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Replacement of small-sized vessels is still challenging. This study is aimed at investigating the possibility of small-sized artificial
vessels made by 3-dimensional bioprinting and the effect of pulsatile flow on bMSC-derived endothelial-like cells. Cells were
harvested from rabbit bone marrow and primary cultured with or without growth factors. Endothelial differentiation was
confirmed by the Matrigel tube formation assay, Western blot, and qRT-PCR. In addition, embedment of endothelial-like cells
in an artificial vessel was made by 3-dimensional bioprinting, and the pulsatile flow was performed. For pumped and
nonpumped groups, qRT-PCR was performed on CD31 and VE-cadherin gene expression. Endothelial-like cells showed
increased gene expression of CD31 and VE-cadherin, and tube formation is observed at each week. Endothelial-like cells grow
well in a small-sized artificial vessel made by 3-dimensional bioprinting and even express higher endothelial cell markers when
they undergo pulsatile flow condition. Moreover, the pulsatile flow condition gives a positive effect for cell observation not only
on the sodium alginate hydrogel layer but also on the luminal surface of the artificial vessel wall. We have developed an artificial
vessel, which is a mixture of cells and carriers using a 3-dimensional bioprinting method, and applied pulsatile flow using a
peristaltic pump, and we also demonstrated cell growth and differentiation into endothelial cells. This study suggests guidelines
regarding a small-sized artificial vessel in the field of tissue engineering.

1. Introduction

Cardiovascular disease is a major cause of death [1]. Espe-
cially obstructive diseases in small-diameter (<6mm) vessels,
including coronary and peripheral artery vessels, are forming
an ever-greater percentage of the death rate [2]. Arterial
replacement or bypass grafting surgery is the treatment of
choice for these obstructive diseases [3], and in the case of
bypass surgery, autologous vascular grafts or artificial grafts
are widely used recently. However, there are several disad-
vantages with autologous grafts such as the necessity of har-
vesting procedure and insufficient autologous graft length
due to pathological change [4]. Moreover, it has also been
reported that restenosis occurs at a high rate [5]. Therefore,

artificial blood vessels are indispensable for solving these
problems. In the case of middle-to-large vessels, an artificial
graft made of ePTFE (expanded polytetrafluoroethylene) or
PET (polyethylene terephthalate) is used to replace diseased
arteries recently [6]. However, it is not recommended in
small-diameter vessels, including coronary artery or genicu-
lar artery vessels, due to the high risk of restenosis [7].

For this reason, much research has been reported on
overcoming the limitations of small-diameter vascular grafts.
There are major approaches such as the use of artificial scaf-
fold matrices made by electrospinning, freeze drying, or cast-
ing and cell seeding onto printed scaffold matrices [8–11].
However, it is not easy to design complex vascular structure,
as the process of cell seeding requires time and there is
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difficulty in making artificial tissue composed of two or more
cells. Recently, a three-dimensional bioprinting technique,
which is a concept of printing complex artificial tissue com-
posed of carriers and cells, has been introduced as a method
for overcoming this problem [12, 13]. By applying this
method, it is possible to shorten the time required for seeding
cells by directly printing the cells on a scaffold, along with the
advantage that various types of patient-specific artificial tis-
sue can be produced well [14].

In this study, we developed a small-diameter artificial
vessel composed of bone marrow-derived mesenchymal stem
cells (bMSCs) in a sodium alginate hydrogel and polycapro-
lactone (PCL) scaffold using the three-dimensional bioprint-
ing technique. In addition, we evaluate the effect of pulsatile
flow on the differentiation of the bMSCs into the vascular
endothelial cells.

2. Materials and Methods

2.1. Scheme of the Study Design and Animal Procedures. A
schematic diagram of the experiment is shown in Figure 1.
The Yonsei University Health System Institutional Animal
Care and Use Committee approved all animal procedures
in this paper based on the guidelines for the care and use of
laboratory animals (2015-0020).

2.2. Rabbit bMSC Isolation and Culture. A mature 16-week-
old white male New Zealand rabbit weighing 3.5 kg was
intramuscularly injected with 5mg/kg xylazine and 10mg/
kg Zoletil® at 15min intervals for anesthesia. Using a 13G
bone marrow biopsy needle (Angiotech Medical Device
Technologies Inc., FL, USA), bone marrow (BM) was har-
vested from the femur and stored in a heparinized 50mL
conical tube (SPL Life Sciences, Gyeonggi-do, Korea) to
inhibit coagulation. Then, it was filtered through a 40μm
Cell Strainer (Life Sciences, NY, USA) and mixed with
phosphate-buffered saline (PBS) up to 8mL.

The MSCs were harvested following the previous study
[15]. The BM-PBS mixture was centrifuged at 1500 rpm
for 5min; then, the supernatant was discarded and the
remaining precipitate was suspended with 8mL serum-free
Dulbecco’s modified Eagle’s medium-low glucose (DMEM-
LG) (Welgene, Daegu, Korea). The mixture was carefully
transferred to a 15mL conical tube (SPL Life Sciences,
Gyeonggi-do, Korea) containing 6mL of Ficoll-Paque®
(Sigma-Aldrich, MO, USA) and then centrifuged at 1840 rpm
for 30min. After centrifugation, the interphase (cloud-like
layer) was harvested and mixed with medium up to 10mL
per 15mL conical tube. Then, it was centrifuged at
1500 rpm for 5min, and the supernatant was removed. The
cell pellet was mixed with DMEM-LG (Welgene, Daegu,
Korea) supplemented with 10% fetal bovine serum (FBS)
(GE Healthcare Life Sciences, PA, USA) and 1% penicillin-
streptomycin (Thermo Fisher Scientific, MA, USA).

The culture medium was carefully changed after three
days and then every two days thereafter. The culture was
maintained at 37°C in a 5% CO2 incubator. After one week
past, cells were subcultured and defined as primary-
cultured mesenchymal stem cell passage 1.

2.3. Cell Differentiation into Endothelial-Like Cells. The
bMSC was seeded into 100mm dishes or 6-well plates at
100,000 cells/mL in DMEM-LG basal medium. At the next
day, the culture media was discarded by aspiration and the
cells were washed with PBS, followed by the addition of
DMEM-LG (Welgene, Daegu, Korea) supplemented with
10% fetal bovine serum (FBS) (GE Healthcare Life Sciences,
PA, USA), 1% penicillin-streptomycin (Thermo Fisher
Scientific, MA, USA), 10μg/mL amphotericin B (Enzo Life
Sciences, NY, USA), 50μg/mL gentamicin (Life Sciences,
NY, USA), 50μg/mL vascular endothelial growth factor
(VEGF) (Kingfisher Biotech, MN, USA), 10ng/mL basic
fibroblast growth factor (bFGF) (ProSpec, NJ, USA), and 1x
ITS+3 solution (Sigma-Aldrich, MO, USA). Nonadded
growth factor medium was prepared for use which is the neg-
ative control group.

2.4. Immunocytochemistry. Cells were cultured until passage
2, and 50,000 cells/mL were seeded on a poly-L-lysine-coated
cover glass in a 6-well cell culture plate maintained at 37°C in
a 5% CO2 incubator for 2 days in order to perform immuno-
cytochemistry. Briefly, the cells were seeded into a poly-L-
lysine-coated cover glass, fixed with ice-cold methanol for
10min, and washed three times with PBS for 5min each.
Then, they were incubated with 1% BSA in PBS-T buffer
for 30min to block unspecific antibody binding. Cells were
then incubated with each primary anti-mouse monoclonal
antibody against CD34 diluted at 1 : 500 (Abcam, Cambridge,
UK), CD44 diluted at 1 : 500 (Abcam, Cambridge, UK), α-
smooth muscle actin (α-SMA) diluted at 1 : 1000 (Abcam,
Cambridge, UK), and CD31 diluted at 1 : 1000 (Abcam,
Cambridge, UK) in PBS-T with 1% BSA for 60min at
room temperature. Cells were then washed three times with
PBS-T buffer and incubated with the secondary antibody,
goat anti-mouse Cy3 ™ (Bethyl Laboratories, TX, USA),
diluted at 1 : 500 for 60min in a dark room to activate
and preserve fluorescence. All microscopic images were
created on an Olympus® DP71 microscope digital camera
installed on an Olympus BX51TF system microscope
(Olympus, Tokyo, Japan).

2.5. Tube Formation Assay. Cells were cultured on DMEM-
LG growth medium for 4 weeks prior to the assay. The assay
was initiated by coating a 24-well cell culture plate (SPL,
Gyeonggi-do, Korea) with 150mL of growth factor-reduced
Matrigel (BD Biosciences, NJ, USA) per well. Approximately
50,000 cells were then seeded into each well and incubated at
37°C. After 12 hours later, light microscopic images were
taken by the Olympus DP71 microscope digital camera
installed on the Olympus BX51TF system microscope
(Olympus, Tokyo, Japan).

2.6. Western Blot. Cells were seeded at 50,000 cells/mL in a
6-well cell culture plate and harvested every week from week
1 to week 4.

Protein was extracted from passage 2 cells with 500μL of
PRO-PREP® protein extraction solution (containing 1.0mM
PMSF, 1.0mM EDTA, 1μM pepstatin, 1μM leupeptin,
and 1μM aprotinin) (Intron Biotechnology, Gyeonggi-do,
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Korea). All procedures were performed on ice. After 30
minutes, homogenized samples were centrifuged at
14,000 rpm at 4°C for 10 minutes, and the supernatant
protein was extracted.

Quantification of the protein content was performed with
the Protein-Assay Kit (Bio-Rad, CA, USA). For immunoblot-
ting, each 20μg of total protein extract was mixed with
Laemmli sample buffer and transferred to a Mini Protean®
TGX™ precast gradient gel (Bio-Rad, CA, USA) with
DOKDO-MARK™ (Intron Biotechnology, Gyeonggi-do,
Korea) as a standard prestained protein marker. Gel elec-
trophoresis was performed with a Mini Protean system
(Bio-Rad, CA, USA) with 100V applied for 130 minutes.
After electrophoresis, proteins were blotted to a methanol-
preactivated PVDF membrane, with 230mAh applied
for 90 minutes using a Mini Trans-Blot® Cell (Bio-Rad,
CA, USA).

Blotted membranes were blocked for 60 minutes with
PBS-T (phosphate-buffered saline containing 0.05% of
Tween 20) with 5% bovine serum albumin (BSA). After
washing three times with PBS-T, membranes were incubated

at room temperature for 60 minutes with the primary anti-
mouse monoclonal antibody against CD31 diluted at 1 : 500
(Abcam, Cambridge, UK) and the anti-goat monoclonal
antibody against VE-cadherin diluted at 1 : 250 (Santa Cruz,
TX, USA) in PBS-T with 5% BSA. β-Actin was used as a
loading control by staining with a β-actin mouse monoclo-
nal antibody at a dilution of 1 : 2000 (Abcam, Cambridge,
UK) and then incubated using a Rocker (FINEPCR,
Gyeonggi-do, Korea) for 60 minutes. After incubation with
the first antibody, membranes were washed with PBS-T
buffer three times and then incubated with the secondary
goat anti-mouse IgG-HRP diluted at 1 : 2000 (Enzo Life
Sciences, NY, USA) and mouse anti-goat IgG-HRP diluted
at 1 : 2000 (Enzo Life Sciences, NY, USA) for 60 minutes
at room. Membranes were then washed, and protein band
detection was performed with the ECL solution kit (DAEIL-
LAB Service, Seoul, Korea). Then, membranes were devel-
oped using ImageQuant™ LAS 4000 (GE Healthcare Life
Sciences, PA, USA). The image was then analyzed with the
pixel density analysis method using the ImageJ software
(National Institute of Health, NY, USA).

Bone marrow harvest
Centrifugation

(1840 rpm/30min)

bMSC
harvest

3-dimensional
bioprinting with PCL

Pulsatile flow by a
peristaltic pump

Western
blotting 

qRT-PCR

Microscopy
image 

2 wk

Figure 1: Scheme diagram of the experimental design.
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2.7. Manufacturing the Artificial Vessel. As a supporting
layer, polycaprolactone (PCL;MW=45,000) (Sigma-Aldrich,
MO, USA) was used to print the first- and third-layer struc-
ture, and medium-viscosity sodium alginate (Sigma-Aldrich,
MO, USA) was used to print the second layer.

The point to be emphasized is that the second layer of the
artificial vessel was fabricated by the harvested mesenchymal
stem cells. Cells were trypsinized from the cell culture dish
and then mixed with the basal medium with FBS for neutral-
izing trypsin. And then, cell suspension was mixed with ster-
ile sodium alginate gel powder. For detail, sterilized sodium
alginate powder was mixed with cell suspension and then
mixed with a low concentration of calcium chloride solution
to increase viscosity. Then, we put this mixture into a dis-
penser for second-layer printing. After all printing processes,
the artificial blood vessels were soaked to calcium chloride
solution, so that the second layer could maintain its shape
well due to its increased viscosity.

The first layer was fabricated in a diagonal cross-striped
form for smooth exchange of growth medium materials.
PCL was placed in a three-dimensional printing device
(KIMM&Protek Korea, Daejeon, Korea) and dispensed
through a 300μm nozzle at a temperature of over 100°C by
a pneumatic pressure of 400 kPa.

The feed rate was 200mm/min. The second layer was
fabricated in a helical form, in which alginate gel with cells
was placed in another channel of the same printing device
and dispensed through a 400μm nozzle at a room tempera-
ture by a pneumatic pressure of 100 kPa. The feed rate was
300mm/min. 1% of calcium chloride solution was used for
enforced viscosity of sodium alginate hydrogel and 5% of
calcium chloride solution for gelation of bioprinted sodium
alginate gel.

The condition of the third layer was the same as that of
the first layer but was fabricated in a helical form as in the
cell-adherent layer. The major dimensions of the artificial
vessel design were a length of 40mm, an outer diameter of
8mm, and an inner diameter of 5mm.

A fabricated artificial vessel was then imaged using a field
emission scanning electron microscope with a backscattered
electron image detector and an environmental secondary
electron detector (JEOL Ltd., Tokyo, Japan).

2.8. Simulated Blood Circulation System. Aseptic silicon
tubing (ID=3.1mm) (Baoding Shenchen Precision Pump,
Baoding City, China) was used for extracorporeal tubing,
connected with a handcraft cell culture chamber. All compo-
nents were sterilized with ethylene oxide gas, and a bio-
printed artificial vessel was installed in the clean bench.
Then, this entire set was installed into the peristaltic pump
system (Baoding Shenchen Precision Pump, Baoding City,
China) for creating a pulsatile flow. The perfusion rate was
60 times a minute and the perfusion pressure was about
40mmHg, which are similar to those in the previous study
[11]. Two nonpumped models were additionally prepared:
one as a control group and another as a nonpumped and
nonadded growth factor group (another control group). All
cultures were added antibiotics every 3 days considering the
half-life of the drug.

2.9. Live/Dead Assay. The pumped artificial vessel was soaked
with a Live/Dead cell staining kit (Enzo Life Sciences, NY,
USA), composed of Live-Dye™ and propidium iodide (PI),
based on the permeability of cell membrane integrity. Micro-
scopic images were obtained at a random area with a fluores-
cence image using the Olympus DP71 microscope digital
camera installed on the Olympus BX51TF system micro-
scope (Olympus, Tokyo, Japan). The image was then merged
with the color channel merge method using the ImageJ soft-
ware (National Institute of Health, NY, USA).

2.10. Real-Time Reverse Transcriptase Polymerase Chain
Reaction (RT-PCR). After 2 weeks of in vitro cell culture
and tube circulation, cells were harvested using low-
concentration EDTA solution in a 37°C environment for
weakening the alginate bond [16]. It acts to lower the viscos-
ity of the alginate gel. After that, cells were obtained by cen-
trifugation and harvested. Total cellular RNA was extracted,
and 1μg of cellular RNA was reverse-transcribed into com-
plimentary DNA (cDNA) using a PrimeScript RT reagent
kit (Takara, Shiga, Japan). Real-time quantitative RT-PCR
primers targeting CD31 (forward: 5′ AGAGACGGTCTTG
TCGCAGT 3′ and reverse: 5′ TACTGGGCTTCGAGAGC
AGT 3′), VE-cadherin (forward: 5′ TCCTCTGCATCCTC
ACTATCACA 3′ and reverse: 5′ GTAAGTGACCAACTG
CTCGTGAAT 3′), and β-actin (forward: 5′ GCTATTTGG
CGCTGGACTT 3′ and reverse: 5′ GCGGCTCGTAGCTCT
TCTC 3′) were prepared by oligonucleotide synthesis service
(Bioneer Co., Daejeon, Korea).

The SYBR Premix Ex Taq™ (Tli RNase H Plus) (Takara,
Shiga, Japan) and Real-time RT-PCR Detection System
(Thermo Fisher Scientific, MA, USA) were used for detecting
real-time quantitative PCR products from reverse-
transcribed cDNA. The Ct value is the cycle number at which
the fluorescence signal reaches a threshold.

The ΔCt is determined by subtracting the Ct of the
β-actin control from the Ct of the target gene as change of
gene expression (ΔCt=Cttarget – Ctβ-actin). To determine the
ΔΔCt value, it is calculated as the subtraction of the experi-
mental group ΔCt value from the control group ΔCt value
(ΔΔCt=ΔCtExperimental – ΔCtControl). The relative value of
target genes to the endogenous reference is described as the
fold of β-actin = 2−(ΔΔCt).

2.11. Confocal Microscopy. An artificial vessel was pumped
for 2 weeks into the peristaltic pump system. After 2 weeks,
the artificial vessel was sectioned by a surgical blade; then,
the artificial vessel was embedded into the Live/Dead cell
assay kit composed of Live-Dye and propidium iodide (PI).
Then, immunofluorescence and bright-field counter images
were visualized using a confocal microscope LSM 700 and
compiled with a ZEN 2009 microscope and imaging software
(Carl Zeiss GmbH, Oberkochen, Germany).

2.12. Statistical Analysis. PRISM 5 (GraphPad, CA, USA) was
used for statistical analysis. Quantitative data are expressed
as mean± standard deviation (SD). Comparisons between
quantitative data were performed using one-way analysis of
variance (ANOVA). If significance was achieved in one-way
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analysis, post-ANOVA comparison of the means was per-
formed using Tukey’s multiple comparison test. Statistical
significance for all analyses was defined as P < 0 05.

3. Results

3.1. Primary Cell Culture and Validation. To define harvested
cells as bMSCs, cells were cultured until passage 2. In the
immunohistochemistry results, cells expressed CD44 protein
as a major marker of stem cells but not expressed CD34 pro-
tein. Moreover, α-SMA was strongly expressed as a structure
protein (Figure 2). Cell morphology also has a spindle shape.
This is similar to the general shape of mesenchymal stem
cells (Figures 2(g) and 2(h)).

3.2. Effect of Growth Factors on Protein Expression. CD31 and
VE-cadherin as endothelial cell markers and β-actin as a
housekeeping gene were detected using immunocytochemis-
try and Western blot analysis. Endothelial-like cells cultured
with DMEM-LG growth medium during 1 week did not
express CD31 protein (Figures 3(a)–3(c)), but after 28 days,
cells strongly expressed CD31 protein at the cell surface
(Figures 3(d)–3(f)). As demonstrated by the Western
blotting image, there were no significant CD31 and VE-
cadherin protein expression changes in week 1 and 4 cultures
in the basal medium group and week 1 cultures in the
growth factor medium group (Figures 3(g) and 3(h)). In
the growth factor medium group at week 2 to 4, CD31
and VE-cadherin were increased as the week progressed
(Figures 3(g) and 3(h)).

3.3. Tube Formation Assay. To confirm the endothelial-like
differentiation of bMSCs, the Matrigel-based tube formation
assay was performed. Rabbit auricular cartilage cells did not
show any interaction between cells after 6 and 12 hours
(Figures 4(a) and 4(d)), and bMSCs showed a weak aggrega-
tion but did not have pseudopodia (Figures 4(b) and 4(e)).
However, differentiated endothelial-like cells showed tube
formation at light microscopic imaging where only endothe-
lial cells are formed (Figures 4(c) and 4(f)).

3.4. Artificial Vessel Fabrication and Circulation. To
exchange the various blood factors, the first layer was fabri-
cated in a striped pattern while the second and third layers
were fabricated in a helix form (Figure 5). The fabricated arti-
ficial vessel was then soaked in a 5% calcium chloride solu-
tion. The completed artificial vessel had a pale pink color
because of phenol red in the basal media (Figures 5(a) and
5(b)). The approximate dimensions of the artificial vessel
were a length of 40mm, an outer diameter of 8mm, and an
inner diameter of 5mm, almost the same as we designed
(Figures 5(a) and 5(b)), and each designed layer was posi-
tioned well (Figures 5(c) and 5(d)). There were no special
problems such as contamination of breakdown of the artifi-
cial vessels during the pulsatile pump operation period.

3.5. Live/Dead Assay. The Live/Dead assay was performed
every 7 days for 1 month, and Figure 6 shows the photo-
graphed fluorescence microscopic image along with the sta-
tistical graph. A cell-permeable green fluorescence Live-Dye

was utilized to stain live cells, and dead cells were detected
by the red fluorescence produced when PI binds to DNA.
Live cells can exclude PI, so live cells expressed green fluores-
cence while dead cells expressed red fluorescence. We
counted live and dead cells in all the pictures and divided
them into total cells. The cell viability is calculated as live cells
divided by total cells.

Microscopic observation at days 1, 7, 14, and 28 showed
that dead cells significantly decrease but live cells had
increased as days passed (Figures 6(a)–6(c) and 6(d)–6(f)).
The live cell ratio had significantly increased from day 1 to
day 7, but there was no significant difference among day 7
to day 28 (Figure 6).

3.6. Gene Expression. The mRNA expression levels of CD31
and VE-cadherin had significant differences between the
basal medium group and the growth factor medium group.
Cultures grown in the growth factor medium group
expressed about 1.5-fold of CD31 mRNA expression level
(Figure 7(a)) and 3.5-fold of VE-cadherin mRNA expression
level (Figure 7(b)) compared with those grown in the basal
medium group.

Moreover, the mRNA levels of CD31 and VE-cadherin
in the peristaltic pumped group were highly expressed com-
pared to those in the nonpumped group. The peristaltic
pumped growth factor medium group expressed about
1.44-fold of CD31 mRNA expression level (Figure 7(c))
and 1.35-fold of VE-cadherin mRNA expression level
(Figure 7(d)) compared with the nonpumped growth factor
medium group.

3.7. Endothelial-Like Cell Engraftment into the Artificial
Vessel Lumen. There are several points that live endothelial
cells invade the artificial vessel lumen despite the pulsatile

DAPI ICC Merge

CD34

CD44

�훼-SMA

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: bMSC surface marker expression and validation by
immunocytochemistry. The bMSCs were negative in CD34 (c) and
positive in CD44 (f) and alpha-SMA (i). The scale bar indicates
200 μm.
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Figure 3: Effects of growth factor on endothelial cell-related protein expression by immunocytochemistry and Western blotting. The
endothelial-like cells were negative in CD31 after 1 week (a–c) and positive in 1 month (d–f). The protein levels of CD31 and VE-
cadherin increased in the growth medium (g). The mRNA expression levels of CD31 and VE-cadherin increased in the growth medium.
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(d) (e) (f)

Figure 4: Endothelial-like cell tube formation assay. The chondrocytes after 6 hours (a) and 12 hours (d), the bMSCs after 6 hours (b) and 12
hours (e), and the endothelial-like cells after 6 hours (c) and 12 hours (f). There are tube formations at endothelial-like cells after 12 hours (f).
The scale bar indicates 500 μm.
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flow (Figure 8). In the phase-contrast bright-field image,
sodium alginate gel did not wash out and even cells are all
alive while no dead cells were observed (Figures 8(a) and
8(b)). The morphology of live cells has an irregular shape
because of their adhesion and proliferation (Figures 8(c)
and 8(d)).

4. Discussion

In this study, we made a small-diameter artificial vessel
using the three-dimensional bioprinting technique with
endothelial-like cells and polycaprolactone. Also, we dem-
onstrated that the pulsatile flow promotes the expressions
of vascular endothelial cell markers.

In previous research, nontoxic biodegradable materials
are recommended when manufacturing small-sized artificial
vessels [17]. Also, the materials should be biodegradable for
tissue healing or for the regeneration process to prevent
thrombosis or atherosclerosis [18]. The nondegradable mate-
rials, such as ePTFE and polyethylene terephthalate grafts,
are widely used in vascular replacement surgery. However,
they have limitations when used in small-diameter vessels
because they could generate blood clots [6]. PCL is one of
the commonly tried biodegradable materials in recent studies
[11, 19, 20]. PCL degrades slowly because of hydrolysis of
ester linkage, with the elimination of the resultant fragments

by macrophages and giant cells, so there are no residues left
[6]. Also, there is a previous study about a rabbit carotid
grafting model using only the PCL artificial vessel graft
[21]. Systolic pressure in adult rabbits ranged from 110 to
140mmHg, while the diastolic pressure was from 95 to
120mmHg [22], similar to the human blood pressure profile.
Thus, our artificial blood vessel could also withstand the arte-
rial pressure.

Direct cell seeding and encapsulation of the cells with a
hydrogel are typical methods in the tissue engineering field
[11, 23, 24]. Sodium alginate hydrogel has some advantages
such as easy handling, gelation taking place at normal room
temperature, and the fact that gelation can be more con-
trolled by the cross-linker, calcium chloride solution. In
addition, sodium alginate has neutral pH and does not react
with cellular proteins [25, 26]. In this study, we confirmed
that the number of living cells increased and the number of
dead cells decreased during the experimental period in the
cell bioprinting layer made of sodium alginate hydrogel.

Mesenchymal stem cells have been widely used for ther-
apeutic purpose or cell-based tissue engineering because of
their multipotent potential [11, 27, 28]. Moreover, mesen-
chymal stem cells could be harvested at various sources
such as adipose tissue [29], umbilical cord [30], umbilical
cord blood [31], and mainly bone marrow [11, 15, 32–34].
There are several studies confirming that bMSCs could be
used in vascular regeneration purpose, because stem cells
could be differentiated into vascular endothelial progenitor
cells when stimulated by endothelial cell-secreted cytokine
and they could be involved in vascular restoration and neo-
vascularization [35, 36].

Cell markers are the keystones of identifying mesenchy-
mal stem cells. Researchers have proved endothelial-like cell
differentiation through molecular biology experiments due
to the expression of endothelial cell markers such as CD31
or VE-cadherin [11] and confirmed the morphological
characteristic through the tube formation assay [37, 38].
We used vascular endothelial growth factor and basic fibro-
blast growth factor according to previous studies [36, 39]
and verified differentiated cells as endothelial-like cells.
Moreover, we also confirmed that the pulsatile flow could
more strongly induce endothelial cell-related marker expres-
sion in endothelial-like cells differentiated from mesenchy-
mal stem cells.

The simulated blood circulation system was referred
from existing studies. Researchers suggest various require-
ments such as constant perfusion pressure, incubator condi-
tion [11], flow chamber, and silicone tubing [40]. Also,
researchers have reported that preconditioning, which is sim-
ilar to in vivo after in vitro transplantation, facilitates the
engraftment of the seeded or bioprinted cells [41, 42]. Our
pulsatile flow system operated no leakage and no contamina-
tion during the experimental period, and the pumped tube
underwent shear stress and pulsatile flow to show higher
expression of CD31 and VE-cadherin as endothelial cell
markers as described in a previous study [11]. This means
that the artificial vessel in this study differentiated more
endothelial-like cells in the pulsatile flow condition, and it
is meaningful that we have mimicked the native vascular

(a) (b)

(c) (d)

Figure 5: Gross and scanning electron microscope images of the
artificial vessel; (a) longitudinal view, (b) transectional view, (c)
SEM image of the inner surface, and (d) SEM image of the outer
surface. The white arrow indicates the polycaprolactone layer, and
the yellow arrow indicates the dried sodium alginate hydrogel
layer due to SEM sampling. The white asterisk indicates the inner
side surface woven in a cross-striped form, and the yellow asterisk
indicates the outer surface woven in a helical form. The scale bar
indicates 200 μm.

7Stem Cells International



system, which has regular pressure and flow [43], which is
the aim of tissue engineering [44].

In addition, in the course of this circulation, the artificial
blood vessel did not lose sodium alginate hydrogel and the
percentage of live cells was increased. It was confirmed that
the pulsatile flow gave a positive effect on the survival of
endothelial-like cells in the artificial blood vessel. Therefore,
it is expected to have a similar result even when the artificial
vessel graft is in the body.

As a result, the present study confirmed that growth
factors affect the differentiation from MSCs into EC-like
cells and pulsatile flow makes an additional positive effect
to express endothelial cell markers such as CD31 and VE-
cadherin in both cellular mRNA levels and protein levels.
Moreover, we demonstrated that pulsatile flow could fab-
ricate and influence the formation of the lumen consisting
of differentiated EC-like cells. In particular, the strength
of our research is that the artificial vessel produced using
only a scaffold without cells showed vascular cell invasion
where the artificial vessel invades the natural blood vessel,
but our artificial blood vessel is able to keep cells alive
due to the presence of hydrogel, which could show
endothelial-like cell invasion entirely. This means that it
can be expected to prevent the formation of blood clots

due to endothelial-like cells in artificial vessels and to bio-
degrade PCL at an appropriate time. Moreover, recent
studies have reported that the scaffold with stem cells
expressing endothelial cell markers had a positive effect
on long-term artificial vessel patency and vascular endo-
thelial cell growth [45, 46].

One limitation of this study is that the endothelial cells
were not completely covered into the artificial vessel lumen
for 4 weeks. In other words, the period of 1 to 4 weeks may
not be enough time to align cells to the lumen of the artificial
vessel. However, according to a previous study, PCL grafts
revealed an endothelialization of the luminal surface of the
graft, spreading from the adjacent native aorta toward the
graft body with a confluent monolayer of endothelial cells
at 12 weeks [47]. There is another limitation. We tried to
perform Western blot analysis both during cell culture and
after artificial vessel circulation. Although the alginate gel
dissolved using low-concentration EDTA solution, some
alginate protein remained. So it was difficult to quantify the
protein amount using the Bradford assay after sample
harvest. Also, the absolute quantity of the target protein
was small. So we had to perform only real-time RT-PCR.

We therefore expect that our artificial vessel would be
covered faster due to endothelial-like cells in the sodium
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Figure 6: Time course of the live cell ratio using the Live/Dead assay. The pumped tube at day 1 had some dead cells (red) (a–c) while these
dead cells decreased by day 28 (d–f). Cell viability was increased during day 1 to day 7 periods. Error bars indicate the SD. ∗∗∗P < 0 001.
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Figure 7: Vascular endothelial cell-related gene expression profile by qRT-PCR. The mRNA expression levels of CD31 in cells (a) and tubes
(c). The mRNA expression levels of VE-cadherin in cells (b) and tube (d). Error bars indicate the SD. ∗∗∗P < 0 001, ∗∗P < 0 01, and ∗P < 0 05.
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Figure 8: Confocal microscopic image of endothelial-like cell engraftment into the artificial vessel lumen. The inner side of the pumped tube
had PCL structures in a cross-striped pattern (black head arrow). There are some live cells (green) (c) and no dead cells (red) (b) in the sodium
alginate hydrogel layer (white asterisk). Live cells had engrafted into the lumen (d).
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alginate hydrogel layer. Moreover, we also expect that the
differentiated endothelial-like cells could be helpful to
locate the vasa vasorum. Also, the present study is a prelim-
inary study. We focused on the printing method which does
not affect the cell viability, and we just emphasized that
bone marrow-derived stem cells in the printed artificial
vessel could differentiate into vascular endothelial-like cells
in vivo. So further studies are needed; we are planning to
conduct animal experiments in the near future.

5. Conclusion

In conclusion, we suggest the effective fabrication method of
a small-sized artificial vessel. This paper will be helpful for
various future studies, including those investigating tissue
engineering of artificial organs. We are currently in the pro-
cess of improvement and optimization to create more ideal
artificial vessels.
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