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Abstract: Ultrafine particulate matter with less than 2.5 µm diameter (PM2.5) is an air pollutant that
causes severe lung damage. Currently, effective treatment and preventive methods for PM2.5-induced
lung damage are limited. Cirsilineol (CSL) is a small natural compound isolated from Artemisia vestita.
In this study, the efficacy of CSL on PM2.5-induced lung toxicity was tested, and its mechanism was
identified. Lung injury was caused by intratracheal administration of PM2.5 suspension in animal
models. Two days after PM2.5 pretreatment, CSL was injected via mouse tail vein for two days. The
effects of CSL on PM2.5-induced lung damage, autophagy, apoptosis, and pulmonary inflammation
in a mouse model and their mechanisms were investigated. CSL significantly suppressed histological
lung damage and lung wet/dry weight proportion. CSL also significantly reduced PM2.5-induced
autophagy dysfunction, apoptosis, lymphocyte suppression, and inflammatory cytokine levels in
bronchoalveolar fluid (BALF). Furthermore, CSL increased mammalian target of rapamycin (mTOR)
phosphorylation and significantly inhibited the expression of Toll-like receptors (TLR) 2 and 4, MyD88,
and the autophagy proteins, Beclin1 and LC3II. Thus, CSL exerts protective effects on pulmonary
damage by regulating mTOR and TLR2,4–myD88 autophagy pathways. Therefore, CSL can be used
as an effective treatment for PM2.5-induced lung damage.
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1. Introduction

Due to the rapid economic development around the world in recent years, air pollu-
tants have become a leading cause of several pulmonary diseases [1,2]. Ultrafine particulate
matter with less than 2.5 µm diameter (PM2.5) is the primary air pollutant. Approximately
96% of PM2.5 accumulates in the lungs owing to its small size and causes various diseases
in the respiratory and circulatory systems [3]. High PM2.5 concentrations promote the
production and release of inflammatory mediators, which damage lung tissues, leading
to respiratory lung injury and inflammation. Eventually, the respiratory disease leads to
severe mortality and morbidity [4,5]. Secretion of cytokines and chemokines by PM2.5, such
as interleukin (IL) and tumor necrosis factor (TNF)-α, causing inflammation. Furthermore,
it results in the development of many respiratory diseases, including chronic obstructive
pulmonary disease (COPD), acute pulmonary injury, and asthma [6,7]. Thus, a correlation
exists between PM2.5 exposure and disease-related mortality.

Apoptosis and autophagy are required to maintain lung function. However, uncon-
trolled autophagy owing to PM2.5 exposure induces cell death and causes apoptosis, which
advances to pathological pulmonary damage [8]. PM2.5-induced cellular oxidative stress
can induce apoptosis and autophagy. Furthermore, PM2.5 damages cellular components
and inhibits the activation of mammalian target rapamycin (mTOR), a tropic sensor [9,10].
Autophagy, a lysosomal-dependent process, is involved in adaptation, protein aggregation,
and organ damage to pathogen rotations within cells [11]. Autophagy is involved not only
in the disease itself but also in lung inflammation observed in conditions such as COPD
and lung injury [12,13].
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Traditional Chinese and African herbal medicines have helped treat various ailments,
including stroke, cardiovascular disease, diabetes, inflammatory disorders, and liver dis-
eases; however, these benefits lack scientific validation [14,15]. Research on the application
of traditional herbal and botanical medicines are rapidly increasing [15]. Natural products
are increasingly preferred owing to their lack of side effects and cost-effectiveness [15].
Several medicinal herbs potently treat lung inflammation [14]. In this study, we evaluated
the efficacy of bioactive compounds for treating PM2.5-induced pulmonary inflammation.
Cirsilineol (CSL), 4,5-dihydroxy-3,6,7-trimethoxyflavone is a flavone bioactive compound
present in Artemisia vestita Wall, an herb belonging to the Asteraceae family distributed
in China and Tibet. CSL is a potent antioxidant, antibacterial, hypnotic, antitumor, and
calmative drug, and exhibits cytotoxicity against many cancer cells [16–19]. However,
the pharmacological role of CSL on PM2.5-induced lung injury, inflammatory response,
histological changes, and the TLR-autophagy pathway remains unelucidated. Thus, in this
study, we investigated the effect of CSL on autophagy and inflammation in cellular and
animal models after PM2.5 exposure and demonstrated that CSL improved the repair of
PM2.5-induced tissue damage.

2. Results
2.1. CSL Protects against PM2.5-Induced Lung Toxicity

Figure 1A represents the chemical structure of CSL. The experiments were conducted
according to the workflow in Figure 1B. The mice were administrated with PM2.5 for
48 h, and CSL or DEX was injected for another 48 h. After 24 h, the W/D ratio in
the PM2.5-treated mice increased substantially and was ameliorated by CSL treatment
(Figure 1C). Furthermore, total cell and neutrophil count in BALF significantly reduced
after CSL injection (Figure 1D,E). Hematoxylin and eosin (H&E) staining confirmed that
the lung tissue structure of the control and CSL-treated mice were similar (Figure 1F).
Pathological damages such as inflammatory cell infiltration, alveolar hemorrhage, exudates
in the alveolar spaces, and alveolar wall thickening were observed in the PM2.5-treated
mice lung tissue, and these changes were ameliorated by CSL. CSL administration also
substantially decreased the lung tissue injury score (Figure 1G). These results indicate that
CSL administration alleviated PM2.5 -induced pulmonary damage.
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Figure 1. Effects of cirsilineol (CSL) on PM2.5-induced lung toxicity. (A) Chemical structure of
cirsilineol (CSL). (B) Schematic illustration of in vivo PM2.5-induced lung toxicity experiment protocol.
Two days after PM2.5 exposure (10 mg/kg in 50 µL saline) daily by intratracheal instillation, the mice
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were intravenously injected with CSL or dexamethasone (DEX) daily for three consecutive days. The
control and PM2.5 groups received an equal amount of vehicle [0.5% dimethyl sulfoxide (DMSO)] at
the same time each day. Control mice received the same volume of saline. Mice were euthanized 24 h
after the last compound administration, and lung tissue and bronchoalveolar lavage fluid (BALF)
were harvested. The effects of different CSL or DEX concentrations on (C) wet/dry (W/D) weight
ratio, (D) total cell count in the BALF, and (E) total neutrophils in BALF were assessed. (F) Lung
histology was examined using H&E staining. Representative images from each group are shown
(n = 5). Scale bar = 160 µm. (G) Lung injury scores. Values represent the mean ± standard deviation
(SD) of three independent experiments. * p < 0.01 versus the PM2.5-challenged group. # p < 0.01
versus control group.

2.2. CSL Prevents PM2.5-Induced Autophagy Dysfunction

We tested whether CSL affected autophagy-associated proteins, such as Beclin 1
and LC3, by Western blotting. The expression of these autophagy-associated proteins
substantially increased in PM2.5-treated mice than that in the control mice. Notably, CSL
substantially inhibited these increases in mouse lung tissue (Figure 2A). These results
suggest that CSL inhibits PM2.5-induced autophagy. Subsequently, the expression of
proteins in the TLR 2,4 and mTOR autophagy pathways were determined to confirm
the CSL-mediated anti-autophagy and anti-inflammatory mechanisms. Intratracheally
injected PM2.5 increased TLR2, TLR4, and MyD88 expression levels (Figure 2B), which
were ameliorated by CSL administration. Moreover, phosphorylated mTOR, Akt, and PI3K
expression levels in PM2.5-treated mice decreased than that in the control mice (Figure 2C),
which were considerably inhibited by CSL treatment. Thus, these results suggest that CSL
activates the mTOR/Akt/ PI3K pathway.
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Figure 2. Effects of CSL on PM2.5-induced signaling pathways. Representative examples of Western
blots showing (A) LC3 and Beclin 1, (B) Toll-like receptor (TLR) 2, 4, and MyD88, and (C) p-mTOR,
mTOR, p-Akt, Akt, p-PI3K, and PI3K expression levels. Representative images from each group are
shown (n = 3). (D) Graphs show densitometric intensities for each gene normalized to that of β-actin
or total protein. Values represent the mean ± SD of three independent experiments. * p < 0.01 versus
the PM2.5-challenged group. # p < 0.01 versus the control group.

2.3. CSL Inhibits PM2.5-Induced Apoptosis in Mice Lung Tissues

To determine whether PM2.5 affects apoptosis in lung tissue, the levels of apoptotic pro-
teins, including Bcl-2, Bax, cleaved caspase 3, and cleaved poly [ADP-ribose] polymerase 1
(PARP1), were evaluated in the lung tissue. The level of Bcl-2, an anti-apoptotic protein, was
significantly reduced, whereas those of the pro-apoptotic proteins, Bax, cleaved caspase3,
and cleaved PARP1, were substantially elevated (Figure 3A–D). However, CSL prevented
considerable alterations in these apoptotic protein levels (Figure 3A–D). Consistently, PM2.5
treatment considerably elevated the apoptosis index, as demonstrated using TUNEL im-
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munofluorescence (Figure 3E,F). However, CSL treatment markedly reduced the TUNEL
apoptosis index, indicating that CSL reduced PM2.5-induced apoptosis (Figure 3E,F).
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Figure 3. Effects of CSL on PM2.5-induced apoptosis. The levels of (A) Bcl-2, (B) Bax, (C) cleaved
caspase 3, and (D) cleaved PARP were determined using ELISA. (E) TUNEL staining of apoptotic
cells in lung tissues ×200, and (F) the apoptosis ratio. Values represent the mean ± SD of three
independent experiments. * p < 0.01 versus the PM2.5-challenged group. # p < 0.01 versus the
control group.

2.4. CSL Protected PM2.5-Induced Pulmonary Inflammatory Responses in Mice

PM2.5 treatment substantially increased pro-inflammatory cytokines such as IFN-
γ, IL-1β, IL-6, IL-18, and TNF-α, which were ameliorated by CSL injection (Figure 4).
Conversely, the levels of anti-inflammatory cytokines such as IL-2, IL-4, and IL-10 were
significantly decreased after PM2.5 administration and recovered by CSL injection (Figure 4).
These results indicate that CSL can be used to protect mice against PM2.5-induced lung
inflammation.
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Figure 4. The effects of CSL on PM2.5-induced inflammatory cytokine levels. The levels of (A) IFN-γ,
(B) IL-1β, (C) IL-6, (D) IL-18, (E) TNF-α, (F) IL-2, (G) IL-4, and (H) IL-10 were determined by ELISA.
Values represent the mean ± SD of three independent experiments. * p < 0.01 versus the PM2.5

-challenged group. # p < 0.01 versus the control group.

3. Discussion

Pulmonary toxicity by PM2.5 is closely related to the imbalance between autophagy
and inflammation by apoptosis [20]. Therefore, modulating the balance between apoptosis
and autophagy may be a therapeutic and preventive strategy for lung diseases. Although
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CSL can protect the respiratory tract, its effect on PM2.5-induced respiratory diseases has
been sparingly investigated. Here, CSL ameliorated autophagic dysfunction and reduced
lung inflammation and apoptosis by activating the mTOR signaling pathway in an animal
model of PM2.5 -induced pulmonary damage. Therefore, CSL treatment may protect the
lung from PM2.5-induced damage by controlling the TLR2,4–MyD88 and mTOR–autophagy
pathways.

PM induces local lung inflammation by increasing the inflammatory responses of
epithelial cells, endothelial cells, and macrophages [21–23], and systemic inflammation can
occur when inflammatory mediators are overexpressed [24]. Therefore, CSL exposure may
cause vascular inflammation as a biological response. Previous studies have demonstrated
the relationship between PM2.5 exposure, reduced vascular integrity, and the expression
of inflammation-associated molecules, including IL-6, TNF-α, p38, and reactive oxygen
species (ROS) [25,26]. Our study established that CSL alleviated PM2.5-induced lung injury
in a mouse model by suppressing both inflammatory cytokine secretion and lung tissue
infiltration. The anti-inflammatory pathway of CSL against PM2.5 appears to be regulated
by decreased TLR2, TLR4, and MyD88 expression, increased mTOR phosphorylation, and
autophagy prevention.

An injection of 10 mg/kg PM2.5 caused pulmonary damages and inflammation in vivo.
In previous studies, intraperitoneal PM2.5 injection caused respiratory and cardiovascular
dysfunction by inducing systemic and local acute inflammation and stimulating histo-
pathological and functional changes in mouse lung tissue [25,27,28]. In this study, PM2.5
was administered by intratracheal instillation, which is one of the leading methods of
exposing animal models to PM2.5 and is usually performed by inserting a needle into the
mouth and throat of mice and hamsters. Intratracheal PM2.5 instillation reportedly causes
pulmonary injury by inducing alveolar epithelial dysfunction, inflammatory responses,
and high levels of lung vessel permeability [29,30]. Although intratracheal instillation has
some drawbacks, such as its non-physiological and invasive nature, the disturbing effect of
anesthesia and means of delivery [31], this method is still used effectively and conveniently
as only one injection induces pulmonary injury in mice [32].

Autophagy, a lysosomal-dependent process, gathers unnecessary or dysfunctional
components in autophagic fluid for destruction [11]. During this process, autophagy is
involved in pulmonary injury pathogenesis [33]. The activation of LC3 II, an autophagy-
associated protein, in lung tissue is inhibited during mTOR activation [34], and mTOR
inhibition is accompanied by upregulated LC3 II in human bronchial epithelial cells [35].
In addition, MyD88 or TLR4 knockdown downregulates lipopolysaccharide (LPS)-induced
mTOR phosphorylation. These results suggested that LPS could inhibit autophagy activity,
and the TLR4 signaling pathway could trigger mTOR activation [34]. Thus, despite the
anti-inflammatory effects of autophagy, mTOR downregulation by rapamycin may not
be effective in suppressing pulmonary injury. Therefore, autophagy and TLR4 can inter-
act during PM-induced inflammatory responses, and autophagy can be manipulated by
multiple signal transduction pathways. Moreover, TLR4 can function as an autophagy
sensor involved in the PM-induced immune response [12,36]. Both TLR4–MyD88 and
mTOR–autophagy pathways affect lung injury, and mTOR serves as a critical marker
of autophagy in PM-induced pulmonary inflammation [35]. PM-induced inflammatory
responses regulate cytokine and oxidant production through the TLP–MyD88 signaling
pathway [36]. Some cytokines or oxidizing agents inhibit mTOR activation, induce cellular
autophagy, and cause increased levels of tissue damage and inflammation [37]. Other sig-
naling pathways, such as PI3K-Akt pathway [38], which regulates cell growth and survival
and reduces cardiomyocyte death [39], may also control autophagy.

PI3K-Akt pathway activation reportedly phosphorylates mTOR, a vital autophagy
regulator [38]. Phosphorylated mTOR prevents lung injury by reducing autophagy and
promoting lung recovery [40,41]. In this study, p-mTOR, p-Akt, and p-PI3K expression
were significantly recovered, and Beclin 1 and LC3 II expression were decreased by CSL.
Thus, CSL suppressed excessive autophagy by upregulating the mTOR–PI3K–Akt pathway.
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Western blot analysis results also indicated that CSL ameliorated the PM2.5 -induced
increase in TLR 2, 4, and MyD88 expression (Figure 2). These results further indicate
that CSL activates mTOR expression by reducing inflammatory cytokines and enhancing
anti-inflammatory cytokines (Figure 4). Although CSL exhibited no anti-inflammatory
effect, it suppressed PM2.5-induced lung injury by modulating PM2.5 -mediated severe
inflammatory response and autophagy compared to that in the control group. The pathway
analysis suggests that CSL acts as an anti-inflammatory agent because it controls both TLR
2, 4–MyD88, and mTOR autophagy pathways.

In conclusion, CSL protects the lung from PM2.5-induced respiratory diseases through
autophagy and TLR 2 and 4 pathway modulation. Therefore, we suggest that CSL is a
potentially efficient treatment option for PM2.5-induced pulmonary damage.

4. Materials and Methods
4.1. Materials

Diesel PM2.5 NIST 1650b [42], CSL, and dexamethasone (DEX, positive control) were
obtained from Sigma-Aldrich Inc (St. Louis, MO, USA). PM2.5 was blended in saline and
sonicated for 24 h to break up the suspended particle agglomerates.

4.2. Animal Experiments

Seven-week-old BALB/c mice were purchased from Orient Bio Co (Seongnam, Korea).
After acclimatization for 12 days, five mice were housed per cage and conditioned to
a temperature of 20–25 ◦C. The mice experiments were conducted in accordance with
the Care and Use of Laboratory Animals by Kyungpook National University (IRB No.
KNU 2017-102). Mice were divided into 7 groups of 10 mice each depending on the
treatment conditions: (1) control (dimethyl sulfoxide; DMSO) group, (2) CSL control group
(200 µg/kg), (3) PM2.5 group, (4–6) PM2.5 + CSL group (50, 100, and 200 µg/kg), (7) PM2.5
+ DEX group (5 mg/kg). An equivalent dose of DMSO was administered to the control
group. Briefly, 10 mg/kg PM2.5 in 50 µL saline was intranasally injected, and CSL and DEX
were administered intravenously in the tail 30 min later, as described previously [43,44].
The mice were euthanized 24 h after compound injection. Subsequently, bronchoalveolar
lavage fluid (BALF) was collected for analysis. Nasal PM2.5 injection causes high levels of
pulmonary vascular permeability and diseases, including pulmonary inflammation and
alveolar epithelial dysfunction [30,45]. Therefore, this method conveniently and effectively
induces lung damage with PM2.5.

4.3. Lung Wet/Dry (W/D) Weight Ratios

W/D ratio was identified to determine pulmonary edema. The weights of the right
lung before and after drying in a 120 ◦C oven for 24 h were measured as wet and dry values,
respectively.

4.4. Hematoxylin and Eosin (H&E) Staining

To observe phenotypic changes, the mice lungs were isolated and washed thrice with
PBS at pH 7.4. Subsequently, it was fixed in 4% formaldehyde in PBS (Junsei, Tokyo, Japan)
at 4 ◦C for 20 h. The fixed samples were embedded, in paraffin, dehydrated, and cut
into 4-µm sections. Next, the samples were deparaffinized, rehydrated, and stained with
hematoxylin (Sigma-Aldrich, St. Louis, MO, USA). The lung specimens were visualized
under a light microscope to monitor the lung structure and tissue edema, as described
previously [46,47].

4.5. Enzyme-Linked Immunosorbent Assay (ELISA)

Bax, Bcl-2 (LifeSpan BioScience, Inc.; Seattle, WA, USA), truncated-PARP, TNF-α, IFN-
γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-18 (R&D Systems; Minneapolis, MN, USA), cleaved
caspase-3, and cleaved PARP expression were quantified using a commercially available
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ELISA kits, according to the manufacturer's instructions. All analyses were performed on
the Tecan plate reader (Tecan Austria GmbH; Grödig, Austria).

4.6. Cell Counts in BALF Samples

The BALF samples were centrifuged at 3000 rpm for 10 min at 4 ◦C before mea-
surement, and the cells were analyzed using a blood analyzer. Whole cells were stained
with anti-CD11b monoclonal antibody (M1/70), FITC, eBioscience™ (Thermo Fisher, 11-
0112-41), and leukocytes were stained with anti-CD45 monoclonal antibody (HI30), FITC,
eBioscience™ (Thermo Fisher, 11-0459-42) leukocyte staining) at 4 ◦C for 2 h. Subsequently,
the cells were washed twice with PBS, re-suspended in 1 mL PBS, and the fluorescence was
quantified using a FACScan flow cytometer (BD).

4.7. Western Blotting

Lysed sample using lysis buffer containing 1% NP-40, 1% sodium deoxycholate,
0.5% sodium dodecyl sulfate (SDS), protease inhibitor, 50 mM Tris-HCl (pH 7.5), and
150 mM NaCl was added, as previously described [43,44]. The membranes were blocked
in 5% BSA for 2 h and incubated with the primary antibodies against light chain (LC)3
(1:1000), Beclin 1 (1:1000), TLR2 (1:1000), TLR4 (1:1000), mTOR (1:1000), MyD88 (1:1000),
phosphorylated (p)-mTOR (1:1000), Akt (1:1000), p-Akt (1:2000), p-PI3K (1:1000), and PI3K
(1:800) (all Cell Signaling Technology, Inc.). After washing the membrane, horseradish
peroxidase (HRP)-conjugated secondary antibody was added and incubated (Cell Signaling
Technology, 1:10,000). Subsequently, the ImageJ Gel Analysis tool was used to perform the
concentration analysis (NIH; Bethesda, MD, USA).

4.8. Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) Assay

The mesenchymal of the right lung was used to detect apoptotic cells in lung tissue
using the TUNEL assay. The TUNEL reaction mixture (Roche Applied Science; Mannheim,
Germany) was prepared and the total apoptotic cells was shown as the % of TUNEL-
positive cells to the total cells by Hoechst staining.

4.9. Statistical Analysis

The experiments were repeated at least thrice and performed independently. The data
are expressed as the mean ± standard deviation (SD). SD values were analyzed using a
one-way analysis of variance (ANOVA) followed by Dunnett’s test. All analyzes were
performed using SPSS for Windows version 16.0, and p < 0.05 were considered statistically
significant (SPSS, Chicago, IL, USA).
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