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Summary. Background: In comparison to the classical iso-

forms of protein kinase C (PKC), the novel isoforms are

thought to play minor or inhibitory roles in the regulation

of platelet activation and thrombosis. Objectives: To mea-

sure the levels of PKCh and PKCe and to investigate the

phenotype of mice deficient in both novel PKC iso-

forms. Methods: Tail bleeding and platelet activation assays

were monitored in mice and platelets from mice deficient in

both PKCh and PKCe. Results: PKCe plays a minor role in

supporting aggregation and secretion following stimulation of

the collagen receptor GPVI in mouse platelets but has

no apparent role in spreading on fibrinogen. PKCh, in

contrast, plays a minor role in supporting adhesion and

filopodial generation on fibrinogen but has no apparent role

in aggregation and secretion induced by GPVI despite being

expressed at over 10 times the level of PKCe. Platelets

deficient in both novel isoforms have a similar pattern of

aggregation downstream of GPVI and spreading on fibrin-

ogen as the single null mutants. Strikingly, a marked

reduction in aggregation on collagen under arteriolar shear

conditions is observed in blood from the double but not

single-deficient mice along with a significant increase in

tail bleeding. Conclusions: These results reveal a greater

than additive role for PKCh and PKCe in supporting

platelet activation under shear conditions and demonstrate

that, in combination, the two novel PKCs support platelet

activation.

Keywords: aggregation, bleeding times, collagen, fibrinogen,

hemostasis, protein kinase C.

Introduction

Following damage to the blood vessel wall, components of the

subendothelial matrix such as collagen become exposed and

activate platelets circulating in the blood. Platelet activation

involves granule secretion, activation of the major platelet

integrin aIIbb3, actin rearrangements and generation of

thrombin, which amplifies platelet activation, thrombus for-

mation and hemostasis.

The protein kinase C (PKC) serine/threonine kinase family

plays a critical role in the regulation of several processes

involved in platelet activation. Broad spectrum inhibition of all

PKC family members blocks platelet responses to most

agonists, including collagen and thrombin [1–3]. The PKC

superfamily consists of 10 isoforms subdivided into classical (a,
bI, bII, c), novel (d, e,g, h) and atypical (n, i/k) isoforms on the

basis of their domain structure and sensitivity to 1,2-diacyl-

glycerol and Ca2+. Robust expression of several isoforms has

been reported in human (a, b, d, h) and mouse (a, b, e, d, h)
platelets, with evidence of expression of additional isoforms. In

contrast, there are conflicting reports on expression of PKCe in
human platelets [4–7], although a recent study using an in-

house antibody has demonstrated robust expression [8].

The role of individual isoforms in platelet activation has been

investigated using isoform-specific inhibitors and mice deficient

in single isoforms [4–7,9–19]. This has led to the conclusion that

the classical isoforms play positive roles in platelet activation,

with PKCa playing the predominant role, supported by PKCb,
while the novel isoforms play minor or inhibitory roles [10].

There is, however, a need for caution in this generalized

overview as there is increasing evidence that individual

isoforms of classical and novel PKCs have agonist-specific

roles.

This is illustrated by PKCe, which supports activation of

mouse platelets by GPVI through serine phosphorylation of

the FcR c-chain, leading to increased binding activation of the

tyrosine kinase Syk [6]. In contrast, PKCe has been shown to

play a role in the negative regulation of G protein coupled

receptor signaling, in particular in the regulation of ADP-

induced platelet dense granule secretion [8,20]. In comparison,

the novel isoform PKCh is required for aIIbb3-mediated
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adhesion and filopodial generation on fibrinogen [14,18] but

has only a minor role downstream of GPVI and PAR

receptors, with both stimulatory and inhibitory results

observed, possibly reflecting subtle changes in experimental

conditions [7,10,14,15,18,21,22]. The role of PKCh in platelet

aggregation under flow conditions is unclear, with a stimula-

tory [7,15], inhibitory [10,14] and or no significant role [18]

being reported, again most likely reflecting differences in the

experimental conditions.

In the present study, we have investigated platelet activation

in mice deficient in the two novel isoforms, PKCh and PKCe.
Although mice deficient in multiple classical isoforms have

been described [23], this is the first report of mice lacking two

novel isoforms. Mice deficient in PKCh and PKCe show a

marked reduction in aggregation on collagen at arteriolar shear

and exhibit a significant increase in tail bleeding in vivo relative

to wild-type (WT) mice or mice deficient in one novel isoform.

These results reveal a combined positive role of PKCe and

PKCh in supporting platelet activation.

Materials and methods

PKCh)/)/e)/) mice were bred from PKCh)/)/e+/) parents on a

B6 background and results compared with age-matched wild-

type background C57/BL6 and litter-matched PKCh)/)/e+/+

controls. PKCe)/) mouse platelets were compared with wild-

type littermate C57/BL6 controls. Animals were bred and

blood removed under an approved Home Office Licence (Ref:

PPL 30/2721). P-PACK (D-Phe-Pro-Arg-chloromethylketone,

HCl) was from Merck Biosciences Ltd (Nottingham, UK).

Actin antibody was from Santa Cruz Biotechnology, Inc.

(Santa Cruz, CA, USA). PKC antibodies were from BD

Biosciences (Oxford, UK), except for PKCa, which was

purchased from Cell Signalling Technology (Beverly, MA,

USA). Other reagents were from Sigma (Poole, UK) or as

previously described [6].

Washed platelet preparation

Mouse bloodwas drawn either by cardiac puncture or from the

vena cavae of terminally CO2-narcosed mice, anesthetized with

gaseous isofluorane. Blood was taken into 100 lL ACD and

200 lL modified Tyrodes-Hepes buffer (138 mM NaCl,

2.7 mM KCl, 1 mM MgCl2, 3 mM NaH2PO4, 5 mM glucose

and 10 mMHEPES) pH 7.3 and centrifuged at 200 g for 6 min;

separation from PRP was by spinning at 1000 g for 6 min.

Platelets were adjusted to ensure a count of at least 108

platelets mL)1. Human platelets were isolated as previously

described [6] with ethical approval from the Oxford Research

Ethics Council (reference number 08/H0605/123).

Quantification of the PKC isoform levels

The PKC isoforms were quantified using washed platelet

samples from three wild-type mice and five human donors

using antibodies specific for each isoform. The relative

expression of levels of each PKC isoform was determined

using quantitative western blotting [24–26]. A range of known

concentrations of reference samples, GST-tagged forms of each

human PKC isoform (purchased from Enzo Life Sciences,

Exeter, UK), were subjected to western blotting and bands

were quantified using ECL in combination with the Biorad

GelDoc system. Corresponding recognition regions are at least

97% conserved between human and mouse isoforms. Expres-

sion levels were calculated by comparing the level of PKC

isoforms present in platelet samples with those of the reference

samples. The level of expression of PKC isoform per platelet

was calculated both as the number ofmolecules per platelet and

as a concentration.

Aggregometry and ATP release

Aggregation and ATP secretion were monitored following

stimulation by the required agonist as previously described

using washed platelets [6].

Flow cytometry

Expression of cell surface glycoproteins was measured by flow

cytometry [6].

Spreading on fibrinogen

Washed platelets (2 · 107 mL)1) were exposed to fibrinogen-

coated coverslips (100 lg mL)1) and adherent platelets were

imaged using phase contrast microscopy [27].

Aggregate formation on collagen under shear

Anticoagulated (heparin [5 IU mL)1] and PPACK [40 lM]),
whole blood was perfused through collagen-coated capillaries

at a shear rate of 1000 s)1. Thrombus formation was imaged

using phase-contrast microscopy and expressed as the percent-

age of surface area covered by platelets. Capillary contents

were lysed and levels of adherent platelets assessed by western

blotting for actin [6].

Tail bleeding

Tail bleeding experiments were performed on 20–35 gmale and

female mice, anesthetized with isofluorane and injected with

buprenorphine intraperitoneally. The terminal 3 mm of tail

was removed using a sharp razor blade and blood collected.

Mice were allowed to bleed until they lost either 15% blood

volume or for a maximum of 20 min. Data are presented as

ratio of amount of blood loss (mg)/mouse weight (g) and rate

of blood loss (mg min)1).

Statistical analysis

For all results n ‡ 3 for WT, PKCh)/) and PKCh)/)/e)/)mice.

Statistical analyses were carried out on data using unpaired,

1888 A. J. Unsworth et al

� 2012 International Society on Thrombosis and Haemostasis



two-tailed Student�s t-test, and P < 0.05 was considered

statistically significant. Values are expressed as mean ± SEM.

Results

PKCh)/)/e)/) mouse platelets exhibit normal expression of

the other PKC isoforms

Quantification of the levels of PKC isoforms in both human

and mouse platelets revealed that expression varies over more

than two orders of magnitude. PKCh is the most highly

expressed isoform in both species, even though its role has

proven difficult to define. In comparison, the level of PKCe
expression in mouse platelets is < 5% of that of PKCh
(Fig. S1). The level of PKCe in human platelets, however, is

unclear as we were not able to detect expression using

commercially available antibodies, although a recent study

using an in-house antibody has reported robust expression [8].

To determine whether any functional redundancy exists

between the novel isoforms PKCh and PKCe, mice deficient in

both isoforms were bred and their platelet activity monitored in

comparison toPKCh)/), PKCe)/) andwild-type controls.Mice

deficient in both PKCh and PKCe were indistinguishable from
littermate controls for up to 30 weeks and had similar platelet

counts and platelet size (data not shown). The expression of the

major PKC isoforms was compared in WT, PKCh)/) and

PKCh)/)/e)/) washed platelet lysates (Fig. 1). As expected, no

expression of PKCh, and neither PKCh or PKCe, could be

detected in platelets purified from PKCh)/) and PKCh)/)/e)/)

mice, respectively. There was also no significant changes in

expression of other PKC isoforms in PKCh)/)/e)/) platelets

relative to PKCh)/) or WT platelets (Fig. 1). We have also

previously reported thatexpressionofotherPKCisoforms isnot

altered inmice deficient solely inPKCe [6]. ExpressionofGPVI,

GPIb and aIIbb3 were also similar in double-deficient platelets

to those in controls (Fig. S2). Similar observations have been

reported for the single nulls (Fig. S2) [6,7,14,15,18]. This

indicates that any functional differences between the PKCh)/)/

PKCe)/) platelets relative to PKCh)/) and PKCe)/) or WT

platelets are not due to altered expressionof surface receptors or

other PKC isoforms.

Distinct roles for PKCh and PKCe in platelet activation

We have previously reported a mild defect in aggregation and

dense granule secretion in PKCe)/) mouse platelets to the

GPVI-specific agonist collagen-related-peptide (CRP) [6]. In

contrast, we found no significant difference in aggregation or

dense granule secretion in PKCh)/) mouse platelets relative to

controls in response to concentrations of CRP that induce

partial and full aggregation (Fig. 2A). Washed platelets from

PKCh)/)/e)/) mice exhibit a similar delay in onset and

reduction of aggregation and ATP secretion in response to

low and high concentrations of CRP as that previously

reported in PKCe)/) mouse platelets (Fig. 2B) [8]). Direct

comparison of PKCh)/)/e)/) and PKCe)/) mouse platelets

confirmed a similar defect in CRP-induced responses (Fig. 2C).

Thus, PKCh does not play a critical role in GPVI signaling

even in the absence of the novel isoform PKCe. No significant

difference was observed in the rate or extent of aggregation or

dense granule secretion in PKCh)/) or PKCh)/)/e)/) platelets

relative to WT mice in response to threshold concentrations of

thrombin (Fig. S3).

As we have previously shown [6], adhesion and filopodial

generation on fibrinogen are not altered in the absence of PKCe
(Fig. 3). In contrast, a reduction in adhesion and filopodia

generation on a fibrinogen-coated surface was observed in

PKCh)/) platelets in agreement with earlier studies [14,18]. A

similar defect was also observed in PKCh)/)/e)/) platelets

(Fig. 4), whichwas indistinguishable from that seen in PKCh)/)

platelets. Thus, PKCe does not play a critical role in fibrinogen

signaling even in the absence of the novel isoform PKCh.
Platelet activation is reinforcedby the feedbackagonistsADP

and thromboxane A2. Aggregation induced by a low concen-

tration of the thromboxane agonist mimetic, U46619, was not

altered in platelets deficient in either PKCh or PKCe or in the

absenceof bothnovel isoforms (datanot shown).Weandothers

have previously reported that secretion in response to ADP is

potentiated in the absence of PKCe, although this did not

translate into a change in aggregation [6,8,20]. This result was

confirmed in the present study, although interestingly potenti-

ationwas not observed in the absence of both PKCe and PKCh
(Fig. 4). This highlights a positive role for PKCh in the
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regulation of ADP-induced dense granule secretion, which

opposes that of PKCe.
These results suggest isoform-specific rather than redundant

roles for the two novel PKC isoforms, PKCh and PKCe, in
supporting platelet aggregation, secretion and adhesion and

filopodial generation.

PKCh)/)/e)/) platelets show reduced aggregation under shear

and mice show bleeding defects

Our observations suggest isoform-specific rather than redun-

dant roles for PKCh and PKCe. To determine whether loss of

both isoforms had a cumulative effect on platelet function,
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platelet aggregation and thrombus formation under arteriolar

flow rates were investigated by flowing whole blood over

immobilized collagen at an arteriolar shear rate of 1000 s)1. As

we have previously shown, PKCe)/) platelets show no

significant difference in aggregate and thrombus formation

under these conditions (Fig. 5A) [6]. There was also no

significant difference in aggregation on collagen in PKCh)/)

blood under these conditions (Fig. 5A). In contrast, a marked

reduction in platelet aggregation on collagen was observed at a

shear rate of 1000 s)1 in PKCh)/)/PKCe)/) platelets (Fig. 5A),

with platelets forming small unstable aggregates. This result

demonstrates that at high shear platelet aggregation on

collagen is regulated by the combined action of PKCh and

PKCe.
We further investigated whether PKCh and PKCe are

required for hemostasis in vivo using a tail bleeding assay. There

was no significant increase in bleeding times in the single

isoform null mice in comparison to WT controls. In contrast,

there was amarked increase in blood lost and time to occlusion

in the double-deficient mice (Fig. 5B). This reveals that the two

novel isoforms also work in combination to support hemosta-

sis.

Discussion

It has been proposed that the classical isoforms PKCa and

PKCb play the dominant positive roles in the regulation of

platelet activation and thrombus formation, whilst the novel

isoforms are thought to play comparatively minor or in some

cases negative regulatory roles [9,10]. In the present study,

however, we show that the combined loss of the novel isoforms

PKCe and PKCh results in a marked defect in aggregation

under flow conditions and a marked increase in tail bleeding,

revealing a combined net positive role for the two novel

isoforms in hemostasis, which may reflect their individual roles

in platelet activation by collagen and fibrinogen, respectively.

PKCh is the most highly expressed PKC isoform in both

human and mouse platelets. Surprisingly, the high level

expression of PKCh is not associated with a major change in

GPVI and PAR4 receptor signaling in mouse platelets

[7,10,14,15,18,21,22], a result that has been confirmed in the

present study. Differences with regard to PKCh function are

most likely due to minor changes in experimental design and

the relatively mild role of the novel PKC isoform in platelet

activation downstream of GPVI and PAR. On the other hand,

PKCh regulates adhesion and filopodia formation on fibrin-

ogen [14,18], although this is not associated with altered

aggregation on collagen at an arteriolar rate of shear (present

study) or to a change in tail bleeding time [18]. In comparison,

PKCe is expressed at < 5% of the level of PKCh in mouse

platelets and the variable reports of its presence in human

platelets are consistent with a low level expression (see

Introduction). We have shown that PKCe plays a key role in

supporting platelet activation by GPVI [6], as well as secretion

(but not aggregation) by ADP in mouse platelets [20].

The use of mice deficient in both PKCe and PKCh enables

the net contribution of the two isoforms to be studied. The

in vitro studies reveal that the isoform-specific functions of the

two novel PKCs are carried over to the double-deficient

platelets, with the only departure being the loss of the increased

secretion to ADP in the PKCe-null platelets, suggesting that

PKCh opposes this response. Nevertheless, despite the rela-
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tively minor phenotype in response to individual agonists, the

present study demonstrates a marked reduction in aggregation

on collagen under arteriolar flow rates and significant increase

in tail bleeding in the combined absence of PKCh and PKCe. It
is already known that the two classical isoforms of PKC, PKCa
and PKCb, play a major role in supporting platelet activation

under static and flow conditions [10,12]. The observation of a

significant defect in aggregation on collagen at an arteriolar

rate of shear and in hemostasis (tail bleeding assay) in the

double-deficient mice demonstrates that, in combination,

PKCe and PKCh also contribute to activation as a conse-

quence of distinct roles in platelet activation by GPVI and

integrin aIIbb3, respectively [10,12]. Thus both classical and

novel PKC isoforms are required for hemostasis in the

arteriolar system.
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