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Summary 
Human CD34 + hematopoietic progenitor cells, stringently purified from the peripheral blood 
of  20 normal donors, showed an impaired survival and clonogenic capacity after exposure to 
either heat-inactivated human immunodeficiency virus (HIV) 1 (strain IIIB) or cross-linked 
envelope gp120. Cell cycle analysis, performed at different times in serum-free liquid culture, 
showed an accumulation in G0/G1 in HIV-1 -  or gp120-treated cells and a progressive increase 
of  cells with subdiploid DNA content, characteristic of  apoptosis. In blocking experiments 
with anti-transforming growth factor (TGF) [31 neutralizing serum or TGF-[31 oligonucle- 
otides, we demonstrated that the HIV-1 -  or gp120-mediated suppression of CD34 + cell 
growth was almost entirely due to an upregulation of  endogenous TGF-131 produced by puri- 
fied hematopoietic progenitors. Moreover, by using a sensitive assay on the CCL64 dell line, 
increased levels of  bioactive TGF-[31 were recovered in the culture supernatant of  HIV-1/  
gp120-treated CD34 + cells. Anti-TGF-[31 neutralizing serum or TGF-~I  oligonucleotides 
were also effective in inducing a significant increase of  the plating efficiency of CD34 + cells, 
purified from the peripheral blood of three HIV-l-seropositive individuals, suggesting that a 
similar mechanism may be also operative in vivo. The relevance of these findings to a better 
understanding of the pathogenesis of  HIV-l-related cytopenias is discussed. 

A common feature of  the progression toward AIDS is 
that, besides the reduction in CD4 + T cell count, 

other peripheral blood cytopenias such as anemia, granulo- 
cytopenia, and thrombocytopenia invariably take place in 
up to 80% of HIV-l-seropositive subjects (1). The he- 
matopoietic dysfunction in symptomatic HIV-l-seroposi-  
tive subjects is underscored by an impaired in vitro growth 
capacity of  either peripheral blood or bone marrow he- 
matopoietic progenitor cells (2). Significantly, CD34 + cells 
purified from the bone marrow of AIDS patients also show 
poor colony-forming ability (3-6). 

Although a variety of  mechanisms have been claimed in 
the pathogenesis of  peripheral blood cytopenias of  AIDS 
patients (1), the role played by HIV-1 remains initially elu- 
sive. In fact, direct HIV-1 infection o fCD34  + hematopoi- 
etic progenitor cells isolated from HIV-l-seropositive car- 
riers has been reported only in a limited subset of  cases and 
can hardly account for the functional impairment of  he- 
matopoiesis observed in these patients (3-9). Similarly, only 
a minority of  purified CD34 + cells are susceptible to either 

productive or latent infection with HIV-1 in vitro (9-15). 
Therefore, the direct infection of hematopoietic stem/pro- 
genitor cells does not seem to be a leading cause for the ob- 
served pathophysiology, suggesting that mechanisms other 
than direct infection may be responsible for the AIDS-asso- 
ciated hematopoietic suppression. 

In this context, we have previously shown that the in 
vitro exposure to either lymphocytotropic strains of  HIV-1 
(IIIB or ICR-3) or cross-linked gp120 significantly im- 
paired the survival and growth of the TF-1 CD34 § he- 
matopoietic cell line as well as bone marrow CD34 + cells 
(16). This suppressive effect appeared to be greatly depen- 
dent on the viral load, but took place in the absence of a 
productive or latent infection and was likely mediated by 
specific interactions of  envelope gp 120 with the CD4 anti- 
gen, expressed at low level on the surface of a subset of  hu- 
man hematopoietic progenitor cells (17, 18). 

It was previously shown by single-cell cultures and limit- 
ing dilution analysis that early hematopoietic progenitor 
cells are able to produce autocrine TGF-131 (19, 20), which 

99 J. Exp. Med. �9 The Rockefeller University Press ~ 0022-1007/96/01/99/10 $2.00 
Volume 183 January 1996 99-108 



is thought  to play an essential role in the ma in tenance  o f  
the quiescence state o f  stem cells and more  immature  
hematopoie t ic  progenitors.  Here we explore whe ther  en -  
dogenous  p roduc t ion  o f  TGF-]31 could take part in the 
H I V - 1 / g p 1 2 0  inh ib i tory  effect on  C D 3 4  + hematopoie t ic  
progenitors.  T o  do this, we studied the effect o f a n t i - T G F -  
131 serum or TGF-181 antisense ol igomers on  the survival 
and c lonogenic  capacity o f  C D 3 4  + cells, purified from the 
peripheral b lood o f  healthy donors  and H I V - l - s e r o p o s i t i v e  
carriers, in bo th  serum-free suspension and senlisolid assays. 

Materials and Methods 

Growth Factors, Antibodies, and Oligodeoxynucleotides. rlL-3 and 
stem cell factor (rSCF), were purchased from Genzyme Corp. 
(Cambridge, MA). Erythropoietin (rEp) was kindly provided by 
Cilag (Milan, Italy). Purified TGF-[31 was purchased from R&D 
Systems, Inc. (Minneapolis, MN). 

In neutralizing experiments, rabbit anti-TGFd31 (tL&D Sys- 
tems. Inc.), rabbit anti-IFN-er (104 neutralizing units/ml; Bio- 
source, Camarillo, CA) and rabbit anti-TNF-o~ (Genzyme Corp.) 
polyclonal sera were used. In preliminary experiments, 20 Ixl of  
anti-TGF-[31 serum could completely neutralize 100 ng of TGF-[31. 

21mers corresponding to the antisense, sense, or missense se- 
quences flanking the translation initiation regions of the m R N A  
for TGF-I31 were prepared as described by Hatzfeld et al. (19). 
The sequence of the phosphorothioate oligonucleotides are as fol- 
lows: TGF431 antisense, 5 ' -CCCGGAGGGCGGCATGGGGGA- 
3'; TGF-[31 sense, 5 ' - T C C C C C A T G C C G C C C T C C G G G - Y ;  
TGF-[31 missense, 5 ' - G G C G A G C G A G T G A G C G C G C G G - 3 ' .  

Isolation q[ CD34 + Progenitor Cells from Peripheral Blood. Intbrmed 
consent for the study was obtained according to the Helsinki dec- 
laration of 1975 from 20 healthy donors and 3 HIV-l-sero-  
positive subjects. Mononuclear cells were isolated from leu- 
kapheresis units (healthy donors) or 60 ml of peripheral blood 
(HIV-l-seropositive donors) by Ficoll-Paque (d = 1.077 g/nil: 
Phamiacia, Uppsala, Sweden), rinsed, and adherence-depleted 
overnight. Nonadherent cells were collected and aliquoted at a 
concentration of 25 • 106 cells/tube. 50 p.l of  the following 
mAbs were added to each tube: anti-CD2, anti-CD3, anti-CD8, 
anti-CD11, anti-CD14, anti-CD19, anti-CD20 (Becton Dickin- 
son & Co., San Jose, CA) in the presence of 0.5% BSA (fraction 
V Chon; Sigma Chemical Co., St. Louis, MO). After two wash- 
ings, 100 • 106 imnmnomagnetic beads, coated with anti-mouse 
IgG (MPC 450 Dynabeads; Dynal, Oslo, Norway) were then 
added to each tube to obtain an inmmnomagnetic bead/cell ratio 
of 10:1 in a final volume of 0.4 rrfl for 30 rain in ice, under con- 
tinuous agitation. Lineage-positive cells were removed by a mag- 
net (MPC 1 Dynabeads; Dynal) and the remaining cells were pel- 
leted at a concentration of 5 • 106 cells/tube. After these 
negative selections, CD34 + cells were isolated using a magnetic 
cell sorting program (Mini-MACS; Miltenyi Biotec, Auburn, 
CA) and the CD34 isolation kit in accordance with the manufac- 
turer's reconmlendations. 

The purity of CD34-selected cells was determined tbr each 
isolation by flow cytomet W using a mAb that recognizes a sepa- 

t Abbreviations used in this paper: BFU-E, burst-forming unit, erythroid; 
BFU-meg, BFU-megakaD'ocyte; CFU-GM, colony-forming unit-granu- 
locyte macrophage; CFU-meg, CFU-megakaD'ocyte; Ep, eD'thropoietin; 
PB, peripheral blood: Pl, propidium iodide; R.T, reverse transcriptase; 
SCF, stem cell factor: TCID50, tissue culture infectious dose 50. 

rate epitope of the CD34 molecule (HPCA-2; Becton Dickinson 
& Co.) followed by a goat anti-mouse lgG directly conjugated to 
fluorescein (GAM-FITC). CD34 + cells averaged N95-98%. No 
differences in CD34 purity, were observed in HIV-l-seronegative 
and ~eropositive donors. 

The presence of proviral DNA in CD34 + cells purified from 
HIV-l-seropositive subjects was exanfined by PCR, following a 
previously described procedure (7), with a sensitivity of 10 provi- 
ral copies in a background of 104 cells. Aliquots of 20,000 CD34 + 
cells were amplified with the HIV-1 gag-specific primers SK38- 
SK39. P C R  runs included several reactions containing all reagents 
except DNA as negative controls, as well as HIV-1 + controls rep- 
resented by H9 and Jurkat T cell lines chronically infected with 
HIV-1. At the end of the amplification reaction, 25-btl aliquots of 
the amplified products were resolved in a 3% agarose gel. 

Virus Stock and Recombinant Viral Proteins. Vires stock was re- 
presented by the supernatant of H9 lymphoblastoid T cells cul- 
tured at optimal cell density (0.5-1.5 X 106 cells/ml) arid har- 
vested 14 d after infection with HIV-1 (strain IIIB). It contained 
a reverse transcriptase (RT) activity of 1.5 X 106 cpm/ml with an 
infectivity of 3 X 106 TCID50 (tissue culture infectious dose 50) 
equivalents for lymphocytes, determined as previously described 
(14). 1 nil of  purified, high-titer stock of HIV-I was first heat in- 
activated of infectious virus at 59~ for 45 min, and then added 
to CD34-  cells for 2 h at 37~ Control (mock-treated) cultures 
were run in parallel by challenging CD34 + cells with 1 nfl of the 
supematant of uninfected H9 lymphoblastoid T cells cultured un-  
der optimal conditions. After virus adsorption, the cells were 
plated in liquid or semisolid cultures. The absence of infectious 
virus after heat inactivation was checked by adding HIV-1 IIIB to 
permissive T lymphoblastoid H9 and Jurkat T cell lines or PHA- 
stimulated PBMC. In some experiments, CD34 + cells were 
treated with heat-inactivated HIV-1 plus increasing concentra- 
tions (1-100 ng/ml) of purified TGF-131. 

In experiments with recombinant etw proteins, several doses 
(10 ng-10 lxg) ofbaculovirus-derived HIV-1 gp120 (ABT, Cam- 
bridge, MA) were added to cells for 1 h at 4~ followed by 3(3 
min at 4~ with 20 ILl rabbit anti-gpl20 (ABT) serum before 
plating. To control for nonspecific protein effects, we performed 
experiments with baculovirus-derived recombinant p24 (ABT) 
nmrine lgG, hmnan lgG followed by 20 ~I of rabbit anti-p24 
(ABT), rabbit anti-mouse IgG, or rabbit anti-human lgG anti- 
sera, respectively. Normal rabbit serum was also included as addi- 
tional control. 

Serum-free Suspemion Cultures. To eliminate the influence of 
TGF-[3I contained in serum or plasma (21), purified CD34 + cells 
were resuspended in serum-free medium (IMDM containing 
10 -4 M BSA-adsorbed cholesterol and nucleosides, 10 p,g/ml 
each, 0.5% BSA, 10 ~g/ml  insulin, 2% 21)0 p,g/ml iron-saturated 
transferrin, 5 • 10 -5 M 2-[3-ME) containing IL-3 (0.4 ng/ml) 
and SCF (40 ng/ml). 50,000 cells/well were incubated in 48-well 
flat-bottom tissue culture plates (Nunc, 1Loskilde, Denmark) in 
0.2 nil of medium at 37~ in a water-saturated atmosphere of 5% 
CO2 for the next 15 d. Using trypan blue dye exclusion, the 
number of viable cells was determined over this 15-d period. 

To minimize the influence of possible endotoxin contamina- 
tions, all the experimental procedures were perfomled in endo- 
toxin-free plastic ware. According to the manufacturer's informa- 
tion, the levels of endotoxin contamination in the cytokine 
preparations were <0.13 endotoxin U /ml  by the Limulus assay 
(E-Toxate; Sigma Chemical Co.; limit of detection, 0.06 EU/ml). 

Cell Cycle Analysis and [3H]Thi, midine Incorporation Assa),. At 
different time points, cells were harvested from liquid culture, 
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fixed in 70% ethanol for 1 h at 4~ and then incubated with 20 
btg/ml of RNase for 30 min at 37~ Nucleic DNA was stained 
with 50 ~g/ml propidium iodide (PI; Sigma Chemical Co.) and 
allowed to equilibrate for 10 min in the dark before being ana- 
lyzed as described (22). Fluorescence analysis of individual nuclei 
was performed by the use of a FACScar/g flow cytometer 
equipped with an argon-ion laser (488-nm wavelength, 100-mW 
light output) and lysis II software (Becton Dickinson & Co.). The 
fluorescence intensity from cell nuclei stained with PI is propor- 
tional to the cellular DNA content. 

For the [3H]thymidine incorporation assay, cells were counted 
at different time points of liquid culture, and then seeded at 
50,000/100 ~1 in 96-well flat bottom tissue culture plates 
(Nunc). 1 ~Ci [3H]thymidine (6.7 Ci/mmol; DuPont New En- 
gland Nuclear, Boston, MA) was added to each well for 4 h of in- 
cubation. Radioactivity incorporated into DNA was measured by 
liquid scintillation counting. 

Detection qf TGF-~ I mRNA. Total RNA was isolated from 
-'~1 • 105 enriched CD34 § cells by using RNAzol B (Biotecx 
Texas, Houston, TX), according to the manufacturer's instruc- 
tions, and resuspended in 10 Ftl of diethylpyrocarbonate-treated 
water. Reverse transcription was performed for 10 rain at room 
temperature and for 60 min at 42~ on 1 ~g of RNA (equivalent 
to 5 X 104 cells) in 20 ~tl of a reaction mixture containing 10 
mM Tris HCI (pH 8.3), 50 mM KCI, 5 mM MgC12, 0.l% gela- 
tin, 100 pM random hexamer primers, 20 U of placental RNase 
inhibitor (Boehringer Mannheim, Postfach, Germany), 100 U of 
RT (Perkin-Elmer Cetus Instruments, Norwalk, CT), and 1 mM 
of dATP, dCTP, dGTP, and dTTP. Each cDNA sample was 
then used as template for the PCR assay. The PCR mixture con- 
tained 10 mM Tris HCI (pH 8.3), 50 mM KCI, 2.5 mM MgCI2, 
0.l% gelatin, 100 pM of TGF-[31 primers, and 2.5 U of Taq 
polymerase (Perkin-Elmer Cetus Instruments). The TGF-[31 primers 
5'-CAGAAATACAGCAACAATTCCTGC-3' and 5 ' -TTGC- 
AGTGTGTTATCCGTGCTGTC-3 '  were prepared according 
to Kekow et al. (23) and define a 186-bp fragment extending 
from § 1358 to +1544 in the TGFq31 transcript (24). PCR reac- 
tion was performed in a 100-1xl vol for 35 cycles (denaturing 1' at 
94~ annealing 1' at 55~ and extension 1'30" at 72~ 20 Ixl of 
the PCR products was then resolved in a 3% agarose gel. The 
positive control was a TGF-131 cDNA digested with PstI (24), 
whereas the negative control was a TGF-[32 cDNA digested with 
BamH1 (25), each at 1,200 template copies. 

TGF-~31 Protein Determination. Superuatants were collected 
from serum-free 3d CD34 + cell suspension cultures. These sam- 
ples were tested for TGF-13I activity after transient acidification: 
pH in the supernatants was reduced to pH 2 by the addition of 5 
tool/liter HC1 for 2 h and then neutralized to pH 7 with 1.4 mol/ 
liter NaOH in 0.7 tool/liter Hepes. Titers of TGF-I31 were ex- 
pressed in nanograms per milliliter based on a standard curve that 
was generated with each set of assays by using purified human 
TGFd31 (R&D Systems, Inc.). The total amount of TGF-I31 in 
CD34 § cell culture supernatant was determined by antibody neu- 
tralization. The bioassay on CCL64 mink lung epithelial cells (26) 
was performed as described previously (27). Briefly, 10 s CCL64 
cells/well were seeded in 0.2 ml of serum-free medium in 96- 
well flat-bottom tissue culture plates (Nunc). Serial concentra- 
tions of purified TGF-[31 or CD34 + cell culture superuatants 
were added to CCL64 cells in appropriate dilutions in the ab- 
sence or presence of 20 Ftl of anti-TGF-131 serum. Cultures were 
incubated at 37~ for 24 h, and 1 btCi [3H]thymidine (DuPont) 
was added to each well during the final 4 h of incubation. Radio- 
activity was measured by liquid scintillation counting. 

Assay for Clonogenic Cells and Scoring Criteria. Colony assays for 
erythroid (BFU-E), granulocyte/macrophage (CFU-GM), and 
megakaryocyte (BFU-meg and CFU-meg) progenitors were per- 
formed in serum-free fibrin clot cultures as previously described 
(28). Briefly, 1,000 CD34 + cells were seeded in IMDM supple- 
mented with 300 ~g/ml iron saturated transferrin, 3 mg BSA, 
280 ~g/ml CaC12; 10 -4 M BSA-adsorbed cholesterol, 20 Ixg 
t-asparagine, 1.7 • 106 M insulin, nucleosides (10 btg/ml each), 
0.1 ml of 0.2% (wt/vol) purified fibrinogen resuspended in PBS, 
and 0.1 ml of 0.2 U/ml purified human thrombin (95%) in PBS. 
All reagents, except fibrinogen (provided by Kabi AB, Stock- 
holm, Sweden), were purchased from Sigma Chemical Co. 

For the identification of megakaryocyte aggregates, after 12 
(CFU-meg) and 21 (BFU-meg) d of culture, fibrin clots were 
fixed in situ with methanol-acetone (1:3) for 20 min, washed 
with PBS and double-distilled water, air dried, and stored at 
-20~ until immunofluorescence staining was performed. 
Megakaryocyte colonies were composed of cells intensively fluo- 
rescent to anti-CD41W (Becton Dickinson & Co.) mAb directed 
against the glycoprotein llb/Illa complex. CFU-meg were al- 
ways unifocal and composed of 3-50 megakaryocytic cells/col- 
ony, whereas BFU-meg were mainly plurifocal (from 2 to 7 foci 
of development) and usually composed of >50 cells/colony. 

Pure erythroid and mixed granulocyte/macrophage colonies 
were identified in situ according to standard morphological crite- 
ria at the day of maximal growth (12 d). Whereas BFU-E were 
readily detectable fbr the presence of hemoglobin, for the identi- 
fication of CFU-GM, fibrin clots were frxed and stained with 
Wright-Giemsa. 

Statistical Analysis. The mean of the values + SD for different 
experiments are shown in the Figures and Tables. Significant dif- 
ferences between treatment groups were deterrmned by using the 
two-tailed Student's t test applied for unpaired data. 

Results  and Discuss ion  

Purified peripheral blood (PB) CD34 + cells were chal- 
lenged with either high titers of heat-inactivated HIV-1 
(IIIB strain) or cross-linked gp120, and then seeded in a se- 
rum-flee fibrin clot semisolid assay. We  tested these re- 
agents over a wide range of  concentrations, and the results, 
shown in Fig. 1, are those obtained with concentrations 
that gave the most pronounced effects on colony forma- 
tion. 

The overall plating efficiency of  the cells in control cul- 
tures containing optimal concentrations of IL-3, SCF, and 
Ep was only partially reduced in the presence of HIV-1 
virions or viral glycoproteins. In fact, the difference with 
control cell cultures was statistically significant (p < 0.05) 
only for BFU-meg  (Fig. 1 A). O n  the other hand, cell cul- 
tures treated with HIV-1 or cross-linked gpl20 showed a 
substantial (p < 0.01) decrease in the size (number of cells/ 
colony) of all colonies except C F U - m e g  that were unaf- 
fected (Fig. 1 /3). O f  note, such inhibitory activity could be 
completely reversed by pretreatment of  HIV-1 or gpl20 
with soluble CD4, suggesting the existence of  specific in-  
teractions between envelope gp120 and the CD4 antigen 
expressed at low level by CD34 § hematopoietic progeni- 
tors (13, 17, 18). 

As a first step toward elucidating the mechanisms under-  
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Figure 1. Inhibitory activity of heat-inactivated HIV-1 (3 • 106 
TCID50) and cross-linked gp120 (5 b~g/ml + 20 Ixl ofanti-gpl20 serum) 
on the colony number (A) and size of different types of progenitors (/3) in 
semisolid cultures. Data are reported as mean --+ SD of five separate ex- 
periments performed in duplicate. 

lying the inhibi tory effect o f  HIV-1 virions or  envelope 
gp120 on PB hematopoiet ic  progenitors,  a serum-free liq- 
uid suspension assay was devised to moni tor  the survival of  
CD34 + cells. Typically, 50,000 cells, in a final volume o f  
0.5 ml, were added per well to 48-well  f lat-bottom tissue 
culture plates containing SCF (40 ng/ml)  plus IL-3 (0.4 
ng/ml) .  As can be seen in Fig. 2 A, these culture conditions 
allowed for the survival and minimal proliferation o f  
CD34 + cells during the next  15 d at 37~ at which time 
they plateaued at only a three- to fourfold amplification o f  
starting cells. O f  note, >60% o f  the 15-d cell populat ion 
was still CD34 +. At this t ime point,  no significant differ- 
ences in the phenotypic  expression o f C D 3 4  + antigen were 
observed between H I V - l - m o c k - t r e a t e d  and treated groups 
(data not  shown). In the presence o f  HIV-1 or cross-linked 
gp120, a significant (p < 0.01) inhibit ion o f  the total num-  
ber  of  viable cells was observed from days 6 -9  onward.  
Consistently, a progressive inhibit ion o f  D N A  synthesis 
with lower  levels o f  [3H]thymidine incorporat ion was seen 
in HIV-1 /gp120- t r ea t ed  cultures from day 3 onward (Fig. 
2/3). Analysis o f  the cell cycle performed by flow cy tome-  
try after PI staining showed that >60% of  control cells 

Figure 2. CD34 + cells were allowed to grow in serum-free suspension 
cultures as described in Materials and Methods and total cell numbers (A) 
and thymidine incorporation (/3) were, determined at various time points. 
H1V-1 and gp120 were used at the same concentrations reported in the 
legend to Fig. 1. Data represent the mean -- SD of four to six separate ex- 
periments perfomaed in duplicate. 

were in G0/G1  at any time point  considered with a back- 
ground (~<2%) o f  subdiploid D N A  (Table 1). HIV-1 or 
cross-linked gp120 induced a significant accumulation o f  
cells in G0/G1 phases (80-90%) with a progressive increase 
o f  subdiploid D N A  (up to 10-11%), which is considered 
characteristic ofapoptosis.  An example o f  such experiments 
is reported in Fig. 3. 

W e  then set out  to determine whether  the inhibitory ef- 
fect o f  HIV-1 glycoproteins on the survival and clonal 
growth ofhematopoie t ic  progenitors could be mediated by 
TGF-]31, a pleiotropic cytokine that plays an important  
physiological role in the negative regulation o f  hemato-  
poiesis (21, 29). Several lines o f  evidence suggested that 
TGF-131 could be the mediator  o f  the H I V - 1 / g p 1 2 0 -  
induced inhibition. In fact, (a) an autocrine product ion o f  
TGF-131 by hematopoiet ic  progeni tor  cells has been dem-  

102 HIV-1 gpl20 Upregulates TGF-[31 Production by CD34 + Cells 



Table 1. Cell Cycle Analysis of PB CD34 + Cells Performed at 
Different Time Points of Suspension Culture 

Cell cycle composition Cells with 
subdiploid 

Sampling time S G2/M G0/G1 DNA 

% of cells % 

3 d  
Control 23 8 69 2 
HIV- 1 11 4 85 6 
HIV-1 + CD4 21 9 70 2 
Cross-linked gpl20 9 3 88 7 
Cross-linked p24 25 9 66 1 

6 d  
Control 26 9 65 1 
HIV-1 7 3 91 9 
HIV-1 + CD4 24 10 66 3 
Cross-linked gp120 7 3 90 10 
Cross-linked p24 28 10 62 2 

12d 
Control 29 9 62 2 
HIV-1 3 2 95 11 
HIV-I + CD4 26 8 66 1 
Cross-linked gp120 4 3 93 12 
Cross-linked p24 26 10 64 3 

Data represent the means of three separate experiments performed in 
duplicate. Standard deviations were within 9% of the mean. 

onstrated and proposed as an important regulatory mecha- 
nism of  quiescence for stem and early hematopoietic pro- 
genitor cells (19, 20); (b) TGF-[~I is known to decrease the 
total cell output in liquid culture by either arresting cell cy- 
cle progression or inducing apoptosis o f  hematopoietic 
progenitor cells (29-32); and (c) TGF-[M is also able to ac- 
celerate the differentiation of  early erythroid progenitors by 
significantly reducing the time required for the majority o f  
CD34 + cells to become differentiated (33). All these prop- 
erties of  TGF-[31 were compatible with our present exper- 

imental findings on the inhibitory activity o f  HIV-1 and 
envelope gpl20. 

Therefore, in the next group of  experiments, PB CD34 + 
cells were first challenged with heat-inactivated HIV-1 or 
gp120, and then seeded in liquid suspension culture with 
or without  20 p~l of  rabbit anti-TGF-[M neutralizing serum 
or control anti-mouse IgG, anti-TNF-Ix, or anti-IFN-o~ 
sera (Fig. 4). After 12-15 d of  culture, 1.5-2-fold increase 
in the number o f  viable cells was noticed in control cul- 
tures supplemented with anti-TGF-[~l (Fig. 4 A). Signifi- 
cantly, an even greater increase (3-3.5-fold) in total cell 
number  was found in cultures challenged with HIV-1 (Fig. 
4 B) or cross-linked gp120 (Fig. 4 C) in the presence o f  
anti-TGF-[31 serum. 

To  further assess the role o f  TGF-[~I in the H I V - 1 -  
induced impairment ofhematopoietic progenitor cell growth, 
PB CD34 + cells were plated under optimal growth condi- 
tions at low cell concentration in 35-mm Petri dishes in se- 
rum-free fibrin clot semisolid assay. Addition o f  8 IxM of  
the antisense but not the sense or missense TGF-[31 signifi- 
candy (p < 0.01) enhanced the size o f B F U - E ,  CFU-GM,  
and BFU-meg  (Fig. 5). Once again, the stimulatory effect 
o f  antisense TGF-[31 oligomers was greater in H I V - 1 -  
treated (Fig. 5 /3) or gp120-treated (Fig. 5 C) cultures than 
in control (Fig. 5 A) cultures. Moreover,  the addition o f  
anti-TGF-[31 neutralizing serum yielded a similar enhance- 
ment (p < 0.01) o f  colony formation as achieved with ad- 
dition o f  antisense TGF-[~I. Single-cell cultures from two 
separate experiments gave similar results (data not shown). 

To  provide an additional and direct proof  that TGF-[31 
was produced by purified hematopoietic progenitor cells, 
TGF-[~I ml<NA was analyzed by R T - P C R  in CD34 + 
cells (Fig. 6 A). Expression of  TGF-[31 m R N A  was found 
in CD34 + cells treated with either the culture supematant 
of  uninfected H9 cells or heat-inactivated HIV-1.  More-  
over, to demonstrate that TGF-[~I protein was released in 
the culture supernatant by CD34 + cells and acted exter- 
nally to the cells, a highly sensitive bioassay on the CCL64 
epithelial cell line was used (Fig. 6/3). This group of  exper- 
iments showed that significantly (p < 0.01) higher amounts 
o f  bioactive TGF-[~I were released in the serum-free cul- 
ture supernatant by CD34 + cells 3 d after treatment with 
heat-inactivated HIV-1 or cross-linked gp120 with respect 
to cells treated with the supernatant o f  uninfected H9 cells 
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r 
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Figure 3. Cell cycle analysis of 
CD34 + cells treated with H9 
uninfected cell culture supema- 
tant (A; control) and heat-inacti- 
vated HIV-1 (B) after 12 d of 
suspension cultures as described 
in Materials and Methods. A rep- 
resentative of three separate ex- 
periments is shown, x axis, PI 
fluorescence, y axis, relative 
number of cells. 
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Figure 4. Enhancement of total CD34 + cell numbers grown in serum- 
free suspension cultures in the presence of anti-TGF-[31 serum. Cells 
were supplemented with H9 uninfected cell culture supernatant (A; con- 
trol), heat-inactivated HIV-1 (B), or cross-linked gp120 (C) using the 
same concentrations reported in the legend to Fig. 1. Data represent the 
mean + SD of four separate experiments performed in duplicate. 

or  cross-l inked p24. T h e  addi t ion o f  soluble C D 4  c o m -  
pletely b locked  the biological  activity o f  TGF-]31 r e c o v -  
ered in H I V - l - t r e a t e d  C D 3 4  + cells. Interestingly, a sup-  
pressive effect on  the co lony  format ion,  similar to that 
previous ly  found  in the presence  o f  ei ther  H I V - 1  virions or  
cross=linked g p l 2 0  (Fig. 1 B), was also observed  in C D 3 4  + 
cell cultures supp lemented  wi th  l o w  concent ra t ions  (1-10 

Figure 5. Enhancement of colony size by different types of progenitors 
plated at low cell density (10 3 cells/ml) in the presence of TGF-[31 anti- 
sense oligomers or anti-TGF-[~l serum, Cells were supplemented with 
H9 uninfected cell culture supernatant (+t; control), heat-inactivated 
HIV-I (B), or cross-linked gpI20 (C) using the same concentrations re- 
ported in the legend to Fig. 1. Data are reported as means ~+ SD of five 
separate experiments performed in duplicate. 

n g / m l )  o f  purif ied TGF-[31 (Fig. 7 A). These  concen t ra -  
tions were  comparable  to those found  in the cul ture super-  
natant  o f  H I V - 1 / g p 1 2 0 - t r e a t e d  C D 3 4  + cells. Toge the r ,  
these data fur ther  suggest that min imal  amounts  o f  endoge -  
nous T G F - ~ I  released by C D 3 4  + cells can account  for the 
inh ib i tory  activity o f  H I V -  1 /gp  120. 

Since elevated levels o f  circulat ing TGF-131 have  been  
documen ted  in HW-1--seroposi t ive  subjects (34), and T G F -  
[31 is able to tr igger its o w n  p roduc t ion  (35), we  next  eval-  
uated the effect o f  purif ied TGF-[~I  in combina t ion  wi th  
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Figure 6. (A) TGF-[31 mRNA expression in CD34 + cells. (A) Lane M, 
molecular weight markers; lane 1, TGF-[32 cDNA (negative control); 
lane 2, TGF-~I cDNA (positive control); lane 3, CD34 § cells treated 
with H9 uninfected cell culture supematant; lane 4, H20 (negative con- 
trol); lane 5, CD34 + cells treated with heat-inactivated HIV-1; lane 6, 
CD34 + cells treated with heat-inactivated HIV-1 plus soluble CD4. (B) 
Quantitative evaluation of the amount of TGF-[31 released in culture su- 
pernatants by CD34 + cells 3 d after exposure to H9 uninfected cell cul- 
ture supernatant (control), heat-inactivated HIV-1, cross-hnked gp120, 
heat-inactivated HIV-I plus soluble CD4, and cross-linked p24 used at 
the same concentrations reported in the legend to Fig. 1. A representative 
of three separate experiments is shown. 

hea t - inac t iva ted  H I V - 1  (Fig. 7 B), Exposure  to h igh  c o n -  
centrat ions o f  TGF-[31 (100 n g / m l )  plus H I V - 1  resulted in 
an addit ive inh ib i tory  effect on  C D 3 4  + cell co lony  fo rma-  
t ion,  suggest ing that exogenous  TGF-J31 may  also part ici-  
pate in the upregula t ion  o f  endogenous  TGF-[31 in h e -  
ma topo ie t i c  progeni tors .  

Figure 7. Suppressive effect of increasing concentrations of TGF-[31 
alone (A) or in combination with heat-inactivated HIV-1 (/3) on the col- 
ony size of different types of progenitors in semisolid cultures. Data are 
reported as mean + SD of three to five separate experiments performed 
in duplicate. 

In a last g roup o f  exper iments ,  w e  invest igated the effect 
o f  the addi t ion o f  antisense TGF-[31 ol igonucleot ides  or  
anti-TGF-131 se rum to C D 3 4  + cells purified f rom the PB 
o f  three H I V - l - s e r o p o s i t i v e  individuals,  whose  h e m a t o -  
logic parameters  are shown  in Table  2. O f  note ,  the pres-  
ence  o f  H I V - 1  infec t ion  in en r i ched  C D 3 4  + cells was p re -  
l iminari ly  exc luded  by gag D N A  P C R ,  pe r fo rmed  as 
described previously (7). A substantial increase in the n u m -  

T a b l e  2. Hematological Features of HIV-1-seropositive Patients 

Patient Sex Pit Hb W B C  CD4 CD8 gag D N A  in CD34 + cells 

X 109/liter g/dl • 106/liter X 106/liter X 106/liter 

1 M 76 13.0 4,250 128 497 negative 

2 M 96 11.5 5,100 89 715 negative 

3 F 107 10.6 3,900 113 863 negative 

Pit, platelets; Hb, hemoglobin; WBC, white blood cells; CD4, CD4 + T cells; CD8, CD8 + T cells. 
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Figure 8. Enhancement of colony number (A) and size (B) by different 
types of progenitors in semisolid cultures, and total number of CD34 + 
cells (C) purified from three HIV-l~seropositive subjects in suspension 
cultures in the presence of TGF-[31 antisense oligomers or anti-TGF-[31 
serum. Data are reported as means of experiments performed in duplicate. 

ber of  viable ceils was noticed in suspension liquid culture 
(Fig. 8 A, 4-5 fold increase after 12-15 d) as well as in the 
number (Fig. 8 B) and size (Fig. 8 C) of colonies in the 
presence of  either antisense TGF-[31 oligonucleotides or 
anti-TGF-[31 serum. 

Our results indicate that the suppressive effect induced 
by HIV-1/gp120 on CD34 + hematopoietic progenitor 
cells is mediated by an upregulation of TGF-[31, endoge- 
nously produced by CD34 + hematopoietic progenitors. 
The current model of  hematopoiesis is that stem and early 
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progenitor cells are recruited from quiescence by early-act- 
ing cytokines into a colony-stimulating responsive state that 
enables subsequent proliferation and differentiation (36). 
The entry into cell cycle, however, is regulated in a feed- 
back loop fashion: inhibitory molecules, such as TGF-[31, 
limit the cycling of stem cells and consequently dampen the 
proliferative stimulus (21). TGF-131 is also a potent differ- 
entiation inducer of  cycling progenitors, since it may pre- 
maturely trigger terminal differentiation in primitive he- 
matopoietic progenitor cells, thereby reducing the overall 
number of  mature cells (33). 

An HIV-1/gp120 suppression ofhematopoiesis based on 
an indirect mechanism, such as an increased release of  en- 
dogenous TGF-[31, may explain several findings reported 
in the literature: (a) the frequency of CD34 + cells (number 
of  CD34+/bone marrow mononuclear cells) is not signifi- 
cantly reduced until very late stages of  HIV-1 disease (3-9); 
(b) nevertheless, CD34 + cells challenged in vivo or in vitro 
with HIV-1 or viral products show, at least in some studies, 
an impaired colony-forming ability (3-7, 12-16); and (c) 
no correlations are found between presence of viral infec- 
tion, either productive or latent, and impaired colony 
growth of CD34 + hematopoietic progenitors purified from 
HIV-l-seropositive subjects (3-7, 9). 

Experimental evidence suggests that TGF-[31 acts on tar- 
get cells by arresting or delaying cells in G0/G1 of  the cell 
cycle (30, 31), as well as by inducing apoptosis (32). Both 
of these effects were observed in HIV-1/gpl20-treated 
CD34 + cells. The activity of  TGF-[31 is mediated, at least 
in part, by maintaining the retinoblastoma growth suppres- 
sor protein in an active underphosphorylated state (37, 38) 
through an inhibition of the synthesis of  the cyclin-depen- 
dent kinase (and/or its associated cyclin) that phosphory- 
lates the retinoblastoma or a block of  the formation of this 
cyclin-kinase complex (39). TGF-[31 may also inhibit cell 
cycling by down modulating the expression of growth fac- 
tor receptors (40). 

Remarkably, neither a productive nor latent infection was 
required to upregulate endogenous TGF-~I .  Therefore, 
defective virions and/or free glycoprotein gp120, which 
are produced in abundance by infected cells (41), may be 
effective as infective virions in the induction of this TGF-  
[31-mediated inhibitory effect. The mechanism(s) by which 
HIV-1 or free gp120 upregulates the production and re- 
lease of  TGF-[31 remains to be fully elucidated. Analogous 
to mature myeloid cells (42, 43), purified CD34 + hemato- 
poietic progenitor cells also constitutively express TGF-[31 
mRNA.  However, due to the low number o fCD34  + cells 
achievable from each sample, the presence of TGF-[31 
m R N A  could only be evaluated by ILT-PCR. This analy- 
sis did not show any significant quantitative difference in 
the levels of  TGF-[31 mlLNA between cells treated with 
the supernatant of  H9 uninfected cultures and cells treated 
with heat-inactivated HIV-1. Clearly, it will be important 
to determine whether gpl20 affects the stability o f m R N A s  
or the translation of TGF-[31 in CD34 + cells, as proposed 
for mature monocytes/macrophages. 

Finally, our data indicate that the influence of endoge- 
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nous TGF-131 on hematopoietic progenitors could be po-  
tentiated by combinat ion with inhibitory cytokines, in- 
cluding exogenous TGF-[31, produced by infected bone 

marrow and PB accessory cells in response to HIV-1 infec- 
tion or exposure to recombinant proteins (15, 23, 27, 42-44). 
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