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Abstract

Motivation: The high-throughput chromosome conformation capture (Hi-C) technique has enabled genome-wide
mapping of chromatin interactions. However, high-resolution Hi-C data requires costly, deep sequencing; therefore,
it has only been achieved for a limited number of cell types. Machine learning models based on neural networks
have been developed as a remedy to this problem.

Results: In this work, we propose a novel method, EnHiC, for predicting high-resolution Hi-C matrices from low-reso-
lution input data based on a generative adversarial network (GAN) framework. Inspired by non-negative matrix fac-
torization, our model fully exploits the unique properties of Hi-C matrices and extracts rank-1 features from multi-
scale low-resolution matrices to enhance the resolution. Using three human Hi-C datasets, we demonstrated that
EnHiC accurately and reliably enhanced the resolution of Hi-C matrices and outperformed other GAN-based models.
Moreover, EnHiC-predicted high-resolution matrices facilitated the accurate detection of topologically associated
domains and fine-scale chromatin interactions.

Availability and implementation: EnHiC is publicly available at https://github.com/wmalab/EnHiC.

Contact: wenxiu.ma@ucr.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent developments of the high-throughput chromosome conform-
ation capture (Hi-C) techniques (Duan et al., 2010; Lieberman-
Aiden et al., 2009; Rao et al., 2014) have enabled us to detect gen-
ome-wide chromatin interactions and investigate the organizational
principles of the three-dimensional (3D) genome. Studies of Hi-C
data have revealed the multi-scale organization of the 3D genome,
including active/inactive chromosomal compartments (Lieberman-
Aiden et al., 2009), topologically associated domains (TADs)
(Dixon et al., 2012) and fine-scale chromatin loops (Rao et al., 2014;
Ma et al., 2015). Large-scale chromatin structures, such as compart-
ments and TADs, can be identified from relatively low-resolution
(50 kb to 1 Mb) Hi-C contact matrices. However, detecting fine-scale
chromatin loops often requires high-resolution (i.e. 10 kb or finer)
contact matrices. Moreover, fine-resolution Hi-C data are more com-
patible with other genomic and epigenomic data, and could therefore
facilitate the interrogation of genome regulation and function.

However, high-resolution chromatin contact maps require cost-
ly, deep sequencing, and have been achieved in only a limited num-
ber of cell lines. For instance, a kilobase-resolution Hi-C map of
human lymphoblastoid GM12878 cells required five billion chroma-
tin contacts (Rao et al., 2014). Without sufficient sequencing depth,
the observed Hi-C contact maps are often sparse and noisy, which
imposes great computational challenges on the identification of
chromatin loops between distal regulatory elements and their target
genes. Therefore, computational approaches to enhance the reso-
lution of Hi-C contact maps would greatly facilitate the

investigation of the 3D genome at a finer scale, and are therefore in
great demand.

Several pioneering works on predicting higher-resolution contact
frequency matrices from low-resolution Hi-C data have emerged since
2018. The HiCPlus method (Zhang et al., 2018a) was the first attempt
to enhance Hi-C data resolution with a convolutional neural network
(CNN) by minimizing the L2 mean square error (MSE) loss function.
Similar to the image super-resolution approach (Zhang et al., 2018b),
HiCPlus extracts hidden features from high-resolution Hi-C matrices
in the training process and then predicts high-resolution Hi-C matrices
from low-resolution input data. Later, Liu and Wang (2019) proposed
the HiCNN model, which employs a more complex (with more than
14 layers) and efficient CNN model with residual learning by utilizing
skip connections. However, both HiCPlus and HiCNN use the MSE
loss; therefore, they are sensitive to outliers and would result in blurred
output when the input Hi-C matrix is sparse.

More recently, several generative adversarial network (GAN)
models, such as hicGAN (Liu et al., 2019), Deephic (Hong et al.,
2020) and HiCSR (Dimmick et al., 2020), have been proposed to en-
hance Hi-C matrix resolution. The general GAN framework consists
of two neural networks: a generator and a discriminator that contest
with each other. In the training step, the generator learns to create a
candidate to deceive the discriminator, while the discriminator
learns to distinguish the generated candidate from the true data.
First, hicGAN (Liu et al., 2019) adopts the SRGAN model (Ledig
et al., 2017) in image super-resolution to enhance resolution of Hi-C
matrices. The hicGAN model uses a skip-connection network as the
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generator and replaces the traditional pixel-wise MSE loss with a
purely adversarial loss. As a result of minimizing the adversarial
loss, hicGAN often misses fine-scale image details. Later, Hong
et al. (2020) proposed Deephic, a model similar to hicGAN. To re-
cover fine-scale image details, Deephic uses a mixture loss function
that consists of the MSE loss, total variation loss, perceptual loss
and adversarial loss. The perceptual loss component was derived
from the VGG-type model (Simonyan and Zisserman, 2014).
However, this perceptual loss causes unwanted natural image tex-
tures in the output. Lastly, the HiCSR model (Dimmick et al., 2020)
uses a skip-connection network as the generator and a CNN as the
discriminator. Their loss function consists of the L1 mean absolute
error (MAE) loss, feature loss and adversarial loss. The feature loss
was derived from a pre-trained model, which is a denoising autoen-
coder modified from an image restoration architecture (Mao et al.,
2016).

The previously proposed models, hicGAN, Deephic and HiCSR,
have demonstrated the power of the GAN framework in predicting
high-resolution Hi-C matrices. However, these models treat the Hi-
C matrix as a one-channel image and their GAN networks are pri-
marily built on image super-resolution models. As a result, their pre-
dictions often contain image artifacts and, therefore, do not
accurately represent the underlying chromatin interaction features
of the Hi-C data.

To tackle this problem, we developed a new GAN-based model,
EnHiC, to enhance the resolution of Hi-C contact frequency matri-
ces. Specifically, we propose a novel convolutional layer (the
Decomposition & Reconstruction Block, see Methods) that
accounts for the non-negative and symmetric properties of Hi-C
matrices. In our GAN framework, the generator extracts rank-1 ma-
trix features from multiple scales of low-resolution matrices and pre-
dicts the high-resolution matrix via a series of sub-pixel CNN layers
(Shi et al., 2016). Accordingly, the discriminator decomposes a
high-resolution Hi-C matrix into multiple lower-resolution matrices
and extracts the corresponding rank-1 matrix features to determine
whether the high-resolution matrix is derived from the generator or
the true data.

We evaluated the performance of our EnHiC model using pub-
lished Hi-C datasets in three human cell lines: GM12878 (lympho-
blastoid cells), IMR90 (lung fibroblast cells) and K562 (leukemia
cells) (Rao et al., 2014). We demonstrated that EnHiC accurately
enhanced the resolution of Hi-C data and achieved high similarity
scores with respect to the true high-resolution data, outperforming
previously proposed GAN-based models. Using the model trained in
one cell type, EnHiC effectively enhanced the resolution of insuffi-
cient sequenced Hi-C data in other cell types. In addition, using the
EnHiC-enhanced data, we successfully recovered Hi-C-specific fea-
tures, such as TADs and significant chromatin interactions.

2 Materials and methods

2.1 Hi-C contact frequency matrix
First, we introduce a few notations regarding the Hi-C contact fre-
quency matrix. A bulk Hi-C experiment characterizes an ensemble
of chromatin contacts from thousands or millions of cell nuclei. The
raw data generated from the Hi-C experiment can be presented as a
non-negative symmetric matrix CN�N, namely the contact frequency
matrix, where N is the number of fixed-size non-overlapping bins in
the genome. Each matrix element Cij is the observed contact fre-
quency between the genomic loci pair i and j. A higher contact fre-
quency indicates a smaller spatial distance between a pair of
genomic loci in cell nuclei. In short, we refer to the bulk Hi-C con-
tact frequency matrix as the Hi-C matrix.

In our method, we aim to predict high-resolution Hi-C matrices
from low-resolution input data. Here, high resolution indicates
more chromatin interaction details (i.e. more valid pairs of sequenc-
ing reads), rather than a higher dimension of the Hi-C matrix. Given
a Hi-C input dataset, it can processed into a matrix of any arbitrary
bin size. Therefore, a high-dimensional Hi-C matrix is not always of
high resolution. In this work, we refer to the dimension of the Hi-C

matrix as its scale. A lower-scale Hi-C matrix has a smaller number
of rows and columns.

2.2 Overview of the model
In this section, we describe the framework of the EnHiC model.
More details of the model are provided in Supplementary
Information. EnHiC is based on a GAN framework that contains a
generator and a discriminator. Through competition between them,
the generator learns to predict high-resolution Hi-C matrices from
low-resolution input matrices, while the discriminator distinguishes
the generator-predicted high-resolution matrices from real data.

The main difference between our model and other GAN-based
approaches is that EnHiC exploits the unique properties of the Hi-C
matrix and treats it as a multi-scale interaction contact map instead
of a pure image. Specifically, EnHiC extracts rank-1 matrix features
from low-resolution input data at multiple scales and learns to en-
hance the matrix resolution using these estimated rank-1 features.
The overview of the EnHiC framework is illustrated in Figure 1.

2.2.1 Decomposition & reconstruction block

A key component in our model is the Decomposition &
Reconstruction Block, as illustrated in Figure 1 and Supplementary
Figure S1.

In our model, we represent a Hi-C matrix as a multi-channel
image (i.e. a tensor). Let cin and cout be the number of input and out-
put channels, respectively. The input and output tensors are denoted
by X 2 R

N�N�cin and X̂ 2 R
N�N�cout , where N is the dimension of

the Hi-C matrix. The Decomposition & Reconstruction Block con-
tains three layers:

• The decomposition layer, which passes X into a convolutional

layer with kernel ð1;NÞ. In contrast to the traditional convolu-

tional layer, the kernel is a vector rather than a square matrix.

The length of the kernel vector is the same as the height/width of

the input tensor. Hence, the kernel only moves in one direction,

and the number of shared parameters for this convolutional layer

is N � cin � cout. The resulting tensor is denoted by

U ¼ ½u1; . . . ; ucout
� 2 R

N�1�cout , which represents the rank-1 fea-

tures of the input data.
• The weighting layer, which scales the feature tensor as

V ¼ Uww>, where the weight vector w ¼ ½w1; . . . ;wcout
�T is a

learnable parameter.
• The reconstruction layer, which constructs the output tensor X̂

using the weighted rank-1 features. For each channel k, we have

a rank-1 matrix X̂::k ¼ vkv>k , where k ¼ 1; . . . ; cout.

2.2.2 Generator

The generator consists of two parts: (i) extracting rank-1 matrix fea-
tures from low-resolution input matrices at multiple scales and (ii)
enhancing Hi-C matrix resolution using the multi-scale features
learned in the first part. The overview of the generator framework
(G1 in the orange dashed box and G2 in the blue dashed box) is
shown in Figure 1.

Because the low-resolution input matrix is often sparse, we first
downscale the matrix to enhance its signal. The downscaling oper-
ation is achieved by shrinking the size of the matrix by an average-
pooling layer. In our experiments, we aim to enhance the resolution
of the Hi-C matrix by a factor of 16, which is equivalent to scaling
up the matrix by a factor of 4 (i.e. multiplying both the height and
width of the matrix by 4). Therefore, in our model, we generate two
downscaled matrices by factors of 2 and 4 [denoted as LR(�2 #)
and LR(�4 #), respectively]. We use LR(�2 #) and LR(�4 #) as the
ground truth to assist in the estimation of the rank-1 matrix features
at the corresponding scales. Note that in our EnHiC framework, the
number of downscaling operations can be adjusted for different
applications. For instance, if we aim to enhance the Hi-C resolution
by a factor of 100, it is recommended to include additional levels of
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downscaled matrices (and accordingly, more Decomposition &
Reconstruction Blocks) to facilitate a better estimation of matrix
features.

The first part of the generator (G1) extracts multi-scale rank-1
features from the low-resolution input matrix. First, it transforms
the input matrix (N�N) into a tensor (N

r � N
r � r2) using a space-to-

depth layer (TensorFlow built-in function). The space-to-depth layer
permutes the spatial blocks of the input matrix into the depth di-
mension without any loss of information. Then, a multi-channel
image (tensor) is subsequently processed through the
Decomposition & Reconstruction Block and its rank-1 features are
extracted. Note that the input Hi-C matrix is symmetric and non-
negative, and our rank-1 approximations retain the symmetric and
non-negative properties of the data. In our framework, we extract
the rank-1 features for two different scales (r ¼2 and 4, respective-
ly), and the two estimation matrices, denoted as EHiC(�2 #) and
EHiC(�4 #), are compared against the true data, as shown in Figure
1.

The second part of the generator (G2) recombines the rank-1 fea-
tures from multiple scales and enhances the matrix resolution
through a series of Upsampling Blocks. The Upsampling Block con-
tains a sub-pixel convolutional layer (Shi et al., 2016) that upscales
the previously learned features in low-resolution space to a high-
resolution output. The upscaled tensor is subsequently averaged
with its transpose to reinforce the symmetric property of the output
matrix. In concert with the two Decomposition & Reconstruction
Blocks in the first part, we have two Upsampling Blocks, each of
which upscales the matrix dimension by a factor of 2 (i.e. enhancing
the data resolution by a factor of 4). Therefore, the final output ma-
trix has an enhanced resolution by a factor of 16 compared to the
low-resolution input matrix. Details of the Upsampling Block are
illustrated in Supplementary Figure S1.

2.2.3 Loss functions of the generator

The objective of the generator is to estimate the rank-1 features at
multiple scales and to enhance resolution of the input matrix.
Therefore, we design two loss functions for these two tasks separate-
ly. Although the extraction of rank-1 features can be obtained using
a pre-trained model, we combine it in the generator network so that
we can reuse the intermediate rank-1 feature data in the training
process. Therefore, the generator has two loss functions and two
back-propagation steps to update their associated parameters
separately.

Loss function for low-resolution approximation (rank-1 matrix
features) Inspired by NMF, the approximate low-resolution Hi-C
matrix is calculated as a combination of rank-1 matrices. To esti-
mate these rank-1 matrices, we include both pixel-wise MSE loss
and structural dissimilarity (DSSIM) measures in the loss function.

The DSSIM metric is derived from the structural similarity (SSIM)
metric (Wang et al., 2004) to quantify the perceptual differences be-
tween two images. Specifically, DSSIM ¼ 1�SSIM

2 2 ½0; 1�. As
described above, the generator may involve more than one down-
scaled representation of the low-resolution input, so we denote the
factor set as f ¼ ½f1; . . . ; fK� and the corresponding weights for the
downscaled matrices as w ¼ ½w1; . . . ;wK�, where wk ¼

f 2
kP
k

f 2
k

. The
loss function of rank-1 feature extraction is:

‘G1
ðÎ ; IÞ ¼

XK

k¼1

wk½‘MSEðÎ ; IÞ þDSSIMðÎ ; IÞÞ�:

In our application, we downscale the low-resolution input ma-
trix by two different factors. Hence, K¼2, f1 ¼ 2 and f2 ¼ 4.

Loss function for high-resolution enhancement In the second
part of the generator, we feed the rank-1 matrix features extracted
from multiple downscaled low-resolution data into several sub-pixel
layers to enhance matrix resolution. The loss function for the predic-
tion of a high-resolution matrix consists of the pixel-wise MSE loss
and the adversarial loss:

‘G2
ðISR; IHRÞ ¼ a0‘MSEðISR; IHRÞ þ a1‘adv;

where the a0 and a1 are hyperparameters.
The adversarial loss ‘adv is a crucial part of the GAN framework

that connects the generator and discriminator networks. For the
generator, minimizing the loss is equivalent to minimizing the binary
cross-entropy loss between the true label (y) and the prediction (x)
of generated Hi-C matrices by the discriminator. That is,
‘bceðy;xÞ ¼ � 1

N

PN
n¼1ðyn � logðxnÞ þ ð1� ynÞ � logð1� xnÞÞ. To dis-

orient the discriminator, all labels of the predicted matrices are set
to true. More details on the adversarial loss are discussed in Section
2.2.5.

‘adv ¼ ‘bceð1;DðGðILRÞÞÞ
¼ �logðDðISRÞÞ

2.2.4 Discriminator

The discriminator aims to differentiate between high-resolution pre-
dictions from the generator and real high-resolution data. In our
EnHiC model, the discriminator shares the same strategy of the
multi-scale rank-1 approximation as the generator, as illustrated in
Figure 1. First, the input matrix is converted to multiple downscaled
tensors by space-to-depth layers (in the Downsampling Block) and
the rank-1 matrix features are subsequently extracted from each of
the downscaled tensors (in the Decomposition & Reconstruction
Block). In our design, we extract rank-1 features from the original
matrix as well as three downscaled matrices (by a factor of 2, 4 and

Fig. 1. The framework of the EnHiC model. The details of the Downsampling Block, Upsampling Block, Combination Block, Normalization Block, Rank-1 Estimation Block

and Decomposition & Reconstruction Block are illustrated in Supplementary Figure S1
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8, respectively). Second, these rank-1 matrix features are passed into
a cascade of Convolutional Blocks to detect latent features at mul-
tiple resolutions. As shown in Figure 1, each Convolutional Block
includes a Leaky ReLU layer, a max-pooling layer and a 2D convo-
lution layer. After pooling and convolution, the dimensions of rank-
1 matrix features are reduced by a factor of 2. These higher-reso-
lution features are then concatenated with lower-resolution features
and passed into the subsequent Convolutional Block. Finally, after a
fully connected layer, the discriminator outputs the probability that
the input is real, that is, the true high-resolution data rather than a
prediction from the generator.

2.2.5 Loss function of the discriminator

In the training process, the generator and discriminator compete
with each other and are connected by a MinMax loss. The generator
tries to minimize the following function while the discriminator
attempts to maximize it:

min
G

max
D

EIHR
½log ðDðIHRÞÞ� þ EILR

½log ð1�DðGðILRÞÞÞ�;

where Dð�Þ is the estimated probability by the discriminator. EIHR
is

the expected value over all true instances. GðILRÞ is the generator’s
output when fed with the low-resolution Hi-C matrix ILR, which is
also called the super-resolution Hi-C matrix ISR. EILR

is the expected
value over all generated instances.

The GAN framework has two adversarial loss functions: one for
generator training (as discussed in Section 2.2.3) and one for dis-
criminator training. The discriminator aims to maximize
EIHR
½log ðDðIHRÞÞ� þ EILR

½log ð1�DðGðILRÞÞÞ�. Thus, the adversar-
ial loss of the discriminator can be expressed as a combination of
two binary cross-entropy losses:

‘D ¼ ‘bceð1;DðIHRÞÞ þ ‘bceð0;DðGðILRÞÞÞ
¼ �logðDðIHRÞÞ � logð1�DðISRÞÞ

3 Results

3.1 EnHic accurately predicts high-resolution Hi-C

matrices
First, we sought to evaluate the enhancement capability of our
EnHiC model against two other GAN-based models, Deephic and
HiCSR. It has been shown that Deephic and HiCSR outperformed
previously proposed models, including HiCPlus, HiCNN and
hicGAN. Therefore, these models were not included in our evalu-
ation. All three models, EnHiC, Deephic and HiCSR, were trained
to predict a high-resolution (10 kb) Hi-C matrix from a low-reso-
lution (40 kb) Hi-C matrix. In other words, the desired resolution
enhancement factor was 16.

3.1.1 Data preprocessing

In our validation experiments, we used three published Hi-C data-
sets in different human cell lines: GM12878 (lymphoblastoid cells),
IMR90 (lung fibroblast cells) and K562 (leukemia cells) (Rao et al.,
2014). Among them, the GM12878 dataset has the highest number
of chromatin contacts (2.88 billion), followed by IMR90 (0.76 bil-
lion) and K562 (0.62 billion) (Supplementary Table S1). High-reso-
lution (10 kb) Hi-C matrices were obtained from the cooler database
(Abdennur and Mirny, 2020). Low-resolution Hi-C matrices were
generated using a random downsampling procedure. Here we used
the default downsampling ratio of 16. In other words, the sequenc-
ing depth in the resulting low-resolution matrices was 1/16 of the
high-resolution data.

First, we trained the three models (EnHiC, Deephic and HiCSR)
on the most deeply sequenced Hi-C data generated from GM12878
cells. We used chromosomes 1-16 for training, chromosomes 17 and
18 for hyperparameter tuning, and chromosomes 19–22 and X for
evaluation. After model training in the GM12878 data, we applied

the three methods to the IMR90 and K562 data to investigate the
enhancement performance across different cell types.

The raw Hi-C matrix contains various types of technical and bio-
logical biases. Therefore, normalization is an essential step in Hi-C
data analysis. Many normalization methods based on matrix-bal-
ancing approaches have been proposed (Imakaev et al., 2012;
Knight and Ruiz, 2013; Kumar et al., 2017; Servant et al., 2015). In
the EnHiC model, we employ the Sequential Component
Normalization (SCN) method (Servant et al., 2015) to normalize the
input Hi-C matrix. The Deephic and HiCSR models do not require
Hi-C-specific normalization of the input matrix. Instead, Deephic
uses the min-max normalization to scale the input data. HiCSR first
conducts a log1p transformation (i.e. logð1þ xÞ) and then a min-
max normalization of the input data.

After normalization, the intra-chromosomal Hi-C matrices were
divided into small pieces (submatrices of size n�n) for both training
and testing. Here, we set n¼400. Specifically, EnHiC first divides
the Hi-C matrix into non-overlapping submatrices of size n

2� n
2 and

then combines two diagonal submatrices with their off-diagonal
interacting submatrix to form an n�n matrix. This operation
ensures that the resulting submatrices are symmetric. Deephic
divides the Hi-C matrix into non-overlapping submatrices of size
40�40. HiCSR divides the Hi-C matrix into partially overlapping
submatrices of size 40�40 with a step size of 28�28. Therefore,
the input submatrices are of size 40�40 and the output submatrices
are of size 28�28. Because the average TAD size is less than 1 Mb
and most of the significant interactions are located inside TADs, we
omitted submatrices with the genomic distances greater than 2 Mb.

3.1.2 Training and prediction

The EnHiC model was implemented in Python 3 with TensorFlow2;
and the source code is available at https://github.com/wmalab/
EnHiC. Both the training and prediction processes of the three
assessed models were conducted on Intel Haswell CPU and NVIDIA
Tesla K80 GPU with 128 GB of memory. For EnHiC, the number of
epochs for training was set to 300 with parameters a0 ¼ 10 and
a1 ¼ 0:1. The runtime of the training process was approximately
85 hours (17 min per epoch). More training details, including the
configuration and visualization generated by TensorBoard, are
available in Supplementary Information. The runtimes for HiCSR
(500 epochs) and Deephic (800 epochs) were approximately 2 to
4 days.

3.1.3 Model validation and evaluations in GM12878 data

After the training step, we first applied the three models (EnHiC,
Deephic and HiCSR) to the evaluation set (chromosomes 19-22 and
X) in human GM12878 data to enhance the resolution of low-reso-
lution Hi-C matrices (downsampled from high-resolution Hi-C
matrices by a factor of 16). We denote the 10 kb high-resolution Hi-
C matrices obtained from the cooler database as the ground truth.

For each chromosome, we assembled the predicted submatrices
into one intra-chromosomal matrix. Because different models use
different normalization procedures, it is necessary to reverse the nor-
malizations to facilitate a fair comparison with the same ground
truth. Denote the model output as X, and de-normalized result as ~X.

• Deephic uses the min-max normalization. Hence, the reversion is
~X ¼ maxXþmin, where max and min are maximal and min-

imal values in the ground truth, respectively.
• HiCSR uses both the log1p transformation and the min-max nor-

malization. Therefore, the reversion is ~X ¼ eðmaxXþminÞ � 1,

where max and min are the maximal and minimal log1p values

in the ground truth.
• EnHiC uses the SCN normalization, therefore the reversion is

~X ¼ X� bb
>, where b is the bias vector estimated from the

ground truth using the SCN method and � is the element-wise

division. In the form of each element, we have ~Xij ¼ Xij

bibj
.
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After reverse normalization, we evaluated the prediction results
of the three models with the ground truth using four metrics: two
classic pixel-wise numeric errors (MAE and MSE) and two Hi-C-
specific similarity metrics: HiCRep (Yang et al., 2017) and
GenomeDISCO (Ursu et al., 2018). Supplementary Table S2 sum-
marizes the MAE and MSE measurements of the EnHiC, Deephic
and HiCSR predictions. Overall, EnHiC achieved the best perform-
ance with the lowest MAE and MSE errors. We noticed that MAE
and MSE errors were inflated in Deephic and HiCSR predictions.
This is likely due to the reverse normalization procedure, where the
MAE and MSE errors were amplified by the max value and expo-
nential operation. Therefore, the MAE and MSE metrics were not
effective in assessing the performance of the Hi-C enhancement. We
present the results for reference because MAE is a component of the
loss function in the HiCSR model, and MSE is included in the loss
functions in both EnHiC and Deephic.

In addition to the MAE and MSE metrics, we also considered
two popular similarity measurements specifically designed for
assessing reproducibility of Hi-C matrices, HiCRep (Yang et al.,
2017) and GenomeDISCO (Ursu et al., 2018). HiCRep calculates a
stratum-adjusted correlation coefficient (SCC) between two Hi-C
matrices. The resulting SCC values range from –1 to 1, where a
larger SCC value indicates a higher similarity between the two
matrices. GenomeDISCO treats the Hi-C matrix as a network; it
applies random walks on the network to smooth the data and then
calculates a reproducibility score at multiple scales. Similar to
HiCRep, GenomeDISCO scores also range from –1 to 1, where
higher scores representing the higher reproducibility. Besides
HiCRep and GenomeDISCO, HiC-Spector (Yan et al., 2017) is an-
other Hi-C reproducibility metric. HiC-Spector applies the adja-
cency matrix to impute missing values and then calculates a
similarity score between two full matrices. In our experiments, since
we only predicted a strip of data in the full matrix (i.e. submatrices
with genomic distances shorter than 2 Mb), HiC-Spector is not ap-
plicable in our evaluation.

Table 1 summarizes the HiCRep and GenomeDISCO evaluation
results of EnHiC, Deephic and HiCSR. As shown in Table 1, The
HiCRep SCC scores were greater than 0.94 for all three methods,
indicating that their high-resolution predictions are very similar to
the ground truth. Among them, our EnHiC model achieved the high-
est HiCRep SCC values and GenomeDISCO scores for all five test
chromosomes. These results demonstrated that EnHiC can accurate-
ly and robustly enhance the resolution of Hi-C matrices and outper-
formed existing GAN-based models.

3.1.4 Performance on IMR90 and K562 data

In the previous section, we have demonstrated the capability of
EnHiC in recovering high-resolution Hi-C matrices from low-reso-
lution input data. We then asked whether EnHiC can enhance Hi-C
matrix resolution across different cell types. Toward this goal, we
applied three models (EnHiC, Deephic and HiCSR) that were

previously trained on the deeply sequenced GM12878 (lymphoblas-
toid cells) dataset to two other less-sequenced Hi-C datasets: IMR90
(lung fibroblast cells), and K562 (leukemia cells). The same data
preprocessing was performed in each cell type; and HiCRep and
GenomeDISCO similarity scores were calculated to evaluate the
model predictions.

Figure 2 illustrates the cross-cell-type performance of EnHiC,
Deephic and HiCSR. Overall, EnHiC outperformed both Deephic
and HiCSR with the highest HiCRep and GenomeDISCO scores in
both IMR90 and K562 datasets. We observed that the HiCRep and
GenomeDISCO similarity scores were relatively lower than the ones
previously obtained from GM12878 data, but they were significant-
ly higher that the baseline (low-resolution input data). In addition,
the performance of all three models were slightly better in IMR90
than K562. This is likely due to the relatively higher sequencing
depth in the IMR90 data (Supplementary Table S1). Taken together,
these results indicated that EnHiC can effectively recover high-reso-
lution matrices from insufficiently sequenced Hi-C data across cell
types.

3.1.5 Performance on different downsampling ratios

In the training process, we generated low-resolution Hi-C matrices
that were 16� downsampled from high-resolution ground truth, i.e.
the sequencing depth of the low-resolution input data was 1/16 of
the high-resolution data. We set the downsampling ratio at 16 to fa-
cilitate a fair comparison with previously published methods
(Deephic and HiCSR). Although being trained by 16� down-
sampled data, our EnHiC model is flexible and can be applied to
low-resolution data with much less sequencing depth. Next, we
sought to investigate the performance of our model using low-reso-
lution input data generated with different downsampling ratios.

In this experiment, we generated low-resolution input data at six
different downsampling ratios (4, 8, 16, 32, 48 and 64). We trained
three models (EnHiC, Deephic, HiCSR) on the human GM12878
data using the same training set (chromosomes 1–16) and validation
set (chromosomes 17–18) at 16� downsampled ratio as previously
described. We then evaluated the model performance using all 23
chromosomes at six different downsampled ratios, except for the
16� downsampled data where the 18 training and validation chro-
mosomes were excluded.

As shown in Figure 3, the HiCRep and GenomeDISCO similarity
scores of low-resolution input baseline decreased sharply as the
downsampling ratio increased. Notably, our EnHiC model robustly
and stably recovered high-resolution Hi-C matrices from low-

Table 1. Evaluation of high-resolution Hi-C matrices predicted by

EnHiC, Deephic and HiCSR

HiCRep GenomeDISCO

Chromosome EnHiC Deephic HiCSR EnHiC Deephic HiCSR

19 0.972 0.942 0.970 0.83 0.768 0.677

20 0.972 0.941 0.967 0.837 0.777 0.65

21 0.973 0.966 0.968 0.816 0.771 0.636

22 0.978 0.974 0.973 0.844 0.786 0.716

X 0.949 0.930 0.945 0.781 0.743 0.639

Note: Three models are evaluated on chrosomomes 19-22 and X in

human GM12878 Hi-C data. Each model prediction result is compared

against the ground truth, and the HiCRep and GenomeDISCO scores are cal-

culated. The highest HiCRep and GenomeDISCO scores are highlighted in

bold.

Fig. 2. Evaluation of high-resolution Hi-C matrix predictions by EnHiC, Deephic

and HiCSR on human IMR90 and K562 Hi-C data (23 chromosomes). The models

are first trained on GM12878 data and then applied to the other cell types. Each

prediction result is compared against the ground truth, and the HiCRep and

GenomeDISCO similarity scores are reported. Each box represents similarity scores

of 23 chromosomes (1–22 and X). Low-resolution (LR) input data are included as

the baseline
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resolution input data with large downsampled ratios. Moreover,

EnHiC achieved higher HiCRep and GenomeDISCO scores than
DeepHiC and HiCSR at almost all downsampled ratios. Although
HiCSR performed slightly better than EnHiC by the HiCRep metric

when the downsampling ratio was 4, its performance dropped
sharply when the downsampling ratio increased. This is probably

due to the pre-trained denoise model used in the loss function of
HiCSR. Collectively, these results demonstrated that EnHiC can
successfully predict high-resolution Hi-C matrices from insufficient-

ly sequenced low-resolution data.

3.2 EnHiC facilitates accurate detection of TADs
TADs are functional units of chromatin, where chromatin interac-

tions are observed more frequently within TADs than outside TADs.
TAD boundaries are largely conserved across cell types and are
enriched with CTCF and other chromatin-binding proteins (Dixon

et al., 2012). To investigate whether high-resolution enhancing
methods promote TAD detection, we compared the TADs identified

from high-resolution predictions by EnHiC, Deephic and HiCSR,
with the TADs identified from the true high-resolution data.

Several computational methods exist for detecting TADs in Hi-C
contact maps. Here, we used the hicFindTADs method in the
HiCExplorer package (Wolff et al., 2018). We calculated Jaccard

scores to assess the consistency between TADs detected from model
predictions and TADs detected from true high-resolution (HR) data.
The Jaccard score measures the similarity between two sets and is

defined as the ratio of the intersection size over the union size.
Jaccard score has been commonly used to quantify similarities of

TAD and chromatin loop detections (Forcato et al., 2017; Hong
et al., 2020). Here we calculated Jaccard scores of TAD boundaries
and allowed the boundaries to be shifted within 5 bins between the

two sets.

Jaccardscore ¼
TADHR \ TADprediction

TADHR [ TADprediction

Figure 4 illustrates the Jaccard score evaluation of various methods

in the validation dataset (chromosomes 17 and 18) and the test data-
set (chromosomes 19–22 and X). The TADs detected from low-reso-

lution input matrices were also included as baselines. Overall, EnHiC
promoted accurate TAD detection; and the identified TADs were
highly consistent with the ones identified from the true high-resolution

data. In most cases, except for chromosome 21, high-resolution pre-
dictions from GAN-based models resulted in more accurate TAD de-
tection than low-resolution input matrices (Fig. 5). Overall, EnHiC

yielded the highest Jaccard scores for five out of seven chromosomes,
and outperformed both Deephic and HiCSR.

We also characterized the ChIP-seq profiles of several chromatin
structural proteins and histone marks at the detected TAD bounda-
ries in EnHiC-predicted matrices (Supplementary Fig. S10).
Consistent with the previous findings (Dixon et al., 2012), we
observed that CTCF, members of the cohesin complex (SMC3 and
RAD21), RNA polymerase PolII binding and H3K4me3 and
H3K27me3 histone modifications were enriched at TAD bounda-
ries, whereas H3K9me3 was depleted at such boundaries.

We further examined TAD detection results in two local regions
(chr17:72–74Mbp and chr19:14–16Mbp), as illustrated in Figure 6.
The low-resolution input matrices are sparse and noisy; therefore,
the detected TADs are often merged or split. Our EnHiC model ac-
curately predicted high-resolution matrices from low-resolution in-
put data. As a result, the TADs detected from EnHiC predictions
were in agreement with the TADs from the true high-resolution data
in both examples. We observed that both Deephic and HiCSR pre-
dictions overinflated the contact frequencies and Deephic predic-
tions contained unwanted image textures, thereby resulting in
inaccurate TAD detection.

3.3 EnHiC-predicted high-resolution matrices promote

precise identifications of significant chromatin

interactions
Next, we investigated whether the EnHiC-predicted high-resolution
Hi-C data could facilitate the identification of fine-scale chromatin
loops. We applied Fit-Hi-C (Ay et al., 2014) to identify significant
interactions within 1 Mb genomic distances and compared the over-
laps between the real and predicted Hi-C matrices. The Jaccard
score was used to assess consistency between the significant interac-
tions in the two matrices.

As shown in Figure 7, EnHiC evidently outperformed the other
two GAN-based prediction models with significantly higher Jaccard

Fig. 3. Performance of high-resolution Hi-C matrix predictions by EnHiC, Deephic

and HiCSR on GM12878 data at various downsampling ratios (4, 8, 16, 32, 48 and

64). Each prediction result is compared against the ground truth; and the HiCRep

and GenomeDISCO reproducibility scores are reported. The mean values and error

bars are calculated using scores from 23 chromosomes (1-22 and X). Low-reso-

lution (LR) input data are included as the baseline

Chromosome

Ja
cc

ar
d 

Sc
or

e

0.00%

20.00%

40.00%

60.00%

80.00%

chr22 chr21 chr20 chr19 chr18 chr17 chrX

EnHiC Deephic HiCSR LR

Fig. 4. The Jaccard scores of TADs. TADs detected from high-resolution predictions

by EnHiC, Deephic and HiCSR were compared with TADs detected from real high-

resolution (10 kb) Hi-C data, for chromosomes 17–22 and X. TAD detection results

from low-resolution (LR) input data were also included
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scores (t-tests, P-values: 2:57� 10�4 (EnHiC versus Deephic),
1:23� 10�7 (versus HiCSR) and 4:98� 10�6 (versus LR)). The
low-resolution Hi-C input matrices lack sufficient sequencing depth;
therefore, they are not suitable for the identification of fine-scale
chromatin interactions, especially when the genomic distance
increases (Supplementary Fig. S11).

We further looked at two example regions, chromosome 17:32–
34Mbp (Fig. 8) and chromosome 19:14–16Mbp (Fig. 9). As demon-
strated in both regions, EnHiC successfully recovered the high-reso-
lution matrices and produced highly similar chromatin loop
identifications as those identified from real high-resolution data. As
previously observed, Deephic and HiCSR tended to overinflate the
contact matrix, thereby leading to a large number of false discov-
eries of significant interactions. The high false discovery rate is likely
due to the preprocessing procedures or loss functions in these mod-
els. For example, HiCSR uses a log1p transformation in its prepro-
cessing step, which may inflate low contact frequencies. In addition,
Deephic uses a perceptual loss; as a result, its predictions contained
unwanted image textual artifacts. Our EnHiC model is specifically
designed to account for the unique data properties in the Hi-C ma-
trix; therefore, the EnHiC-predicted matrices faithfully present high-
resolution details in the Hi-C matrix.

4 Discussion and conclusions

In this study, we proposed a generative adversarial framework,
EnHiC, for predicting high-resolution Hi-C matrices from low-reso-
lution input data. Specifically, high-resolution enhancement is

achieved through the extraction of rank-1 matrix features from
multi-scale low-resolution input samples and subsequent upsam-
pling processes via sub-pixel CNN layers.

Existing resolution-enhancement models, such as Deephic and
HiCSR, treat Hi-C matrices as single-channel images, and leverage on
the established neural networks of image super-resolution models.
Although such models can produce super-resolution Hi-C matrices,
their predictions often overinflate the Hi-C matrix features and some-
times contain unwanted natural image artifacts. Unlike other models,
our EnHiC model utilizes the unique properties of Hi-C data.

Inspired by NMF, our EnHiC model uses similar notions of
rank-1 features and matrix factorization. However, our model is dif-
ferent from NMF in the following aspects. First, our model attempts
to decompose a set of submatrices, instead of a full matrix. In the de-
composition step, it searches for a rank-1 solution that fits all sub-
matrices. Here we limit the rank to 1 to bypass the problem of
picking the appropriate number of ranks in a low-rank solution.
Second, our model optimizes the rank-1 matrix decomposition via
the Decomposition & Reconstruction Block in the GAN frame-
work. The difference between the input Hi-C matrix and its rank-1
approximation is characterized by a loss function consisting of the
L2 MSE loss and structural dissimilarity.

High-resolutoin

CTCF ChIP-seq

Low-resolution

EnHiC

Deephic

HiCSR

High-resolutoin

CTCF ChIP-seq

Low-resolution

EnHiC

Deephic

HiCSR

(a)

(b)

Fig. 6. Examples of TAD detection results. (a) Chromosome 17 from 72Mbp to

74Mbp, (b) Chromosome 19 from 14Mbp to 16Mbp. TADs were identified using

HiCExplorer. From top to bottom: true high-resolution (10 kb) Hi-C data, CTCF

ChIP-seq signal, low-resolution (40 kb) input Hi-C data and high-resolution predic-

tions from EnHiC, Deephic and HiCSR. For each Hi-C matrix, the heatmap of

close-to-diagonal region is displayed with the color key from low (blue) to high

(red) interaction frequencies. TADs are identified using HiCExplorer, and marked

as black triangles

Fig. 7. The Jaccard scores of significant interactions between the true high-reso-

lution Hi-C and model predictions. The results from low-resolution (LR) input data

were included as baseline. Each box depicts the Jaccard scores of seven chromo-

somes (17–22 and X)

(a) (b)

(c) (d)

Fig. 8. Significant chromatin interactions identified in chromosome 17 from 32Mbp to

34Mbp. (a) High resolution (HR) Hi-C at 10 kb, (b) EnHiC prediction, (c) HiCSR pre-

diction, and (d) Deephic prediction. Significant interactions were identified using

FitHiC and are highlighted in green. Hi-C matrices are plotted on a log1p scale

i278 Y.Hu and W.Ma



We demonstrated the performance of our EnHiC model using

Hi-C datasets on three human cell lines. Overall, our EnHiC model
evidently outperformed two other GAN-based methods, Deephic

and HiCSR, achieving low prediction errors and high reproducibil-
ity scores when compared with the true high-resolution data.
Moreover, EnHiC model is capable of recovering high-resolution

Hi-C matrices across different cell types and from insufficiently
sequenced input data. Additionally, we demonstrated that EnHiC-

predicted matrices facilitated more accurate and precise detection of
TADs and fine-scale chromatin interactions.

We envision a few possible extensions and future directions based
on this work. First, EnHiC uses SCN normalization in the pre-proc-
essing step. The SCN normalization helps to reduce systematic biases

in Hi-C data, and rescales the intensity values to real numbers be-
tween [0,1]. It is possible to add alternative options of other Hi-C nor-

malization methods in the implementation. And we do not expect the
choice of normalization methods to have a major impact on the model
performance. Second, EnHiC requires the input matrices to be sym-

metric. In our experiments, when dividing the entire Hi-C matrix into
small submatrices, we merged two on-diagonal submatrices with one
off-diagonal matrix to generate a symmetric matrix. This divide-and-

merge strategy may cause artifacts at the edges of the submatrices.
One possible future extension is to build a paired layer that simultan-

eously estimates the row and column vectors to relax the symmetry re-
quirement. Third, to effectively extract multi-scale rank-1 features,
large input matrices are recommended. In the current setting, we used

400�400 submatrices to achieve the desired enhancement factor of
16. Increasing the dimension of the input matrices would require

more memory allocation and result in a heavier computation load.
One possible future extension is to build a distributed implementation
to mitigate the burden on each node.
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Fig. 9. Significant chromatin interactions identified in chromosome 19 from 14Mbp

to 16Mbp. (a) High resolution (HR) Hi-C at 10 kb, (b) EnHiC prediction, (c)

HiCSR prediction, and (d) Deephic prediction. Significant interactions were identi-

fied using FitHiC and are highlighted in green. Hi-C matrices are plotted on a log1p

scale
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