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Background: Clinical databases are increasingly used for health research; many of them capture 

information on common health indicators including height, weight, blood pressure, cholesterol 

level, smoking status, and alcohol consumption. However, these are often not recorded on a 

regular basis; missing data are ubiquitous. We described the recording of health indicators in 

UK primary care and evaluated key implications for handling missing data.

Methods: We examined the recording of health indicators in The Health Improvement Network 

(THIN) UK primary care database over time, by demographic variables (age and sex) and chronic 

diseases (diabetes, myocardial infarction, and stroke). Using weight as an example, we fitted linear 

and logistic regression models to examine the associations of weight measurements and the prob-

ability of having weight recorded with individuals’ demographic characteristics and chronic diseases.

Results: In total, 6,345,851 individuals aged 18–99 years contributed data to THIN between 

2000 and 2015. Women aged 18–65 years were more likely than men of the same age to have 

health indicators recorded; this gap narrowed after age 65. About 60–80% of individuals had their 

height, weight, blood pressure, smoking status, and alcohol consumption recorded during the 

first year of registration. In the years following registration, these proportions fell to 10%–40%. 

Individuals with chronic diseases were more likely to have health indicators recorded, particularly 

after the introduction of a General Practitioner incentive scheme. Individuals’ demographic 

characteristics and chronic diseases were associated with both observed weight measurements 

and missingness in weight.

Conclusion: Missing data in common health indicators will affect statistical analysis in health 

research studies. A single analysis of primary care data using the available information alone 

may be misleading. Multiple imputation of missing values accounting for demographic charac-

teristics and disease status is recommended but should be considered and implemented carefully. 

Sensitivity analysis exploring alternative assumptions for missing data should also be evaluated.

Keywords: primary care, EHRs, recording, QOF, multiple imputation, statistics, epidemiology, 

research methods, data analysis

Introduction
Clinical and administrative health databases, such as disease registers, health insur-

ance claim databases, and primary care electronic health record databases, have long 

been recognized as rich data sources for health research. There are several primary 

care databases in the UK, such as The Health Improvement Network (THIN),1,2 

Clinical Practice Research Datalink,3 and QRESEARCH,4 which typically include 

several hundred geographically dispersed general practices with data collected since 

the early 1990s. These databases offer many opportunities for research using primary 
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care data that would otherwise be prohibitively difficult 

and/or expensive to undertake. This includes research on 

populations that would be difficult to enroll in clinical trials 

or cohort studies, eg, patients with severe mental illness, 

pregnant women, children, and the very elderly. Primary care 

electronic health records have also proven to be very powerful 

tools for research into chronic diseases including diabetes, 

coronary heart disease, and stroke,5–12 which remain leading 

causes of the global disease burden.13

In tandem with appropriate design, research using 

electronic health records on chronic diseases often requires 

individual information on common health indicators such 

as height, weight, blood pressure, cholesterol level, as well 

as lifestyle factors including smoking status and alcohol 

consumption. These data are captured in UK primary care 

databases as part of the individuals’ routine consultations in 

primary care. However, because they are not always directly 

relevant to the clinical need behind a consultation, such data 

are not recorded on a regular basis as in cohort studies or 

clinical trials. Therefore, missing data are often an issue, and 

this raises significant challenges for statistical analysis and 

interpretation.14,15 A commonly used approach is to include 

only individuals with a complete record when analyzing these 

data (ie, a complete record analysis). However, the lack of 

any schedule for when data should be recorded means that a 

“complete record” is an undefined concept. In addition, a suf-

ficient assumption for a complete record analysis to be valid 

is that the reason for data recording does not relate to any 

variables in the substantive analysis model (either missing or 

observed, also known as missing completely at random).16,17 

However, this is rarely met in practice.18 More generally, 

using complete records to fit a substantive analysis model 

will be valid, if the probability of being a complete record is 

unrelated to the dependent variable given the covariates.19,20 

Once again, this is unlikely to hold in practice.

In this study, we aimed to further understand how health 

indicators are recorded in the UK primary care setting, and if 

complete record analysis is a valid approach for dealing with 

missing data in primary care databases. Our objectives were to 

describe the recording of key health indicators in accordance 

with demographic variables (age and sex) and chronic diseases 

(diabetes, myocardial infarction, and stroke), as well as over 

time. In addition, we sought to assess the plausibility of the 

assumptions for how these data were missing (ie, missingness 

mechanisms). Specifically, we examined the associations of 

recorded values of a specific health indicator (weight) and 

the reason for data recording with individuals’ demographic 

characteristics and disease status.

Methods
Data source
We used data from THIN1 primary care database, one of the 

largest UK databases to provide longitudinal health records 

of individuals in primary care. We focused on data recorded 

from January 1, 2000 (or later, depending on when gen-

eral practices met quality standards for data recording) to 

December 31, 2015. Two measures of data quality assurance 

at the general practice level have been derived: the accept-

able mortality recording (AMR)21 and acceptable computer 

usage (ACU)22 dates. AMR defines the date when general 

practices recorded the date of death to an expected standard. 

ACU defines the date when general practices were generally 

using their computer system instead of paper-based records 

to document patient consultations. THIN has been shown to 

be broadly a representative of the UK population in terms of 

demographics and prevalence of major conditions.2

THIN contains individual-level information such as year 

of birth, date of first registration with the general practice, 

date of death, and date of transfer out of the practice. In 

addition, the database holds longitudinal information on 

patient consultations and medications prescribed in primary 

care. Diagnoses and symptoms are recorded by practice staff 

(general practitioners [GPs], nurses, and administrative staff) 

using Read codes,23,24 a hierarchical coding system. THIN 

also captures additional health data on height, weight, blood 

pressure, cholesterol level, smoking status, and alcohol 

consumption. These measurements are typically (but not 

always) recorded soon after the individual is registered with 

the general practice, and thereafter when relevant for routine 

clinical care.

The Quality and Outcomes Framework (QOF)25 was 

introduced in UK primary care in 2004. Under this scheme, 

GPs receive remuneration based on quality targets and they 

have to record data, eg, health measurements, in order to 

meet these targets. Since QOF began, many individuals with 

chronic conditions/illnesses have had their health indicator 

measurements recorded on a regular basis.26,27

study population
Individuals aged 18–99 years and permanently registered 

with general practices contributing data to THIN were fol-

lowed from the latest of the date of registration with the 

practice, date when the practice recorded data to the standard 

defined by the AMR or ACU (see section “Data Source”), or 

January 1, 2000; until the earliest of the date of death, date 

of transfer out of the practice, or December 31, 2015.
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Data analyses
We examined the recording of the following routine health 

indicators: height, weight, blood pressure, total cholesterol, 

smoking status, and alcohol consumption.

First, we examined the annual recording of the afore-

mentioned health indicators if the individuals had at least 

one measurement recorded during each calendar year of 

follow-up. We calculated the annual recording rate per 100 

person-years for men and women aged 18–99 years during 

the follow-up period.

Second, we identified three cohorts of individuals who 

were newly registered with general practices in THIN in 

2000, 2005, and 2010, and examined the recording of health 

indicators in these cohorts. Individuals were 18–99 years 

old at registration. We examined whether these individuals 

had any health indicator measurements recorded and how 

long after registration these measurements were recorded. 

We also calculated the proportions of men and women with 

at least one measurement of each health indicator recorded 

by calendar year after registration. We were aware that the 

recording of health indicators in primary care may depend 

on whether the individual has a chronic disease. To illustrate 

this, we stratified the analyses on whether the individuals 

had a record indicative of diabetes, myocardial infarction, 

or stroke; these are conditions defined by the QOF scheme 

and are likely to be associated with increased recording of 

the aforementioned health indicators (ie, cardiovascular risk 

factors).28

We then fitted Kaplan–Meier “time-to-measurement” 

curves to estimate the cumulative probability of men and 

women in the 2010 registration cohort (chosen for illustrative 

purpose) having at least one record of each health indicator 

during their follow-up. We also calculated the p-percentile 

of time-to-measurement with 95% CI for both men and 

women in this registration cohort. This is the analysis time at 

which p% of the individuals have had the first measurement 

recorded and (1 – p)% have not; p=50 for height, weight, 

SBP, alcohol consumption; p=25 for total cholesterol; p=75 

for smoking status.

Finally, we assessed the missing completely at random 

assumption for the incomplete health indicator data by 

exploring potential predictors of the health indicator mea-

surements and the probability of having the health indica-

tor recorded, using weight as an example. We used linear 

regression analysis to examine the association of the mean 

weight measurements in 2010 (in kg) with sex, 5-year age 

group (18–99 years old), social deprivation (in quintiles of 

the Townsend deprivation score),29 and indicators of chronic 

diseases (diabetes, myocardial infarction, and stroke) among 

individuals who were actively registered in THIN in 2010. 

We also used logistic regression analysis to examine the 

association of the probability of weight being recorded with 

sex, age group, social deprivation, and chronic diseases. For 

those with multiple weight measurements in 2010, the latest 

record was chosen.

All analyses were conducted in Stata 15.1.30

Ethics approval
The data provider (IQVIA) obtained overall ethical approval 

for the use of  THIN in scientific research from the South 

East Medical Research Ethics Committee (MREC/03/01/073) 

and this study was further approved by the THIN Scientific 

Review Committee.

Results
In total, 6,345,851 individuals (3,070,711 [48%] men and 

3,275,140 [52%] women) aged 18–99 years were registered 

with 642 general practices contributing data to THIN between 

January 1, 2000 and December 31, 2015. The median follow-

up times were 6.3 years (first to third quartiles 3.0–11.7) 

for men and 6.2 years (first to third quartiles 2.9–11.9) for 

women.

The annual recording of health indicators varied with age 

and sex (Figure 1). The annual recording of height, weight, 

blood pressure, smoking status, and alcohol consumption 

was higher for women aged 18–65 years compared with 

men of the same age group. This gap was most marked at 

child-bearing ages. After age 65, there was little difference 

in the annual recording of height and SBP per 100 person-

years between men and women; for other health indicators, 

the annual recording was slightly higher among men (Figure 

1). In general, the annual recording fell as age increased >75 

years. For total cholesterol, the annual recording was similar 

between men and women before age 50; recording increased 

from the age of 40 years for both men and women and peaked 

at age 75 (Figure 1).

In each of the three registration cohorts (2000, 2005, 

2010), there were more women (52%–53%) who were 

registered than men (47%–48%; Table 1); the median age 

at registration in these cohorts was 34–35 years. Around 

60% of individuals had a record of height, weight, SBP, and 

alcohol consumption in the first year after registration (Figure 

2). In subsequent years, the proportion of individuals with a 

record of these health indicators dropped noticeably; eg, only 

10%–20% had at least one weight measurement recorded 

(Figure 2). For smoking status, the number of individuals who 
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had a record in the first year after registration increased in 

the more recent registration cohorts. In the 2010 registration 

cohort, 80% of individuals had a record of smoking status in 

the year after registration, while only 30%–40% of them had 

their smoking status recorded in subsequent years (Figure 2). 

The recording of total cholesterol differed from that of the 

other health indicators. Less than 10% of individuals who 

were newly registered in 2000 had a total cholesterol mea-

surement during their first year after registration (Figure 2); 

this number almost doubled in the 2010 registration cohort. 

For all three registration cohorts, there was an increase in 

the proportion of individuals who had a total cholesterol 

measurement in the years following their registration with 

the general practices (Figure 2).

Recording of health indicators was improved after the 

introduction of QOF in 2004 (see section “Data source”). 

Figure 1 number of records of each health indicator per 100 person-years by sex and age (in years).
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Table 1 number of individuals, median age at registration, and sex distribution among those who were newly registered with general 
practices in 2000, 2005, and 2010

Year of  
registration

Number of 
practices

Number of 
individuals

Median (Q1–Q3a) age at 
registration in years

Sex, n (%)

Male Female

2000 635 180,871 35 (27–50) 86,179 (48) 94,692 (52)
2005 640 215,609 34 (26–48) 102,367 (47) 113,242 (53)
2010 607 195,491 34 (26–47) 91,970 (47) 103,521 (53)

Note: aQ1, Q3: first and third quartiles, respectively.

Figures 3A–C illustrate the completeness of the recording 

of height, weight, SBP, total cholesterol, smoking status, 

and alcohol consumption over time for the three registration 

cohorts, stratified by individuals with and without a diagnosis 

of diabetes, myocardial infarction, or stroke. These figures 

show that individuals with chronic diseases were much more 

likely to have their health indicators recorded compared with 

those who did not have the diseases.

For individuals in the 2010 registration cohort, the 

proportion of those who had a health indicator record was 

generally higher among women compared with men (Figure 

4). Nearly all women had at least one measurement of weight 

and SBP and one record of smoking status during their time 

registered with the general practices (Figure 4). By contrast, 

men were less likely to have a record during their follow-up. 

One exception was total cholesterol for which the proportion 
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of individuals who had a record was higher among men, but 

overall, only <50% of individuals had a record by the end of 

their follow-up (Figure 4). Women tended to have their first 

health indicator measurement recorded earlier than men. 

For example, 50% of women had their first record of SBP 

at 0.13 (95% CI 0.13–0.14) years after registration (ie, <2 

months), whereas this was 0.51 (95% CI 0.49–0.53) years 

for men (ie, 6 months), indicating earlier recording of SBP 

for women (Figure 4).

In total, there were 3,583,437 individuals who were 

actively registered with general practices in THIN in 2010, of 

whom 1,105,741 (31%) had a weight measurement in 2010 

and 2,477,696 (69%) did not. Table 2 describes adjusted 

associations of the mean weight measurements and the prob-

ability of having weight recorded with sex, age group, social 

deprivation, and indicators of chronic diseases. All demo-

graphic characteristics and disease indicators considered 

were predictive of both the observed weight measurement 

values and the probability of having a weight measurement 

recorded. This suggested that data on weight were not likely 

to be missing completely at random.18,31

Discussion
In summary, our findings suggested that there were differ-

ences in the recording of health indicators by sex, age, and 

time since the individuals were first registered with their 

general practices. Likewise, we found that individuals with 

chronic conditions were more likely to have their health 

indicators recorded than those without, particularly after the 

introduction of QOF in 2004.

The recording of health indicators in general practices 

followed, to some extent, the consultation patterns by age 

and sex.32 In particular, younger women were more likely 

to consult their GPs than younger men. It seemed likely 

that for women, many weight and SBP measurements may 

have been taken in conjunction with their consultations 

for contraception and pregnancy. The New Patient Health 

Check scheme was introduced in UK primary care in 1995; 

although it is no longer a part of the general practice’s 

payment-for-performance, our results suggested that many 

general practices still offer these checks for their newly 

registered patients.

We found, similar to others, that the QOF scheme had 

a major impact on the recording of health indicators in 

patients with chronic diseases.33 Bhaskaran et al15 also 

observed similar recording patterns in the Clinical Prac-

tice Research Datalink3 primary care database, with more 

frequent weight recording in more recent years for patients 

with type 2 diabetes compared with those who did not have 

type 2 diabetes.

Figure 2 Percentage of individuals with a record of each health indicator in the 2000 (purple), 2005 (teal), and 2010 (orange) registration cohorts by calendar year.
Note: The 2000, 2005, and 2010 registration cohorts included individuals who were newly registered with their general practices in 2000, 2005, and 2010, respectively.
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Figure 3 (Continued)

Unlike other health indicators, the pattern of total cho-

lesterol recording was different, and fewer individuals had 

a measurement in the first year after registration. As part of 

the National Health Service (NHS) Health Check scheme, 

cholesterol screening is offered to individuals aged 40–74 

years old who have not had a stroke, or do not already have 

heart disease, diabetes, or kidney disease; however, uptake of 

this service for the first quarter of 2011 was only around 50% 
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Figure 3 Percentage of individuals with a record of each health indicator in the 2000 (purple), 2005 (teal), and 2010 (orange) registration cohorts by calendar year and 
disease status.
Notes: (A) Diabetes, (B) myocardial infarction, and (C) stroke. The 2000, 2005, and 2010 registration cohorts included individuals who were newly registered with their 
general practices in 2000, 2005, and 2010, respectively.
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Figure 4 Time (in years) from practice registration to having the first record of each health indicator; and time (in years) at which 1) 50% of the individuals have had their 
first height, weight, SBP, or alcohol consumption record; 2) 25% of the individuals have had their first total cholesterol record; and 3) 75% of the individuals have had their 
first smoking status record.
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in England.34 For patients who have a cardiovascular-related 

disease such as diabetes or myocardial infarction, they will 

have regular repeated cholesterol tests done as part of their 

routine clinical care. For those presenting with other cardio-

vascular risk factors such as obesity or raised blood pressure, 

they would also usually be offered a cholesterol test. This 

information would then be used to calculate a cardiovascular 

risk score. It would be unusual for individuals under the age 

of 40 years to be offered a cholesterol test, unless there is a 

good clinical reason for increased cardiovascular risk, eg, 

diabetes, a previous cardiovascular disease event, or a previous 

family history of hyperlipidemia. There was an increase in the 

recording of total cholesterol after 1999 when the prescription 

of statins, a lipid-modifying drug that helps lower cholesterol 

level, became more common.35 Patients prescribed with statins 

therefore tend to have their total cholesterol measured more 

frequently for monitoring cholesterol reduction. However, 

there is no evidence to suggest the benefit of statins in people 

who are >85 years old, and evidence for benefit in the 75–84 

years age group is mixed. These are consistent with our find-

ings that total cholesterol recording started to increase from 

the age of 40 years, peaked at age 75, and decreased thereafter.

Research based on electronic health records often 

involves the analysis of common health indicators. Missing 

data have proven to be a challenge in such research and, to 

handle missing data, various ad hoc approaches have been 

applied. Typically, these include a complete record analysis, 

using only individuals with  complete information on all 

Table 2 associations of the mean weight measurements and the probability of having weight recorded with sex, age group, social 
deprivation, and indicators of chronic diseases among individuals who were actively registered in 2010

Variables Differences in the mean weight 
measurements (n=1,104,221)

Differences in the probability of having weight 
recorded (n=3,583,437)

Difference in  
mean (kg)a

95% CI Pb ORc 95% CI Pb

Sex   <0.001   <0.001
Men Base level 1.00
Women –13.45 –13.52 to –13.39 1.56 1.55–1.57
Age group <0.001 <0.001
18–24 Base level 1.00
25–29 3.45 3.28–3.61 1.02 1.01–1.04
30–34 5.45 5.29–5.62 0.96 0.94–0.97
35–39 7.65 7.49–7.82 0.84 0.83–0.85
40–44 9.08 8.92–9.25 0.83 0.82–0.84
45–49 9.45 9.29–9.61 0.88 0.87–0.89
50–54 9.30 9.13–9.46 0.97 0.96–0.98
55–59 8.23 8.07–8.39 1.09 1.08–1.10
60–64 6.94 6.78–7.09 1.28 1.27–1.30
65–69 4.85 4.69–5.01 1.57 1.55–1.59
70–74 2.63 2.47–2.80 1.77 1.75–1.79
75–79 –0.20 –0.37 to –0.03 1.77 1.75–1.79
80–84 –3.80 –3.99 to –3.61 1.50 1.48–1.53
85–89 –7.70 –7.93 to –7.47 1.13 1.11–1.15
90–94 –10.7 –11.06 to –10.34 0.78 0.76–0.80
95–99 –14.4 –15.15 to –13.65  0.52 0.50–0.55
Townsend score <0.001 <0.001
Quintile 1 (least deprived) Base level 1.00
Quintile 2 0.48 0.39–0.58 1.08 1.08–1.09
Quintile 3 0.81 0.71–0.91 1.17 1.17–1.18
Quintile 4 0.92 0.83–1.02 1.25 1.24–1.26
Quintile 5 (most deprived) 0.23 0.12–0.34 1.43 1.42–1.44
Indicators of diseases
Myocardial infarction –0.19 –0.34 to –0.04 0.015 2.18 2.15–2.21 <0.001
stroke –0.75 –0.89 to –0.61 <0.001 1.38 1.37–1.40 <0.001
Diabetes 7.08 7.01–7.15 <0.001 2.53 2.52–2.55 <0.001

Notes: aDifferences in the mean weight measurements (in kg) from a multivariable linear regression model, conditional on sex, age group, social deprivation, and indicators 
of chronic diseases. bP-values from joint Wald tests. cOrs of having a weight measurement recorded from a multivariable logistic regression model, conditional on sex, age 
group, social deprivation, and indicators of chronic diseases.
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variables of interest in the analysis; the exclusion of variables 

with incomplete data from the analysis; or the creation of 

a separate category for missing values in the incomplete 

variables. The issue of bias and potentially incorrect con-

clusions from using these methods is well recognized.18,36–38 

Using weight measurements recorded for individuals who 

were registered with general practices contributing data 

to THIN in 2010, we found that both the observed weight 

measurements and missingness in weight were associated 

with sex, age, social deprivation, and disease status. In an 

analysis where the outcome variable was disease status and 

covariates included sex, age, social deprivation alongside 

weight, the results from a complete record analysis involv-

ing weight in a given year would be susceptible to bias (see 

section “Introduction”). Complete record analysis can also 

substantially reduce the sample size and thereby the power 

of the studies if there is a large proportion of individuals who 

do not have the relevant data.

Multiple imputation of missing data, therefore, emerges 

as a potential alternative for handling missing data in large 

clinical databases.14,37,39,40 The standard implementation 

of multiple imputation is based on the assumption of data 

being missing at random where the reason for the missing 

values is not associated with the missing data, conditional 

on the observed data. Indeed, Marston et al14 examined 

the feasibility of multiple imputation for missing values in 

health indicators recorded in the first year after registration 

in THIN, and reported that the results were comparable with 

population surveys. Similarly, we found that the missing 

at random assumption was most plausible in the first year 

after registration, because data were mainly recorded for 

patient health monitoring afterward. However, the plausi-

bility of this assumption can be enhanced by including in 

the imputation model indicators of disease status (such as 

diabetes, myocardial infarction, and stroke) that predict both 

missingness and the underlying missing values. The miss-

ing at random assumption may be less plausible for certain 

health indicators, eg, if individuals with high or low levels 

of the health indicators are monitored. While this cannot be 

verified purely through analysis of the observed data, we can 

use our knowledge of the clinical setting where data were 

recorded to understand why they were missing. When there 

are external data sources containing population informa-

tion about the incomplete health indicators (eg, population 

censuses or surveys), such information can be utilized in a 

sensitivity analysis to explore potential departures from the 

missing at random assumption.41

Health research often uses data from a specific calen-

dar date rather than the year of registration as the start of 

follow-up, eg, individuals are often followed from the time 

they turn 18 years of age or perhaps later in life for chronic 

diseases. The results of our study suggested that multiple 

imputation is an attractive and practical option for handling 

missing health indicator values in this setting, although care 

needs to be taken on correctly reflecting the structure of the 

substantive analysis model and accounting for nonlinear 

relationships.42 Additionally, the fact that many individuals 

may have had more than one record of height, weight, SBP, 

total cholesterol, smoking status, and alcohol consumption 

during follow-up suggested that an imputation strategy that 

exploits individual longitudinal trajectories might be pre-

ferred. Practical methods for longitudinal multiple imputation 

of repeated measurements of health indicators over time are 

increasingly available, such as the two-fold fully conditional 

specification algorithm,43–45 enabling a more efficient use of 

the full longitudinal records in analysis.

Conclusion
For many health research studies using primary care elec-

tronic health records, missing data in key health indicators 

may be a major issue. The recording of common health 

indicators in primary care was found to vary by time after 

registration with the general practices, age, sex, and disease 

status. Multiple imputation that takes into account these fac-

tors is an attractive and practical option for handling missing 

data in such studies.
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