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Computer Vision, Digital Image Processing, and Digital Image Analysis can be viewed

as an amalgam of terms that very often are used to describe similar processes. Most

of this confusion arises because these are interconnected fields that emerged with

the development of digital image acquisition. Thus, there is a need to understand the

connection between these fields, how a digital image is formed, and the differences

regarding the many sensors available, each best suited for different applications. From

the advent of the charge-coupled devices demarking the birth of digital imaging, the field

has advanced quite fast. Sensors have evolved from grayscale to color with increasingly

higher resolution and better performance. Also, many other sensors have appeared, such

as infrared cameras, stereo imaging, time of flight sensors, satellite, and hyperspectral

imaging. There are also images generated by other signals, such as sound (ultrasound

scanners and sonars) and radiation (standard x-ray and computed tomography), which

are widely used to produce medical images. In animal and veterinary sciences, these

sensors have been used in many applications, mostly under experimental conditions and

with just some applications yet developed on commercial farms. Such applications can

range from the assessment of beef cuts composition to live animal identification, tracking,

behavior monitoring, and measurement of phenotypes of interest, such as body weight,

condition score, and gait. Computer vision systems (CVS) have the potential to be used

in precision livestock farming and high-throughput phenotyping applications. We believe

that the constant measurement of traits through CVS can reduce management costs and

optimize decision-making in livestock operations, in addition to opening new possibilities

in selective breeding. Applications of CSV are currently a growing research area and

there are already commercial products available. However, there are still challenges that

demand research for the successful development of autonomous solutions capable of

delivering critical information. This review intends to present significant developments that

have been made in CVS applications in animal and veterinary sciences and to highlight

areas in which further research is still needed before full deployment of CVS in breeding

programs and commercial farms.
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INTRODUCTION

Sighted animals, including humans, experience vision in a way
that seems natural and automatic. Early in life, and quite often
from the moment of birth, animals use their vision system to
navigate the world around them, and to identify and interact
with other animals, as well as their surrounding environment.
Therefore, the vision system of an animal is constantly being
trained and adapted so that it can be used for several tasks.
For instance, in humans, this system works with the luminous
signal being captured by the eye and transferred via the optic
nerve to the brain, where it is processed and interpreted
(1). This complex vision system can adapt to different light
conditions autonomously while allowing us to focus on objects
and to have a 3-dimensional representation of the world. But
what would be vision for a computer and how can computer
vision impact animal breeding and production? This review is
divided into three sections. The first section provides a brief
introduction to image analysis and computer vision, describing
current developments and algorithms of interest. The second
section describes common types of sensors available and their
functionality. The third presents a historical view on applications
in animal sciences, followed by examples and areas of current
interest. The review closes with a discussion on areas that are
currently of great importance for the improvement of computer
vision system (CVS) applications in livestock improvement
and production.

OVERVIEW OF STRATEGIES TO WORK
WITH DIGITAL IMAGES

What Is Digital Image Processing, Image
Analysis, and Computer Vision?
Digital Image Processing, Digital Image Analysis, and Computer
Vision can be viewed as an amalgam of terms that very often are
used to describe similar processes and applications, generating
confusion regarding their meaning. Most of the confusion arises
because these are interconnected fields that emerged with the
development of technologies for digital image acquisition. For
the sake of clarity, we can divide and define these three areas
as follows.

Digital Image Processing
Digital Image Processing deals with capturing and translating
a visual signal into a digital image. As such, it can be viewed
as the area that studies the process of obtaining a visual
signal of the world and transforming it in order to make it
interpretable. It spans from the study of image formation, as a
result of the acquisition of light signals by specifically designed
sensors, to the interpretation of the image as an array of
connected values. Therefore, digital image processing involves
the conception, design, development, and enhancement of digital
imaging algorithms and programs (2). As such, it is a discipline
heavily based on physics and mathematics. The term can also be
used to directly address the applications or techniques used for
digital image manipulation, ranging from noise reduction, image
equalization, image filtering, and other transformations used for

preparing images for subsequent steps in an analysis pipeline
or for enhancing images aesthetically. A group of techniques of
great importance in digital image processing is edge and contour
detection. Although there are several methods for edge detection,
they all rely on the fact that edges are regions in an image where
there is a drastic change in color/intensity along with a particular
orientation (2, 3). These techniques are, in general, useful in
many applications in image processing, such as image correction
and sharpening (i.e., highlight of the edges) and in image analysis,
such as identification of complex structures and matching of
objects in an image with specific templates.

Digital Image Analysis
Digital image analysis, or just digital imaging, on the other
hand, corresponds to the process of extracting meaningful
information from an image (2). This information can be
descriptive statistics from the image, ranging from global image
metrics, such as color/brightness histograms and distribution,
block statistics from regions/windows across the images, such
as intensity, moments (mean, variance), and integral images,
to the identification of more complex structures in the image.
Such information extracted from the image analysis can be
used then as input for imaging processing techniques, such
as image sharpening (4), thresholding (5), smoothing and
edge/contour enhancement (6). On the other hand, image
processing techniques can also be applied prior to image analysis
techniques. An example is the use of edge detection techniques
in the process of identification of structures, such as lines and
circles in an image (3). Another is for image segmentation, i.e.,
to divide an image into different regions, which can be simple
image binarization (a division of the image into two regions,
such as background and foreground) or multiple regions, such as
different objects present in an image. There are several methods
of image segmentation, but basically, they can be classified
into methods that perform a global clustering of image pixels
according to some criteria independent of spatial information
(e.g., k-means clustering), and methods that account for more
information, such as spatial, texture, color, edges, and shape, such
as energy-based (graph-cuts) methods (7, 8).

Computer Vision
Computer Vision can be defined as the field that aims to describe
the world through images by interpreting, reconstructing, and
extracting properties from images, such as shapes, textures,
densities, and distances (9). CVSs are also known as machine
vision systems, visual image systems, or just image systems.
Therefore, Computer Vision is essentially the development of
artificial systems to handle visual problems of interest, and for
such, it uses image processing and analysis techniques. Along
with image analysis and processing, other areas such as Machine
Learning and Pattern Recognition are also highly interconnected
with Computer Vision.

Pattern Recognition is a field that studies not only images
but also other signals, such as sound and texts. As the name
suggests, it is an area dedicated to the study of patterns that
may appear in any given signal. In the context of imaging,
pattern recognition is generally studied within image analysis as
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FIGURE 1 | Example of a computer vision system framework. (A) Image acquisition; (B) Image Processing; (C) Image Analysis; (D) Data Analysis.

the development of mathematical methods for the identification
of simple geometrical structures such as lines and circles (3,
10) or key-point features that can be jointly used to identify
more complex objects or patterns (11, 12). Machine Learning
is also a broader field that is concerned with the development
and application of algorithms for extracting information from
the most diverse data sets (13), and several machine learning
algorithms have been developed or adapted specifically for
solving computer vision problems.

An example of CVS is presented in Figure 1, where a
3D camera is used to capture images from pigs [adapted
from (14)]. In a standard pipeline, after these images have
been captured, they are processed (Figure 1B) using common
imaging processing techniques such as image thresholding and
binarization. Using the processed image, features of interest
are identified, such as the pig head and tail (Figure 1C), and
are removed together with the image background. From the
resultant image of the pigs back, several measures were taken
(e.g., volume, area, height, and length). These measures leverage
important information from the images evaluated and can be
used then for the development and evaluation of predictive
models (Figure 1D), such as prediction of body weight.

Image Formation
An important aspect of digital imaging is how the image itself
is acquired since there are sensors better suited for different
applications. Before images could be processed and analyzed
in computers, there was the need to develop sensors able to
recognize, measure, and digitalize luminous signals. It was in
the 1970s, with the advent of the charge-coupled devices (CCD)
sensors (15), that digital imaging was developed, and the interest
in CVS appeared. Basically, in digital image formation, luminous
signals are captured by the sensor, coded, and stored in arrays of
data that can be interpreted and manipulated in computational
algorithms (9). Thus, for a computer, an image is nothing more

than numerical values in a structured array of data that codifies
light and colors for each point in the image (Figure 2). This
array can be a single matrix, where the values inside the matrix
correspond to black or white (binary image) or different shades
of gray (grayscale image). Also, it can be an array of 3 matrices in
the case of color images (i.e., intensities of red, green, and blue, on
the RGB color space) or even multiple matrices for hyperspectral
images. Therefore, mathematical manipulations and statistics of
an image were among the first studies developed in digital image
analysis and processing.

Another turning point in the history of computer vision
was the advent of personal digital cameras in the 1990s,
reducing the costs and popularizing the process of capturing and
analyzing digital images (16, 17). Since then, several applications
of digital photography have appeared. This popularization of
digital cameras is directly connected to the increasing volume
of data (photos and videos) generated over the last few years in
many fields due to the increasing number of computer vision
applications to solve the most diverse problems. This increased
interest in computer vision and related areas can be illustrated
by the increasing number of publications in the last decade
(Figure 3).

Some areas of recent interest in computer vision are object
sensing, mapping, recognition, motion tracking, navigation,
image segmentation, and scene interpretation. However, while
humans and animals do most of these actions intuitively, the
majority of the vision tasks are considered as difficult problems
in computer science, and the algorithms available are prone
to errors (9). Thus, many successful CVSs are the result of
multidisciplinary approaches tailored for specific cases, for
example, interactive segmentation (8), face detection based on
image features (18), and machine learning methods for object
detection and recognition, such as optical recognition (19) and
image classification, such as classification of regions and cells of
histopathological images (20).
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FIGURE 2 | Digital image representation. (A) Logical image with values 1 for white and 0 for black; (B) Grayscale image in the 24-bits depth format (values ranging

from 0 to 255); (C) Color image on the RGB color space where each matrix is a 24-bits depth image, one for each color layer.

Among the machine learning techniques used in computer
vision, it is worth mentioning deep learning algorithms,
which have recently been successfully used in diverse
computer vision applications. These algorithms are an
extension of traditional artificial neural networks (ANN),
and they achieve great power and flexibility by learning
more abstract representations of the inputs as a nested
hierarchy of concepts (21). These nested concepts, or hidden
layers, generate very complex models with many parameters
that were possible to be trained only with the advent of
very large datasets, data augmentation techniques, and
advancements in ANN, such as the development of learning
optimization via stochastic gradient descent, new activation
functions such as rectified linear unit (ReLU), regularization

techniques, and efficient use of graphics processing unit
(GPU) (21, 22).

Metrics for Model Comparison and
Assessing Predictive Ability
As there are CVS developed for many different tasks and using a
wide range of methods and models, there will be also many ways
to compare competing approaches for different applications. In
the following, we discuss some of these comparison methods
by splitting them according to the class of the variable being
predicted. For the scope of this study, we will split the
predicted variable into two classes: (1) a variable that we deem
associated/correlated to the image, and (2) the image per see (or
even parts of the image).
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FIGURE 3 | Count of publications hits in “Web of Science” for computer vision, image analysis, image processing, machine learning and pattern recognition.

In some applications, the interest will be to predict a variable
by using information extracted from the images. These variables
of interest can be a categorical variable such as animal species,
behavior classes, and scores (e.g., leg score, body conditioning
score), or a continuous variable such as body area, height,
and weight.

For categorical variables, the simplest case assumes only two
states (e.g., health/disease, moving/standing, among others), and
the general scenario allows for multiple classes to be evaluated
at the same time (e.g., behaviors such as laying, drinking,
eating, walking, etc.). The metrics used to evaluate the predictive
methods, in this case, are going to assess the frequency of
two types of error: false positive (a.k.a. nuisance alarm) and
false negative (a.k.a. missing alarm) errors and the most basic
assessment tools are via tables of errors, or confusion matrix
as below:

y = 0 y = 1

ŷ = 0 TP FP

ŷ = 1 FN TN

Here, y corresponds to the true category or ground truth (e.g., y
= 1 for disease and y = 0 for healthy), which can be a manual
measurement or derived from a gold standard method, and ŷ
corresponds to the predicted class. The combination of each value
of y and ŷ gives either a true positive (TP), true negative (TN),

false negative (FN), or false positive (FP). From the confusion
matrix and the TP, TN, FN, and FP counts for any given
experiment, several metrics can be derived, such as: sensitivity
(recall or true positive ratio) = TP

TP+FN ; false positive rate (FPR),

also known as, false discovery rate (FDR) = FP
TP+FP ; precision

= TP
TP+FP ; specificity = TN

TN+FP ; and accuracy = TP+TN
TP+FP+TN+FN .

However, when evaluating classification methods sometimes it
is interesting to evaluate many threshold values used to classify
ŷ as one class or another. This evaluation is often done using
receiver operating characteristic (ROC) curves, which measures
the tradeoff between sensitivity and FDR, or 1- specificity (which
yields the same value). Anothermetric is the precision-recall (PR)
curve which is useful to evaluate the trade-off between precision
and recall as the threshold value varies, i.e., the trade-off between
the fraction of the detection that is actually true positives (i.e.,
precision) and the fraction of true positives that are detected (i.e.,
sensitivity) (13). Also, PR curves are especially interesting when
we have situations with unbalanced data. In these situations, a
ROC curve may present a misleading high area under the curve
(AUC), for a model that is only predicting every data point as
from the class that has more true values (Figure 4). For both
curves, the quality of competing methods is often summarized
by the AUC for which higher area means better fitting, with an
area of one meaning a perfect fit.

For applications where the variable of interest is continuous,
the predictive ability is typically evaluated using the Pearson
product-moment correlation coefficient (r) between the input (y)
and the predicted output (ŷ):
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FIGURE 4 | Comparison of receiver operator curves (ROC) and precision-recall curves for a balanced [with 500 positive (P) and 500 negative (N) labels] and

unbalanced (with 100 P and 1102 900N) datasets.

r ==
cov(y, ŷ)

σyσŷ

where cov(y, ŷ) is the covariance, and σy and σŷ are the square
root of the input and output variances. Alternatively, instead of
the predictive correlation r, its square is often reported. Both
r and r2 measure the linear relationship between y and ŷ, and
the closer to 1 the better. However, they are not measurements
of prediction accuracy, as they do not take prediction bias into
account. In this context, another measure often reported is the
predictive error, or rather, the mean absolute predictive error
(MAE or MAPE), which is a direct measure of how much the
predictions deviate from the true values and can be defined as:

MAE = mean(
∣

∣y− ŷ
∣

∣)

Because MAE can be influenced by the scale, when comparing
between different studies it is often better to use a scale

independentmeasure (23), such as themean absolute scaled error
(MASE), which can be defined as:

MASE = mean(

∣

∣

∣

∣

y− ŷ

mean(y)

∣

∣

∣

∣

)

In applications where the variable of interest can be the whole
images or parts of the image, such as identification of objects
within the image, the predictive ability can be evaluated via the
pixel-wise accuracy, i.e., the ratio of pixels correctly predicted vs.
the total number of pixels. However, this measure of prediction
quality will tend to be high for most of the applications as
the majority of the pixels within large objects will be correctly
predicted. Another interesting measure in this scenario is the
Jaccard index, a.k.a. Intersection over Union (IoU), which is the
ratio of the intersection between the ground truth (A) and the
predicted area (Â) by the union of these areas:
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IoU(A, Â) =

∣

∣

∣

A ∩ Â
∣

∣

∣

∣

∣

∣

A ∪ Â
∣

∣

∣

Thus, IoU is a measure of similarity between the two areas, and
values closer to 1 indicate more similarity, meaning a better fit of
the predictive method (24).

As a final note on this topic, it is important to evaluate
the generalization performance of the candidate methods, in
other words, their predictive capability on independent data set.
This evaluation will provide insight into the variability of the
predictive error as well as potential overfitting (a situation when a
method performs very well on the training data but not so on the
independent dataset). This independent dataset, or validation set,
is ideally a dataset collected in another moment from different
animals. But most of the time if the data is large enough it can
be a reserved portion of the original data. Another interesting
technique is cross-validation, where the data is divided into
multiple subsets, and each time one of the subsets is reserved
for validation while the others are used for training. Thus, in a
k-fold cross-validation, the dataset is divided into k subsets, and
if k = n (number of data points) the approach is called a leave-
one-out cross-validation. For a more in-depth reading on model
assessment and selection, the reader can refer to Chapter 7 of
Hastie et al. (25).

SENSORS USED FOR IMAGING IN ANIMAL
AND VETERINARY SCIENCES

Currently, the most used image sensor devices are standard
digital cameras and/or surveillance cameras that capture
electromagnetic waves within the visible light spectra to generate
digital images (color or grayscale). However, there are also
other technologies that have been used for more specific
applications, such as devices that are based on infra-red,
ultrasound, and ionizing radiation. Moreover, some technologies
can generate more complex arrays of images such as three-
dimensional (3D) and hyperspectral images. They are, however,
in general, more expensive than standard digital cameras.
Nonetheless, each different imaging technology can be used for
specific applications.

Images on the Visible Light Spectrum
Cameras for standard digital imaging work with signals within
the visible light range, and they generally have a CCD or
a complementary metal-oxide-semiconductor (CMOS) sensor.
Both sensors have a similar function, which is to capture light
and convert it into a digital image, however, they have some
important differences. On one hand, CCD sensors are charged
passively by the light source, and the information captured in
each pixel is processed sequentially. CMOS sensors, on the other
hand, have active pixels with a transistor for each pixel so
that the information from each pixel is translated to the image
independently and generally asynchronously to the digital image
(26). These differences in sensor architecture lead to differences
in sensor prices and capabilities. Even though the industry is in
constant development, CCD sensors, in general, have a higher

dynamic range and produce more uniform images, while CMOS
sensors are cheaper, energy efficient, and more responsive.

Infrared Radiation
Infrared radiation (IR) has a wavelength longer than the visible
light, and according to the International Organization for
Standardization (ISO) it can be divided into near-infrared (NIR),
mid-infrared (MIR), and far-infrared (FIR). This division has
been based on the specific wavelength thresholds of 0.78–3, 3–50,
and 50–1,000µm for NIR, MIR, and FIR, respectively. There are
many different applications of IR in imaging, and for the purpose
of this review, the most significant ones are in 3D imaging,
spectroscopy, night vision, and thermal imaging (also known as
Thermography). For all these applications, there are different
IR sensors specific to capture radiation within NIR, MIR, or
FIR ranges. In most of the night vision cameras, the sensors
rely on an emitter, which emits IR on the NIR wavelength to
actively illuminate the scene. On the other hand, thermal imaging
uses the principle that all objects produce radiant heat (emitted,
transmitted, and/or reflected), thus there is no need for an emitter
since the sensors are capable of capturing the heat signal in the
MIR or FIR range (27). The sensors for thermal imaging can be
divided into two groups, cooled or uncooled focal plane array.
The main difference is that the cooled sensors generally produce
better images and less variable measurements, at the cost of being
heavier, less portable, and expensive.

In animal, veterinary, and wildlife applications, both night
vision and thermal cameras have been used mostly for
monitoring animals (livestock or wildlife) at night or dim light
situations, either alone or in association with standard digital
image sensors (28). Such applications can be dated to the use of
military night vision scopes for observation of nighttime animal
behavior in the 70s (29). However, thermal cameras also have
applications in diagnostic imaging to detect small changes in the
body’s surface temperature (30), which can be due to stress, fever,
inflammation, and ischemia. Nevertheless, proper use of thermal
imaging for diagnostic purposes still requires correct calibration
of the device, adequate location, and correct positioning of the
animal and camera (27, 30).

3D Imaging
Many different sensors and techniques are used for measurement
of the distance of objects to the camera, acquisition, and
formation of 3D images. In livestock, these sensors can be
used, for example, for measurement of animal volume, surface,
and gait, among other traits. From the several technologies
developed for 3D imaging, we will focus on optical applications
(i.e., applications that use radiation on visible and near-visible
light) used in 3D cameras, also known as depth sensors. These
techniques can be further divided into passive, such as stereo
imaging and structure from motion, or active, such as structured
light and time of flight (31).

In stereo imaging, two or more cameras are used, and
principles of epipolar geometry are applied in order to calculate
the distance (z) of a point P to the cameras (32). In a simplified
stereoscopic triangulation (Figure 5) using two similar cameras
with the same focal length f , the differences of the projections
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FIGURE 5 | Epipolar triangulation used on a rectified stereo imaging system with two similar cameras. P is the point of interest; xL and xR its projection on the camera

planes pL and pR; f is the camera focal length and B the baseline plane.

(xLand xR) of point P on the planes of the cameras is the disparity
between the images. That disparity can be used then to calculate
the distance of point P to the baseline plane, where B is the
distance between cameras.

Similarly, in structure from motion, a disparity map can be
created between the images from a single moving camera, in
which case the distance between the points where each image
was captured by the camera can be used as the distance between
“cameras.” The main difficulty of such a strategy is that it needs
the object of interest to be practically motionless.

Structured light, also known as coded light refers to the
use of active emission of known light patterns for which the
illuminated surface will present structural distortions in the
shade/light patterns according to irregularities in the surface,
angle, and distance to the emitter (Figure 6). Therefore, similarly
to stereo imaging, the distortions in the emitted patterns provide
unique correspondence for triangulation with the camera. The
emitter can vary from a punctual laser, a blade scanner, multiple
shadow patterns that split the scene into areas of interest, or
even the use of complex multi-laser patterns that create a spatial
neighborhood (31, 32).

Time of flight (ToF) and Light Detection and Ranging
(LiDAR) cameras are based on signal modulation and ranging,
similar to other technologies such as Sound Navigation Ranging
(SONAR) and Radio Detection and Ranging (RADAR) (32).
These techniques measure the distance between the sensor and

a target object by detecting the time difference from the signal
emitted by a transmitter, reflected on a target object, and captured
back by a receiver (Figure 7). Even though the principle is
simple, there is a great implementation challenge due to the
speed of light, interference with natural light, dispersion, and
absorption of the light. Modern ToF cameras generally consist
of a transmitter array that emits a modulated IR or NIR light
(to reduce environmental interference) and a receiver array that
captures the reflected signal and calculates the signal phase/time
lag for each pixel (31). Recently, in order to improve the
transmitter performance, devices equipped with micro-electro-
mechanical system (MEMS) mirrors have received great interest
from the scientific and industry community (33).

Lastly, there are also hybrid 3D cameras that combine RGB
sensors with depth sensors based on one or more of the
technologies described above. Examples include cameras based
on active stereoscopy, which combine stereo imaging from
multiple cameras with structured light to improve the depth
estimation. Table 1 shows some of the current 3D cameras
available and their technical specifications.

Other Imaging Technologies of Importance
There are many other imaging related technologies of
importance in animal and veterinary sciences, such as spectral
and hyperspectral imaging, ultrasound, x-ray, computed

Frontiers in Veterinary Science | www.frontiersin.org 8 October 2020 | Volume 7 | Article 551269

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Fernandes et al. Imaging Applications on Animal Sciences

FIGURE 6 | Example of a structured light system based on linear shadow

pattern. (A) The scene with natural illumination. (B) The same scene now

under the structured light projected by the emitter.

tomography, and satellite images. In the following, we briefly
describe some of these technologies.

Spectroscopy, spectral imaging, and more recently
hyperspectral imaging have been adopted extensively for
evaluation of meat attributes and chemical characteristics
as well for quantification of milk protein and fat content
(34, 35). These technologies are mostly composed of sensors
equipped with a NIR emitter, and are based on the principle
that different compounds will absorb the radiation differently
in each wavelength, thus generating a “signature” (36). In
Spectroscopy, for each wavelength measured inside the range, a
punctual value of absorbance is generated. Meanwhile, a spectral
image is a matrix with a value of absorbance for each pixel,
and a hyperspectral image corresponds to a cube of several
matrices (one for each wavelength) providing both spectral and
spatial information.

Several medical diagnostic imaging technologies have also
been employed for many applications with animals such
as evaluation of muscle and fat composition, and bone
mineralization in live animals and carcasses (37–39). Some worth
noting technologies include ultrasound (US), dual-energy x-
ray absorptiometry (DXA), computed tomography (CT), and
magnetic resonance (MR). All these technologies are appealing

since they make possible the generation of images for the
evaluation of the body composition. From these technologies,
only US is currently used in farm conditions due to many
factors such as price, portability, and no anesthesia required.
Nonetheless, it still requires a trained operator.

APPLICATIONS OF COMPUTER VISION
SYSTEMS IN ANIMAL AND VETERINARY
SCIENCES

Before the advent of CVS, many applications required the
use of the trained eye for visual classification of traits in live
animals, such as animal behavior, body condition score, carcass
fat deposition, meat marbling, or classification of eggshell quality.
There are also methods that use the aid of lenses, such as
microscopes, for evaluation of cell morphology in a blood smear
or spermatozoid motility and defects. Moreover, other signals
such as ultrasound, infrared, and x-rays are widely used to
produce images for diagnostic purposes. However, most of the
methods currently used for the measurement of traits of interest
need expert personnel requiring the training of evaluators from
time to time to maintain good measurement quality. Also, most
of such measuring processes are time demanding, stressful to
the animals, and costly for the farmer, making it prohibitive
due to animal welfare and economic reasons. Therefore, there
is an interest in developing automatic, indirect methods for
monitoring livestock and measuring traits of interest. For such
tasks, CVS generally uses algorithms and principles of pattern
recognition, image analysis, and processing in order to tackle
the most diverse problems. The framework presented in Figure 1

can be seen as a CVS pipeline, with a fixed sensor capturing
the information that is presented by the world or actively
exploring the world and adjusting its perception (field of view,
exposure, among others). The development of automated CVS
can enable high-throughput phenotyping in livestock, and the
data generated by such systems can be then used for many
different applications, from the development of smart farm
management tools to advancing breeding programs.

In the following, we present selected applications of CVS
as an answer to the need for such automated, non-invasive
methods for the measurement of carcass and meat traits, live
animals’ identification, tracking, monitoring, and phenotyping
using different sensors.

Carcass and Meat Traits
Probably one of the first applications of a CVS was in meat
sciences, with the earliest reported studies found in the 1980s
(40–42). In these studies, the system was composed of a camera,
light source, digitizer, and computer unit. The CVS needed an
operator to position beef meat cuts on a surface at a known
distance and angle from the camera, and to trigger the image
acquisition. Thus, the meat cuts were all positioned in the same
manner with constant background and illumination. At that
time, the interest was to predict the cut content of lean meat
and fat, and to compare the results from the CVS to trained
United States Department of Agriculture (USDA) meat graders.
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FIGURE 7 | Principle of time of flight (ToF) 3D cameras (depth sensors).

TABLE 1 | Comparison of 3D cameras and their technical specifications.

Device Manufacturer Sensors Technology Range (m) Environment FPS FOV (V×H) Resolution

(pixels)

Kinect V1a Microsoft 3D (IR emitter + IR camera)

Color

Structured Light 0.8– 4 Indoor 30

30

45◦ × 58◦ 480× 640

Kinect V2a Microsoft 3D (IR emitter + IR camera)

Color

Time of flight 0.5–4.5 Indoor 30

30

60◦ × 70◦

54◦ × 84◦
424× 515

1080× 1920

Kinect Azure Microsoft 3D-N (IR emitter + IR camera)

3D-W (IR emitter + IR camera)

Color

Time of flight

Time of flight

0.5–5.5

0.3–2.8

Indoor 30

30

65◦ × 75◦

120◦ × 120◦

59◦ × 90◦

576× 640

1024 × 1024

2160× 3840

Xtiona Asus 3D Time of flight 0.8–3.5 Indoor 30 45◦ × 58◦ 480× 640

Xtion Pro Live Asus 3D

Color

Time of flight 0.8–3.5 Indoor 30

30

45◦ × 58◦ 480× 640

1024× 1280

Xtion 2 Asus 3D

Color

Time of flight 0.8–3.5 Indoor 30

15

52◦ × 74◦

60◦ × 75◦
480× 640

1944× 2592

Intel SR305 Intel 3D (IR emitter + IR camera)

Color

Structured light 0.2–1.5 Indoor 60

30

54◦ × 70◦

42◦ × 68◦
480× 640

1080× 1920

Intel D415 Intel 3D (IR emitter + IR camera)

Color

Active Stereo 0.2–10 indoor/outdoor 90

30

40◦ × 65◦

43◦ × 70◦
720× 1280

1080× 1920

Intel D435 Intel 3D (IR emitter + IR camera)

Color

Active Stereo 0.1–10 indoor/outdoor 90

30

58◦ × 87◦

43◦ × 70◦
720× 1280

1080× 1920

Intel L515 Intel 3D (IR emitter + MEMSb )

Color

LIDAR 0.2–9.0 Indoor 30

30

55◦ × 70◦

43◦ × 70◦
768× 1024

1080× 1920

Structurea Occipital 3D (IR emitter + IR camera) Structured Light 0.8–4.0 Indoor 30 43◦ × 57◦ 480× 640

Structure II Occipital 3D (IR emitter + IR camera)

Ultra-wide monochrome

Active Stereo 0.3–5.0 indoor/outdoor 54

100

46◦ × 59◦

160◦Diag

960× 1280

480× 640

Structure Core Occipital 3D (IR emitter + IR camera)

Color

Active Stereo 0.3–10 indoor/outdoor 54

100

46◦ × 59◦

85◦Diag

960× 1280

480× 640

aOut of production/Discontinued; bMicro-electro-mechanical system mirror.

In these studies, multiple linear regressions fitting variables
extracted from the CVS were compared to models that included
manual measurements and USDA graded variables. Even though
the system was not fully automated, the prediction equations

developed with the variables measured by the system presented
slightly better results than the prediction equations developed
with variables measured by trained graders. The best linearmodel
for prediction of lean meat weight developed with the variables
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TABLE 2 | Examples of computer vision applications in meat sciences (studies

highlighted in bold were with live animals).

Applications Image signal References

Cattle and Small

Ruminants

Carcass 3D; US; VL (41, 43, 44)

Fat (kg and%) US, VL (41, 43, 45)

Lean meat (kg and %) VL (41, 42, 45)

Tenderness VL (45, 46)

Fishery Fat

Pigmentation

IR; VL (47)

Sorting HS (48)

Freshness VL; HS; 3D (49, 50)

Poultry Classification HS; VL (51)

Brest weight 3D (52)

Egg shell classification VL (53)

Pork Carcass US; VL; CT; 3D (37, 39, 54–56)

Classification HS; VL (51)

Quality HS; IR; VL (57)

CT, Computed Tomography; 3D, 3-dimensional; HS, Hyperspectral; IR, Infrared; US,

Ultrasound; VL, Visible Light.

extracted from the CVS achieved R2 from 0.93 to 0.95 against
0.84–0.94 from the model that included USDA graded covariates
(41, 42).

Since these earlier studies, there has been an increasing
interest in the use of computer vision for prediction of the
most diverse meat quality traits, not only for beef but also for
fish, poultry, and pork (Table 2). There are applications focused
on imaging technologies for determination of not only meat
crude protein and fat content but also more refined chemical
characteristics like fatty acids profile, freshness (50, 57), as well
as prediction of meat quality, palatability, tenderness, and other
traits normally evaluated by a panel of trained experts (45, 46, 51)
or even automatic sorting and weighing cuts and viscera which is
normally performed manually (48, 52). Again, different devices
and imaging technologies have been used, with several predictive
approaches evaluated. However, independently of the imaging
device used, such applications pipelines generally involve several
steps such as: (1) Sample preparation with standardization of
meat cut used, presentation, background and light conditions;
(2) Device calibration (when needed), collection and processing
of the images; (3) Direct measurement of attributes of interest
using a gold standard methodology (i.e., chemical analysis);
and (4) Model fitting, which corresponds to the prediction of
the gold standard using the image features as predictors. It is
interesting to note that the image processing in step 2 can involve
several sub-steps such as histogram equalization, background
removal, and image smoothing. Also, in the case of hyperspectral
images the processing involves selection of wavelengths and/or
reduction of dimensionality using techniques such as Fourier
transformation (58) and principal components, for an in-depth
review of applications of hyperspectral imaging see Xiong et al.
(34). It is also worth noting, that there is no standard model
of choice for step 4 since in the literature several predictive
approaches have been evaluated. These predictive approaches

could be statistical models such as linear and partial least square
regression to machine learning methods, such as support vector
machines, random forests, and artificial neural networks.

Monitoring and Phenotyping of Live
Animals
Differently from carcass and meat cuts that can be easily
positioned for image acquisition under a well-controlled light
source and even background, several obstacles arise when
working with live animals. As an example, in farm conditions, the
illumination can change throughout the day even inside a barn
due to sun position, clouds, and seasons. Moreover, there will be
differences between artificial light sources from one farm/barn to
another, as they may use different types of lamps with different
voltage and positioning. The background is also going to be
different in each location, and it is prone to changes over time
for a given location. Examples of differences in the background
are floor surface material for animals in a barn and vegetation
for free-range animals. Therefore, the diversity of situations is
probably one of the biggest challenges in implementing a CVS
that are robust enough to perform satisfactorily across different
farm conditions.

Nevertheless, many efforts have been made over the years
to develop CVS for monitoring and phenotyping livestock,
poultry, and fish as well. In the current study, we do not
intend to deliver an extensive review on the matter as there are
already reviews on technology applications for poultry (59, 60),
machine vision for detection of cattle and pig behavior (61), and
computer vision applications for fisheries (62). Nonetheless, in
the following, a broader view is presented regarding applications
developed for traits of interest in animal and veterinary sciences,
providing examples from earlier works to the current trends
while highlighting challenges, advances that have been made, and
areas of current interest. Table 3 shows a summary of selected
applications, presenting the traits of interest and the kind of
imaging sensor used.

Evaluation of Body Composition, Meat, and Carcass

Traits in Live Animals
In section Carcass and Meat Traits we saw that CVS had been
successfully used for prediction of traits such as lean meat and
fat content from carcass and meat cuts. Nevertheless, the same
predictive performance has not been observed initially for the
evaluation of meat and carcass traits in live animals.

Initial attempts for the prediction of carcass composition
on swine have been performed by Doeschl-Wilson et al. (54)
where a CVS achieved a predictive R2 of 0.31 and 0.19 for
fat and of 0.04 and 0.18 for lean meat on the foreloin and
hindloin regions, respectively. In the search for improvement
of performance on the prediction of carcass and meat traits on
live animals, researchers have focused on the use of medical
imaging devices for such tasks. In recent studies using medical
imaging devices, ultrasound measurements presented positive
and moderate correlations of 0.6 and 0.56 with the carcass
measurements of lean meat and fat depths, while CT presented
low to moderate correlations of 0.48–0.67 for fat and high
correlations of 0.91–0.94 for lean meat (37, 39). Moreover, these
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TABLE 3 | Examples of computer vision applications in live animals.

Applications Image signal References

Cattle and small

ruminants

Mastitis IR (63–66)

Digital dermatitis IR (67, 68)

Body temperature TR (69–71)

Gait and body

measurements

3D (44, 72)

Weight 3D (44, 73)

Coat and

conformation

VL (74)

Body condition VL; TR; 3D (75–78)

Fishery Tracking 3D (79)

Shape VL (80)

Weight VL (81)

Poultry Behavior VL; 3D (82–84)

Shape 3D (84)

Dog Behavior 3D (85)

Pork Tracking VL; 3D (86–90)

Behavior VL; 3D (91–94)

Weight VL; 3D (14, 95–97)

Gait and body

measurements

3D (14, 97–99)

3D, 3-dimensional; TR, Thermography; VL, Visible Light.

technologies have several drawbacks regarding animal handling
and cost, as explained previously. In order to tackle these
limitations, some recent works developed CVS based on 3D
cameras for non-contact automated estimation of muscle score
(55) and of fat and lean muscle content (56) on live pigs. Alsahaf
et al. (55) developed a system that extracted morphometric
features from the images of moving pigs for prediction of muscle
scores between 1 and 5. With a gradient boosted classifier,
they achieved classification accuracy between 0.3 and 0.58, and
MAE of 0.65, showing that most of the errors where between
neighboring classes. Meanwhile, Fernandes et al. (56) evaluated
not only features extracted from the images, but also deep
learning methods that do not require image processing, with
the deep learning approaches achieving better results. Their
results present an improvement over previous studies with cross-
validation predictive MAE, and R2 for lean muscle depth of
3.33mm and 0.50, respectively, and of 0.84mm and 0.45 for fat
depth. Nevertheless, these R2 presented are still low showing and
there is room for improvement on the predictions of lean muscle
and fat.

Animal Tracking and Behavior Analysis Using CCD or

CMOS Cameras
Some of the most desired applications of CVS for live animals
correspond to animal identification, tracking, and monitoring,
ultimately identifying changes in their daily behavior. Animal
identification can refer to the identification of an animal when
there is only one animal in the image to more complex
scenarios where there are multiple animals in the image or
the identification of different individual animals in a single

or multiple images matching their identification. Meanwhile,
tracking involves the continuous identification of the animal
across frames in a video feed or across images from different
locations as the animals are moved from one location to the
other. Regarding behavior, animals tend to synchronize their
behavior within a group, and conspicuous deviations may
be caused by environmental stress, management problems, or
disease, although individual behavioral differences need to be
taken into account. Therefore, there is a constant effort to
understand behavioral changes and their relationship with other
traits of interests, such as animal health status and growth.
Closer evaluations of animal behavior and health are normally
conducted by trained evaluators at specific time points, such as
the time of transferring animals from one location to another
(e.g., from nursery to grow-out farms) or around vaccinations.
This is because managers and workers have limited time to spend
in observing a group of animals. Also, with the current trend of an
increasing size of livestock operations, there is also an increase in
the animal/manager ratio. Thus, a basic use of CVS for evaluation
of animal behavior can be the acquisition and storage of images
and videos that can be assessed later or remotely by the farmers.
This improves animal management since there is no need for
the evaluator to be physically present, which otherwise can cause
behavioral changes on the animals. Also, the evaluator can loop
across images, and replay them, improving the quality of the
evaluation. Nonetheless, this kind of system is not optimum since
the evaluator would still need to check all the images. Therefore,
there are efforts in the literature that attempt to develop CVS that
can automatically classify animal behavior and alert the manager
in real time regarding important changes.

Initial works with pigs demonstrated the applicability of a CVS
to identify the animal position and to track its movement (86,
87). These works showed that the image processing algorithms
available at the time could segment a single pig from the
background under specific conditions. The conditions were: (1)
camera positioned to get the top view of the animal, and (2) dark
background for a white pig. The method developed by Tillett
et al. (86) estimated a point distribution of landmarks on the
pig contour for a sequence of frames (13–30 frames) and was
able to model small changes in the animal’s posture. However,
only seven sequences where evaluated and it was prone to miss
the animal if the changes in position were abrupt from one
frame to another. On the other hand, Lind et al. (87) used a
more robust segmentation approach based on the generation of
a background matrix for image subtraction and consequently
animal segmentation. Even though this method cannot identify
animal posture, it was efficient for use in a real-time application
and efficiently tracked differences in animal activity. In their
study, the developed CVS was able to track the distance traveled
and the walking behavior (path) identifying differences between
a pig that received apomorphine or not. Similar approaches
based on traditional imaging thresholding and frame by frame
comparisons were also used with broilers for the identification of
flock behavior over time (82) and at different feeders (83).

Animal tracking and activity-related traits are still of great
interest, with the identification and tracking of multiple animals
and their interactions as one of the biggest issues. In order
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to overcome this challenge, a successful approach in pigs was
to identify the animals by ellipsis fitting on the animal area
and recognition of patterns printed on their backs (88). By
using this simple approach, researchers were able to track and
identify multiple animals with an accuracy of 88.7%, enabling
the characterization and evaluation of simple activity status as
active or non-active with high correlation (mean of 0.9) with
evaluations made by a human observer (88, 100). However, this
identification and tracking approach cannot be used for animals
with darker skin or in commercial farms that have animals
with different skin colors since the method was developed for
white pigs on a dark floor background and using a surveillance
camera. Another challenge in the use of patterns printed on
the animal’s skin for identification in commercial settings is the
higher stocking density and pen size. In an attempt to solve the
issue of multiple animal tracking, Matthews et al. (89) developed
an approach using multiple 3D cameras to track multiple pigs
in a pen and record their behavior, achieving an overall tracking
accuracy of 0.89. In amore recent study, a deep learning approach
has been tested for identification and tracking of multiple pigs
using standard digital cameras, achieving a precision of 0.91 and
recall rate of 0.67 on a test data set of pigs under challenging floor
and lightening conditions (90). Even though these are promising
results, these systems are prone to lose animal tracking over time,
without a current solution on how to get back to the correct
tracking of each animal. Thus, there is still the need for a reliable
CVS capable of identification and tracking of individual animals
in farm conditions.

In order to identify more behaviors, like feeding and drinking,
manual segmentation of the captured image in regions of interest
(ROI) have proved effective (91). The basic concept is to identify
not only the animals but also objects, such as the water source
and feeders, and track how animals interact with those objects.
Using this technique associated with a transfer function model,
with a single input and single output, Kashiha et al. (91) were
able to identify pig drinking behavior with an R2 of 0.92 on a
single dataset with 40 pigs divided in 4 pens. Machine learning
techniques have proven efficient for the identification of animal
posture such as standing, lying, or sitting (85, 93). In their study,
Barnard et al. (85) achieved a mean accuracy of 0.91 when using
a structural support vector machine to classify dog postures
from depth images. In another study, Lao et al. (93) defined a
classification tree for identification of several sow behaviors using
videos from 3D cameras with high (99%) accuracy for lying,
sitting, and drinking behaviors and lower for kneeling (78%) and
shifting (64%). Machine learning techniques have also shown to
be powerful for the identification of social interactions among
animals, such as mounting and aggressive behavior (92, 94).
Viazzi et al. (92) achieved a mean accuracy of 0.88 when using
linear discriminant analysis for classifying aggressive behavior in
pigs, while Chen et al. (94) achieved an accuracy of 0.97 on the
validation set using a convolution neural network and long short-
term memory approach. Even though there was an improvement
in accuracy in the latter study, it did not include an automated
strategy for the identification of individual animals. Thus, current
methods can be used for the identification of behavior changes
on group level, but not on individual level. Another aspect that

must be highlighted here is that the methods discussed above
are supervised learning approaches, and as such, they need a
dataset of labeled images (ground truth) for the training step. In
order to produce those training datasets, manual classification of
the images by a human observer is needed, thus the model will
be at most as good as the human observer who evaluated the
images in the first place. One way to improve the gold standard
used in such methods is by the development and adoption of
well-defined methodologies for the measurement and record of
traits of interest, followed by regular training and testing of the
human evaluators to increase intra and inter-evaluator reliability.
Another approach that can also be used is crowdsourcing the
development of the dataset. With crowdsourcing, the manual
classification of the images can be done by several evaluators
and using majority vote, so reducing the impact of individual
evaluators’ subjectivity (101). Another approach that has shown
improvement of the predictive accuracy is the use of multi-
model prediction, also known as model assemble methods. One
of the most basic assemble would be the use of the average
predicted value from multiple models (102). The combination
of crowdsourcing the dataset development with the use of
multiple model classifiers has allowed an increase in accuracy
for applications in medical image analysis, with an artificial
intelligence system outperforming trained evaluators (103).

Identification of Mastitis and Digital Dermatitis by

Thermography
So far, most of the computer vision applications presented have
used standard CCD or CMOS cameras. As previously discussed
in section Images on the Visible Light Spectrum, there are also
other sensors of interest, such as thermal and depth cameras.
Thermal imaging cameras are commonly used in veterinary
sciences as a diagnostic tool in clinical examination. The images
can be used to identify differences in external/skin temperature
that can be related to inflammatory process, infection, necrosis,
stress, and overall health. In research, infrared thermography
(IRT) has been used to identify mastitis in dairy cattle and
sheep (63, 64), and for digital dermatitis in sheep (68), showing
the capability to classify healthy and clinically sick animals.
Moreover, in a controlled study Metzner et al. (65) observed that
IRT was capable of detecting an increase in udder temperature
∼10 h after inoculation with E. coli. Nevertheless, these were
clinical trial studies with a limited number of animals, thus
there is still the need to evaluate IRT under more general farm
conditions. Zaninelli et al. (66) evaluated the use of IRT for
udder health using data from more than 300 cows from three
farms. In their study, even though the images were collected
manually, the imaging processing was automated using a classical
image threshold for measurement of udder temperature. In this
initial step toward automation of udder health evaluation, a
threshold model was developed for the classification of udder
health in two categories, achieving an area under the curve
(AUC) around 0.8. In another study, 149 cows from eight farms
were clinically evaluated for digital dermatitis, and IRT was
evaluated as a non-invasive field diagnostic tool for dairy cattle
(67). In their study, an AUC of 0.84 for the receiver operating
characteristic (ROC) curve was observed for classification on the
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temperature difference from the front and rear feet, showing
promises of IRT as an on-farm tool. However, the authors pointed
out that images were collected manually and that in 11% of
the cows’ data had to be removed due to excessive dirt. Also,
there are still many complications related to IRT measurement
variation and repeatability. In some studies, it was observed that
animal skin/surface temperature can vary according to external
factors, such as environmental temperature, wind speed, or other
factors, such as operator and camera positioning, and body
region evaluated (69–71). Thus, IRT applications have been
challenging, and they are still generally based on semi-automated
CVS, so that additional effort should be placed on developing
methods for automation and improvement of measurements for
on farm conditions.

Evaluation of Animal Surface and Related Traits

Using 3D Cameras
The interest in the use of 3D cameras is due to the capability
of measuring traits in the 3-dimensional space such as animal,
body position, gait, and volume. Also, for some applications,
there is an improvement of image processing since, within 3D
images, there is less noise due to light and background conditions
and it is easier to use the distance to the camera as a threshold.
Regarding the uses of depth sensors, there are many examples
of successful applications including tracking of fish within a
tank (79), identification of landmarks on animal shape with
consecutive modeling of gait (72, 99), body condition score (78),
sickness detection (84), and the estimation of many other body
measurements that will be discussed below.

Studies in gait analysis usually demanded intense manual
labeling of video frames by a human observer and/or an
expensive system of plate markers to be positioned on the animal
body and multiple cameras (98). However, with the introduction
of time of flight technology and more accessible 3D cameras,
CVS with a single or two sensors were capable of efficiently
estimate walking kinematics in pigs in a cost-effective framework
with prediction accuracy comparable to the state of the art of
kinematics systems (R2 = 0.99) (99).

Spoliansky et al. (78) developed an automated CVS based on
3D cameras for the evaluation of dairy cows’ body condition
score (BCS). In this study, top view images were collected from
cows at the moment they were leaving the milking parlor.
These images were then automatically processed with removal of
background, rotation, and centralization of the cow, holes filled,
and normalization. Several image features were extracted from
the processed images and used for the development of multiple
linear regression models via stepwise regression. Even though
the variables extracted did not present a high correlation with
BCS, the developed model achieved an average R2 of 0.68, which
is comparable or better than previous studies based on manual
processing of the images using either standard digital images
(75, 76) or thermal cameras (77).

In chickens, 3D sensors have also been used to identify
small modifications in the animal surface that is related to head
and tail positioning (84). In this study, in which animals were
challenged with the Newcastle disease virus, it was possible to

identify alterations in the animal shape and behavior 6 days after
the inoculation.

Other applications in which depth sensors are showing
promising results are for estimation of animal body
measurements (heights, widths, area, and volume as examples)
and body weight (44, 96, 97). In one study, a CVS based on
depth image could extract additional information on the animal
volume, achieving an R2 of 0.99 (96) under experimental
conditions. In another study (97), depth cameras were evaluated
for estimation of body measurements on pigs in farm conditions,
achieving high R2 (0.77–0.93) between the manual measurement
and the measures estimated from the images. Nevertheless,
these previous studies used some level of manual handling of
the images and they did not evaluate model performance using
an independent set of animals or a cross-validation approach.
This hampers the evaluation of how generalizable the prediction
models are, that is, how these CVS based on 3D cameras would
perform in practice. Another drawback of these previous studies
is the lack of automation for application in farm conditions,
where it would be extremely difficult to manually process
the images.

Automated Prediction of Individual Body

Measurements
Automated non-contact prediction of body weight and body
measurements is a long-desired application for many animal
production systems. Kashiha et al. (95) developed a CVS
for automated prediction of BW in pigs under experimental
conditions achieving good prediction (R2 = 0.97) for body weight
using surveillance cameras. However, as stated by the authors,
this previous method was still restricted by background and light
conditions, along with animal coat color. Recently, Fernandes
et al. (14) developed an automated CVS based on depth camera
for real-time video processing and prediction of body weight
in live pigs. They worked with videos collected under farm
conditions using multiple linear regression models with features
extracted from the images as predictor variables, achieving high
predictive accuracy evaluated with cross-validation (R2 = 0.92).
An adaptation of their CVS was also evaluated for prediction
of body weight in beef cattle from depth images (73) achieving
high R2 (0.79–0.91) with an artificial neural network approach.
In both works, the images were collected from animals partially
restrained and there was only one animal in the camera field
of view so that future developments with the CVS on barn
conditions would be necessary for better evaluation.

There are also many attempts to develop CVS for automated
prediction of body weight and body measurements in fish,
where the main challenges are related to fish body positioning
and segmentation, and external factors such as light and
background conditions. To tackle these issues, one study in
halibut developed a CVS based on multi-scale body contour
matching and completion using a double local threshold model
with body shape priors (80). The final model developed was able
to estimate the fish body with an average intersection over union
(IoU) of 95.6%. In another study in Nile tilapia, Fernandes et al.
(81) used a deep learning approach for fish body segmentation
from images under different lighting and background conditions.
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The approach was able to distinguish fish from the background
with a validation IoU of 99%, and for the fish body from
fins and background of 0.91%. In their study, the final fish
body area was then used for prediction of fish body weight,
achieving a predictive R2 of 0.96. Nevertheless, in this study,
the fish were removed from the water, while in the previous
one images from the top view of fish in a shallow water area
were used. Hence, it is still necessary to develop CVSs that can
evaluate fish underwater inside production cages. This adds more
challenges, such as interference and occlusion due to different
water transparency.

Perspectives of CVS for High-Throughput
Phenotyping
CVS together with other sensor technologies are at the forefront
of precision livestock farming, with some systems already been
implemented in farm applications (104). Such systems have the
potential to enable high-throughput phenotyping (HTP), which
can be defined as the measurement of a single or many different
traits of interest at multiple times during the animal life. HTP
applications promise the generation of large amounts of data that
will improve the accuracy of current methods and open a myriad
of opportunities to advance breeding programs and livestock
production (105). Nevertheless, for their implementation on
breeding programs, there is the need to develop automated and
robust CVS that are capable of collecting, processing, analyzing,
and transmitting individual animal data. For this to happen,
several key resources and tools must be developed such as
improvement of rural broadbands, data integration, data mining,
and novel predictive tools among others (106). A specific strategy
used to circumvent the issue of individual animal identification
is by using other technologies such as RFID tags, associated
with the CVS (72). Nevertheless, there is still room for more
progress in the use of image analysis for animal identification.
Recent developments in machine learning algorithms for
image analysis such as deep learning have shown promising
results in other areas such as human face recognition, disease
detection, and classification, among others (22). Generally, these
algorithms demand very large datasets to be trained such as
the Microsoft Common Objects in Context (COCO) (107).
Nonetheless, with techniques such as transfer learning of pre-
trained models, we expect that deep learning may play an
important role in the future development of CVS applications for
animal production.

Animal phenotyping, or rather, the measurement of traits of
interest, has long been a constant and important practice in
animal management and also for the development of breeding
programs for different animal production systems. In this
manuscript, we discussed CVS as an interesting tool for the
collection of such phenotypes without direct interaction with
the animals. Thus, in the last decade, several efforts have
been made toward the measurement of group-level traits,
such as group growth, activity, drinking and feeding behavior,
and animal spatial distribution among others with most of
the successful applications based on standard digital cameras
implementing classic image analysis and machine learning

algorithms. Nevertheless, most of the works in the literature deals
with a small group of animals, with just a few works evaluating
CVS in farm environments (14, 66, 67, 97) or under challenging
light and background conditions (80, 81, 90) with the application
of more sophisticated machine learning algorithms.

Nevertheless, there are already some examples of how CVS
can be leveraged by breeding programs. In a study byMoore et al.
(108), data from 17,765 image carcass records of prime cuts and
carcass weight of commercial beef slaughter was used to predict
genetic parameters in beef cattle. The authors concluded that by
leveraging the information from the CVS it was possible to yield
more accurate genetic parameters due to the higher volume of
data. In another study, Nye et al. (74) developed a web scraper
and an image segmentation algorithm to extract images and
information from breeding programs catalogs. The information
retrieved was used in a subsequent step to predict genetic
parameters related to coat pigmentation and conformation traits
in dairy cattle. The authors demonstrated that, for dairy cattle,
approximately only 50 images were required to train their semi-
supervised machine learning approach.

CONCLUDING REMARKS

The idea of developing CVSs for automatic monitoring and
measuring traits of interest in animals is not new. Early
developments in digital image analysis and computer vision have
shown the potential of the use of images to evaluate animal
behavior, gait, body weight, and other traits in experimental
conditions, with some more recent studies evaluating also
on-farm applications. Also, there are studies showing that
different imaging technologies can be better suited for specific
applications, such as IRT for identification of mastitis and digital
dermatitis in dairy cattle, or spectral and hyperspectral imaging
in food sciences. However, there is also a great number of
attempts to develop CVS based on more accessible technologies
such as standard digital cameras and 3D cameras.

Applications of CVS in animal and veterinary sciences are
currently a growing research area. Even though there are
already some commercial products for monitoring groups of
live animals, or slaughtered animals at the abattoir, there are
still several challenges that demand intense research for the
successful development and deployment of practical solutions.
Current challenges involve the development and implementation
of reliable CVS for the autonomous acquisition of data regarding
single or multiple traits in farm conditions, as there are still
few studies that evaluated these CVS using validation data
sets, including different animals in the same farm or across
multiple farms. Another area of importance is individual animal
identification and tracking since most of the currently developed
methods are still prone to error. There is also the need for
the development of methods to connect the increasing number
of devices used for different applications. This may enable
the implementation of more sophisticated predictive algorithms
based on multiple inputs and multiple outputs (joint prediction
of multiple traits). Finally, there is the need for the development
of applications for the delivery of the information generated
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by the CVS to connected systems thus generating valuable
information to farmers and managers. This is the focus of areas
such as big data and internet of things which, even though are not
the focus of this review, these areas are going to be indispensable
for the further development of CVS animal breeding programs
and production systems.
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