n
(
ÊBx (δ) − EBx (δ)

)

= √
n

⎡

⎣1

n

n∑

i=1

{
�̂(x,Y 


i (x)) − δ
}
+ −

{
1

n

n∑

i=1

�̂(x,Y 

i (x)) − δ

}

+

⎤

⎦

−√
n
(
E
[{�(X,Y ) − δ}+|X = x

]− {�(x) − δ}+
)

= C − B

where C = √
n
{
Png(x, X,Y, γ̂ , θ̂ , η̂) − Pg(x,Y, θ, γ, η)

}
, with g defined as

g(x, X,Y, θ, γ, η) =
{

�(x, γ ′u(x) + exp
{
η′w(x)

} Y − γ ′U (X)

exp(η′W (X))
− δ

}

+
.

Note that G = {g(·, ·, ·, θ, γ, η} : θ ∈ R, γ ∈ R, η ∈ R} is Donsker. Thus equiconti-
nuity follows. In particular,

C = √
n

[
1

n

n∑

i=1

{
�̂(x,Y 


i (x)) − δ
}
+ − EY |x {�(x,Y ) − δ}+

]

= √
n

(∫ [
�̂
{
x, F̂−1

x (s)
}

− δ
]

+ ds −
∫ [

�
{
x, F̂−1

x (s)
}

− δ
]

+ ds

)

+√
n

[∫ [
�
{
x, F̂−1

x (s)
}

− δ
]

+ ds −
∫ [

�
{
x, F−1

x (s)
}

− δ
]

+ ds

]

123



Stat Biosci (2016) 8:43–65 63


 √
n

(∫ [
�̂
{
x, F−1

x (s)
}

− δ
]

+ ds −
∫ [

�
{
x, F−1

x (s)
}

− δ
]

+ ds

)

+√
n

{
1

n

n∑

i=1

{
�(x,Y 


i (x)) − δ
}
+

}

− √
n

{
1

n

n∑

i=1

{
�(x,Y †

i (x)) − δ
}

+

}

+√
n

{
1

n

n∑

i=1

{
�(x,Y †

i (x)) − δ
}

+ − EY |x {�(x,Y ) − δ}+
}


 ∂
∫ [

�
{
x, F−1

x (s), θ
}− δ

]
+ ds

∂θ

√
n
(
θ̂ − θ

)

+
(

∂K

∂γ
,
∂K

∂η

)√
n

{(
γ̂

η̂

)

−
(

γ

η

)}

+√
n

[
1

n

n∑

i=1

{
�(x,Y †

i (x)) − δ
}

+ − EY |x {�(x,Y ) − δ}+
]

,

where

K (x, γ, η, θ) =
E

{(

�

[

U (x),
Y − γ ′U (X)

exp{η′W (X)} × exp{η′W (x)} + γ ′U (x); θ

]

− δ

)

+

}

,

and Y †
i (x) = γ ′U (x) + exp

{
η′W (x)

}× {Yi − γ ′U (Xi )
}
/ exp

{
η′W (Xi )

}
.

Proof of Theorem 3

We sketch the proof for the results for EBx (δ), the proof for Cost1x (δ) is similar.
Define EBx,r (δ) = E

[{�(X,Y ) − δ}+ |X = x
]−{�(x) − δ} I (r ≥ 0). Then fol-

lowing similar arguments as in [15], one can show that
√
n
{
ÊBx,r (δ) − EBx,r (δ)

}
and√

n
{
ÊB

b
x,r (δ) − ÊBx,r (δ)

}
converge to the same limiting distribution in probability.

Thus (i) the validity of the projection confidence intervals when ρ0x −ρ1x = δ follows
from standard arguments for the validity of projection interval (see, for example, [5]).

Moreover, (ii), when ρ0x − ρ1x �= δ, the standard bootstrap confidence interval
provides the correct coverage.

Suppose τn is a positive sequence of random variables converging to zero almost
surely with n and satisfying

√
nτn → ∞ almost surely as n → ∞. Define the event

E � {|ρ̂0x − ρ̂1x − δ| ≤ τn} then 1E → 1ρ0x−ρ1x=δ in probability. This, together with
Results (i) and (ii) proves the validity of the proposed adaptive bootstrap confidence
interval.
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