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Abstract: This scientometric analysis of 393 original papers published from January 2000 to June 2019 describes the 
development and use of bioinks for 3D bioprinting. The main trends for bioink applications and the primary considerations 
guiding the selection and design of current bioink components (i.e., cell types, hydrogels, and additives) were reviewed. The 
cost, availability, practicality, and basic biological considerations (e.g., cytocompatibility and cell attachment) are the most 
popular parameters guiding bioink use and development. Today, extrusion bioprinting is the most widely used bioprinting 
technique. The most reported use of bioinks is the generic characterization of bioink formulations or bioprinting technologies 
(32%), followed by cartilage bioprinting applications (16%). Similarly, the cell-type choice is mostly generic, as cells are 
typically used as models to assess bioink formulations or new bioprinting methodologies rather than to fabricate specific 
tissues. The cell-binding motif arginine-glycine-aspartate is the most common bioink additive. Many articles reported the 
development of advanced functional bioinks for specific biomedical applications; however, most bioinks remain the basic 
compositions that meet the simple criteria: Manufacturability and essential biological performance. Alginate and gelatin 
methacryloyl are the most popular hydrogels that meet these criteria. Our analysis suggests that present-day bioinks still 
represent a stage of emergence of bioprinting technology.
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1. Introduction
Bioprinting is a growing technology[1,2] that promises 
a future in which patients in need will have access to 
3D-printed tissues and organs that can substitute those 
lost or damaged[3,4]. Bioprinting has already enabled 
the fabrication of small units of tissues and organs that 
recapitulate some functions of their native counterparts[5,6]. 
These mini-tissues and organoids have also proven 
useful as in vitro models for basic research and as testing 

platforms for drug screening, drug development, and 
personalized therapies.[5,7]

The goal of 3D bioprinting is to manufacture living 
volumetric constructs by depositing a material containing 
living cells (i.e., a bioink) in a layer-by-layer fashion[6,8,9]. 
A bioink is composed of living cells that may contain 
other elements, such as a water-rich polymer network 
and functional additives (i.e., molecules or particles) 
associated with the intended application[10]. The bioink 
is so central to the concept of bioprinting that it is the 
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defining element that differentiates “bioprinting” from 
“3D printing.” The success of generating functional 
tissues relies heavily on the quality of the bioink.

Research groups around the globe have devoted 
their efforts to developing protocols and bioink-related 
technologies that are bringing us closer to the ambitious 
goal of bioprinting fully functional tissues and organs.

In this work, we describe the present landscape 
of bioink use and development, as reported in 393 
original research papers published from January 2000 to 
June 2019. We also discuss the trends revealed by this 
scientometric analysis from a technical perspective. We 
start by presenting and discussing the most frequently 
reported applications in bioprinting and the most 
commonly used bioprinting techniques. We then describe 
the trends related to the three main components of the 
bioinks: Cells, hydrogels, and functional additives.

2. Information search methodology
We conducted document search using the Scopus database. 
Figure 1 presents the terms and search criteria used. We 
considered words used in the literature as synonyms of 
bioink and excluded terms that could lead to the inclusion 
of documents not related to bioprinting.

From this query, we obtained 529 manuscripts that 
include 457 original articles and 72 conference papers. 
We conducted a de-duplication process (i.e., discarding 
replicate items) followed by a one-by-one validation of 
these documents to confirm that all of them were related 
to bioprinting and contained information on the bioinks 
used. This process yielded 393 original articles which 
were analyzed in this study (Supplementary File 1). The 

articles were examined to find the trends in the intended 
applications, the bioprinting technologies used and the 
design/composition of the bioinks employed (cell types, 
hydrogels, and functional additives).

3. Applications
Figure 2 shows the most reported applications revealed 
in the final pool of selected articles. The outcome of 
our analysis reveals the two main reasons that motivate 
the research and use of bioinks: (i) The development of 
bioprinting technology (generic) and (ii) clinical needs. 
Approximately one third of the analyzed papers focused 
on the development of new materials to formulate bioinks 
or the introduction of novel bioprinting strategies. This 
observation was expected as bioprinting is an innovative 
technology currently transitioning through an early 
development stage.

The development of bioprinting strategies[11,12] and 
bioprinters with novel features has become a frequent 
endeavor of engineers in academia and industry[13]. The 
portfolio of bioprinting methods and bioprinters has 
greatly evolved in the last two decades. The original 
devices were less complex[14-16] and adapted to perform 
proof-of-principle experiments and demonstrate the 
deposition of drops containing living cells in a single layer 
(and their short-term survival). These have now evolved 
into sophisticated designs that enable multi-material and 
multi-cell type fabrication of multi-layered constructs in 
the size range of ~ cm3 at resolutions of ~ 10 µm[17].

The development of bioprinting devices and bioink 
formulations has also advanced in a parallel fashion during 
the past 20 years. A vast number of published papers 
about bioprinting have focused more on the development 
and characterization of bioink formulations[18,19] than on 
the use of bioprinting for a particular application aligned 
to clinical needs. Bioink characterization frequently 
involves an analysis of rheology, because rheology 
strongly influences the printability[20] of the bioink under 
different printing conditions (e.g., flow rates, printhead 
linear speed, temperature, and printing pressure)[18,21]. For 
instance, the interplay between the ink rheology and the 
printing parameters determines the fidelity and resolution 
of extrusion-based bioprinting[12,20,21]. In addition, an 
assessment of the biological performance of the bioink is 
practically mandatory in papers related to the development 
of bioinks. The evaluation of biological performance 
includes the determination of cell viability immediately 
after printing and over time, as well as the assessment 
of indicators of metabolic activity, proliferation, gene or 
protein expression, and/or differentiation[18].

When it comes to clinical needs, the most frequently 
reported bioprinted tissues are cartilage[22-24] and 
bone[25-27], representing 16% and 11% of the analyzed 
documents, respectively (Figure 2). The statistics reveal 

Figure 1. Schematic representation of the query terminology used 
for the data search. The asterisks (*) mark root words and indicate 
that all possible suffixes were covered in the query.
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that bone- and cartilage-related medical interventions 
are indeed in great demand. Every year, around 500,000 
bone graft procedures are performed in the United States, 
making bone second only to blood as the most transplanted 
tissue in that country.[28] More than 7500 cartilage repair 
interventions were reported to the American Board of 
Orthopedic Surgery from 2003 to 2015.[29] Moreover, the 
demand is expected to increase in upcoming years due to 
the growing prevalence of osteoarthritis disorders in the 
population.[30]

Cartilage bioprinting has experienced great progress 
during the last decade (Figure 3A)[31,32]. The recapitulation 
of the mechanical properties of cartilage is a highly 
challenging task because cartilage is a load-bearing tissue 
that is exposed to continuous and repeated friction and 
compression. The use of bioprinting approaches that 
employ multi-materials[33,34], multi-cell types[31], and 
multi-stages[34,35] has enabled the substantial progress in 
this particular front. Today, relatively complex and large 
(~ 1–10 cm3) bioprinted constructs of cartilage have been 
implanted in large animal models[33,35] with excellent 
results in terms of both integration and mechanical 
performance.

Bone tissue engineering has also greatly benefited 
from bioprinting[36]. Different bioprinting strategies have 
been explored to fabricate small vascularized bone-like 
fragments[37] (Figure 3B). Experimental evidence has 
shown that relatively large bone defects (Figure 3C) 
can be repaired in situ using osteoinductive bioinks and 
relatively portable extrusion bioprinters[38].

After bone and cartilage, vasculature 
bioprinting[39-41] follows closely, at 9% of the applications. 
This is hardly a surprise, as vasculature fabrication 
is critical for developing any tissue or organ larger 
than 400 µm in size[42,43]. Often, the rationale behind 

bioprinting vasculature is to provide an artificial blood-
vessel network within a bioprinted construct to enable 
the perfusion of nutrients and gases and the removal of 
waste products[44].

Ultimately, the aim of bioprinted vasculature is to 
extend the survival and enable the proper functioning of 
thick bioprinted tissues[45,46]. The progress made on the 
front of vascularization fabrication using bioprinting has 
been spectacular in the last decade. Today, the fabrication 
of vascular networks is possible by combining permanent 
and fugitive inks, and several successful strategies 
have been well-documented in the literature[47,48]. The 
removal of the fugitive component yields a network of 
void conduits that can be endothelialized (i.e., cell-lined 
with endothelial cell monolayers) to develop perfusable 
and stable vascularization in cell-laden constructs[48] 
(Figure 4A). Furthermore, bioinks can be engineered 
with protease-degradable cross-linkers to allow cell 
remodeling. Therefore, the endothelial cells covering 
the main vascular channels may undergo angiogenic 
sprouting, guided by gradients of angiogenic factors (e.g., 
vascular endothelial growth factor [VEGF], phorbol-12-
myristate-13-acetate, and sphingosine-1-phosphate) to 
form capillary vessels[49] (Figure 4B).

Skin[50,51] and muscle[52,53] bioprinting have been 
addressed in 4% and 3% of the total manuscripts, 
respectively. These tissues and organs are relatively 
simple in architecture and composition, and yet they 
present substantial challenges to the current state-of-the-
art bioprinting platforms. Skin is a multi-layered tissue 
with different cell types accomplishing distinct tasks at 
each layer[54]. By contrast, muscle tissue has a fiber-like 
multi-scale structure[55], with cell alignment an additional 
characteristic that is vital for functional skeletal muscle. 
Some of these papers have presented simplified skin[56-58] 

Figure 2. Most reported bioprinting applications.
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or muscle models[59-61], with the aim of recreating only the 
most relevant features of these tissues.

Recent studies took steps forward and fabricated 
thick skin constructs that closely recapitulate the multi-
layered architecture of human skin and demonstrated the 
importance of including endothelial cells and pericytes 
(in addition to keratinocytes and fibroblasts) to achieve 
integration and vascularization after implantation in animal 
models[62] (Figure 4C). Pigmented human skin has also been 
successfully bioprinted in proof-of-concept experiments[63]. 

Some outstanding challenges remain on this front; for 
example, the use of bioprinting to fabricate human skin 
with functional hair follicles remains to be demonstrated. 
However, the technological basis to develop skin capable 
of producing hair de novo is at hand[64]. Furthermore, recent 
reports have shown the feasibility of mimicking this multi-
scale structure and alignment of muscle-like fibers using 
emerging bioprinting techniques[12,65-67].

In terms of social impact and clinical demands, the 
bioprinting of fully functional organs would solve the 

Figure 3. The application of bioprinting in cartilage and bone engineering. (A) Schematic representation of a (i) multilayered, multimaterial, 
and multi-cell-type bioprinted cartilage-like tissue; (ii) photograph of the actual construct after bioprinting; (iii) sideward view of the 
construct showing different composition in the layers. Histological micrographs showing the presence of (iv) glycosaminoglycans, (v) 
collagen type II, and (vi) collagen type 1 in matured constructs[31]. Adapted from Levato et al., with permission from Elsevier. Reprinted 
from Acta Biomater, 61, Levato R, Webb W R, Otto IA, et al., The bio in the ink: Cartilage regeneration with bioprintable hydrogels and 
articular cartilage-derived progenitor cells., 41–53, Copyright (2017), with permission from Elsevier. (B) Schematic representation of (i) a 
vascularized bone model, (ii) bioprinting method based on piling-up cell-laden hydrogel rods, and (iii) architectural design and composition 
of the bioprinted construct. Microscopy images showing the maturation of the vascularized bone model: (iv) Calcium deposition and 
expression of bone markers; (v) expression of endothelial markers morphology of an endothelial-like wall; (vi) perfusion through the 
vascular channel[37]. Reprinted (adapted) from Byambaa B, Annabi N, Yue K, et al., Adv Healthc Mater, 2020, 6(16): 1700015 with 
permission from Wiley. © 2017 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim. (C). In situ bioprinting of bone: (i) Filling a bone defect 
and (ii) outcome after bioprinting. Adapted from Li et al., 2017[38]; licensed under Creative Commons Attribution 4.0 International License.
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critical situation faced by one million patients worldwide 
each year, as estimated by the outage management 
system[68]. In the USA alone, 103,655 patients will 
be waiting for an organ by 2020; these include 91,790 
patients in need of a kidney, 12,521 needing a liver, and 
3504 needing a heart[69]. These are all highly complex 
organs, not only in terms of their architecture and cell 
type composition but also because of their size and 
function. Major organ fabrication through bioprinting 
(or through any other fabrication technique) remains 
a major unsolved challenge[70,71]. A recent contribution 

demonstrates the feasibility of 3D printing a full-size 
human heart made entirely of alginate (not yet including 
cells). To do this, the authors used Freeform Reversible 
Embedding of Suspended Hydrogels (FRESH), an 
emerging extrusion-based technique that enables the 
printing of practically any shape by injecting a hydrogel 
into a thermo-reversible support bath. However, FRESH 
(and any currently available bioprinting technique) has 
its limitation in its ability to fabricate full-size functional 
tissues. For example, printing this non-cellularized and 
non-structured heart took 4 days[71].

Figure 4. The application of bioprinting to fabricate vascularization and skin. (A) Schematic representation of the (i) bioprinting process of 
a multilayered vascularized construct. (ii) Fluorescence micrographs showing the endothelialization of the void spaces (created as a result 
of using permanent and sacrificial inks during the bioprinting process) and cross-sections showing a lumen. Adapted from Ouyang et al., 
2020[48], licensed under Creative Commons Attribution 4.0 International License. (B) A strategy to promote angiogenesis based on the use of 
(i) a sacrificial ink that renders a channel and (ii) cell-degradable ink. (iii) Microscopy analysis showing the endothelialization of the channel 
and the angiogenic sprouting within the cell-degradable hydrogel. Magnifications show the presence of lumen structures (as small as 
~10 µ) and the three-dimensional architecture[49]. Reprinted (adapted) from Song KH, Highley CB, Rouff A, et al., Adv Funct Mater, 2018, 
28(31):1–10. At 2018 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim. (C) Schematic representation of the (i) bioprinting design of a 
multilayered skin construct. (ii) Experimental program involving skin bioprinting, implantation, explantation, and analysis. (iii) Histological 
micrographs showing the multilayered architecture and dermal markers of expression in human skin (for reference), grafted bioprinted skin 
without placental pericytes (PCs), and grafted bioprinted skin with PCs in the dermal bioink. EC: Endothelial cells. Adapted from Baltazar 
et al., 2020, Tissue Engineering Part A, 26: 5-6[62]. The publisher for this copyrighted material is Mary Ann Liebert, Inc. publishers.
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Kidney is the most in-demand organ, but it is also 
a very defiant organ to mimic due to its sophisticated 
physiological architecture of multiple different cell 
types. In addition, this organ is solid (not hollow), 
making the task of bioprinting an artificial kidney very 
challenging[72]. Not surprisingly, only 1% of the retrieved 
articles addressed the bioprinting of kidney tissues[73,74].

4. Bioinks for different bioprinting 
technologies
Scientists and engineers continue to develop bioprinting 
technologies with enhanced capabilities. Today, the 
most frequently reported bioprinting technologies 
are extrusion, droplet, and laser assisted bioprinting 
(Figure 5A). Extrusion-based bioprinting ejects the 
bioink by a pneumatic, piston, microfluidic, or screw 
mechanism to deposit filaments[75]. Droplet bioprinting 
deposits drops of the bioink under the control of a 
piezoelectric or thermal system[76]. Laser-assisted 
bioprinting involves a laser sensitive-substrate that 
contains the bioink at the bottom. Patterns of the bioink 
are transferred to a receiving surface underneath, 
assisted by laser pulses aimed onto the bioink-containing 
substrate[77] (Figure 5B).

By far, extrusion bioprinting[75,78-80] is the simplest 
and most widely used form of bioprinting accounting 
for 76% of the reports analyzed in this study. Current 
trends (Figure 5) revealed that the major factors driving 
the selection of bioprinting technologies are cost and 
ease of use, which are, in fact, the main strengths of 
extrusion bioprinting. Droplet-based bioprinting[76,81-83] 
follows with a presence of 14%, and papers related to 
laser-assisted bioprinting[77] account for 8%. However, 
in terms of printing velocity, extrusion bioprinting is 
arguably the less attractive option among these three 
technologies.

The maximum reported printing speeds are 
~150 mm/s for extrusion bioprinting, ~200 mm/s 
for inkjet bioprinting, and ~20 mm/s–~500 mm/s 
for laser-based bioprinting[84]. Droplet and laser-
assisted bioprinting technologies[85-87] also show higher 
resolution and precision capabilities than the extrusion 
bioprinting[88]. However, the cost and required expertise 
for operation may be preventing the widespread use of 
droplet and laser-based methods[89,90].

Regardless of the method, the operation of any 
of these bioprinting platforms needs bioinks with a 
particular set of properties. Table 1 lists the important 
parameters for bioinks associated with each bioprinting 
technology. For all three techniques, the rheological 
properties of the bioinks are fundamental in determining 
the success of the bioprinting process. Several factors 
such as the cell density, cell type, the chemical nature 

Table 1. Key parameters and requirements for the most frequently 
used bioprinting technologies

Parameter Extrusion 
bioprinting

Droplet 
bioprinting

Laser‑based 
bioprinting

Viscosity 30–6 × 107 
mPa/s[97]

3–12 
mPa/s[97]

1–300 
mPa/s[97]

Cell density High[94,97] Low[97] Medium[97]

Other Shear 
thinning[98]

Adequate 
surface 
tension[98]

Adequate 
surface 
tension[98]

of the hydrogel, and the hydrogel concentration, 
will directly influence the rheological properties of 
a bioink[91-94]. Other specific parameters must also be 
considered when designing a bioink for a particular 
bioprinting method; for instance, extrusion bioprinting 
needs shear-thinning materials (materials that behave as 
liquids while being extruded through a nozzle and then 
render solid-like and non-collapsing filaments when 
deposited on the printing bed)[95,96].

Droplet bioprinting benefits from bioinks with low 
viscosities and low cell densities. These characteristics 
favor the deposition of small droplets and, consequently, 
high-resolution architectures. Surface tension is another 
important parameter to consider when designing a bioink 
for droplet bioprinting, as the gelation should occur 
after material deposition to avoid nozzle clogging[97]. By 
contrast, bioinks designed for laser bioprinting should give 

Extrusion Based
76%

Droplet Based
14%

Laser Based
8%

Other
2%

Extrusion bioprinting Droplet bioprinting Laser-assisted bioprinting

Laser
pulse

Absorbing
layer

Donor
ribbon

• Piezoelectric
• Heater 

• Pneumatic
• Piston
• Microfluidic
• Screw

Figure 5. Bioprinting methods. (A) Pie chart showing the most 
frequently reported bioprinting technologies (B) Schematic 
representations showing the working principle of the three most 
frequently reported bioprinting methods. Adapted by permission 
from Springer Nature: Nature Biotechnology. Copyright 2014[6].
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consideration on viscosity[99], cell density, and interaction 
with the receiving substrate (i.e., the surface tension and 
wettability).

Extrusion bioprinting requires several other 
innovations. Many of these are related to the ability to 
co-extrude two or more different materials concurrently 
(multimaterial bioprinting)[78,100-102]. For instance, these 
materials may contain different types of cells or different 
hydrogels to recapitulate the composition and architecture 
of a native tissue. In this context, a significant challenge 
is the selection/design of a compatible set of bioinks in 
terms of rheology, interfacial tension, and co-flowability, 
among other properties[103].

Novel embodiments of extrusion bioprinting have 
greatly pushed the limits of biofabrication in the last 
5 years. For example, innovative bioprinting heads that 
use chaotic static mixers[102] to fabricate microstructured 
hydrogel filaments are enabling new applications, 
such as the facile fabrication of muscle-like fibers[12]. 
Extrusion-based bioprinters are also becoming more 
portable, and hand-held models promise to enable in situ 
and in vivo bioprinting for a wide range of scenarios, 
including wound healing, dentistry, and minor and major 
surgeries.[104-108]

Emergent bioprinting technologies have been 
powerful drivers of innovation in 3D biomanufacturing. 
For example, vat polymerization-based bioprinting brings 
unprecedented precision, and therefore resolution, to the 
bioprinting arena[77]. This enhanced resolution will push 
the limits of tissue engineering and create the need for 
development of new cell-friendly photoinitiators, novel 
materials, and additives for vat-bioprinting applications. 
Volumetric bioprinting, a recently developed 3D printing 
strategy inspired by optical tomography, is based on a 
programmed projection of 2D-planes of light in a 3D 
volume. This disruptive bioprinting strategy enables the 
fabrication of relatively large free-form constructs using 
photo-cross-linkable hydrogels[109].

As bioprinting technology evolves and matures, 
we expect to observe a more ad hoc selection of the 
bioprinting method based on specific clinical needs.

4.1. Most frequently used cells in bioinks
Arguably, living cells constitute the most important 
component of a bioink. Indeed, cells are a mandatory 
element if a bioink is to be considered as such[110]. The 
origin/source of the cells used to prepare a bioink is 
very important; for example, in implantable tissues, the 
selection of the cell type may determine the acceptance/
rejection of the bioprinted construct by the recipient[6,111].

One emerging research line (the papers was not 
included in this scientometric analysis) illustrates 
the significant advances in the cell source-related 

technologies aimed at generating a safe and effective 
cell source for clinical use[112-114]. Nevertheless, the vast 
majority of the bioprinting studies conducted today 
use cells to develop proof-of-concept tissue constructs 
rather than functional tissues for transplantation[111,115]. 
As a general rule, the bioink design and the 
bioprinting conditions for tissue constructs, whether 
for transplantation or for ex-vivo applications, 
should favor cell viability for extended periods, cell 
proliferation, and the capability to develop into mature 
tissues (assessed, e.g., by protein expression and 
immunohistochemistry)[116-118]. Within this framework, 
cells can be purchased (i.e., from the American Type 
Culture Collection or other cell culture companies[56,119] 
or harvested from primary tissues[120,121]).

Figure 6 presents the most reported cell types used in 
bioink formulations. At first sight, no direct correlation is 
observed between the applications (Figure 2) and the cells 
used (Figure 6). Notably, the utilization of cells usually 
serves one of two purposes: Biofabrication of a specific 
tissue or organ, or assessment of the performance of a 
bioink material or a bioprinting technology (technology 
development). Stem cells (SCs) and induced pluripotent 
SC (iPSCs)[122,123] comprise the main group of cells used 
in bioinks. SCs are attractive candidates for bioprinting 
studies since they possess the ability to differentiate 
into different cell lineages when cultured using ad hoc 
inducing conditions.[117,124] Interestingly, the origin of 
the SCs and iPSCs varied significantly within the set 
of analyzed articles (Figure 6)[125-127]. The combination 
of bioprinting techniques and the use of SCs may, at least 
in concept, provide tissue engineers with great flexibility 
to fabricate any tissue.

The second most important cell type in our 
analysis corresponds to skin cells, accounting for 20% 
of the papers[128,129]. Counterintuitively, in terms of the 
frequency of applications, skin bioprinting only accounts 
for 4% of the papers (Figure 2). The extended use of skin 
cells (mostly fibroblasts) reflects that they are the most 
popular cellular model for assessing bioink formulations 
and bioprinting techniques[130,131].

Similarly, cancer cells are also frequently employed 
as models in evaluating technological bioprinting 
innovations[132,133] in addition to the bioprinting of in vitro 
3D cancer models[79,134,135]. Any commercial cell lines 
that are current gold standard models for several tissues 
originated from cancerous tissues (i.e., the 3T3, BJ, 
C2C12, MCF7, and MCF10A cell lines)[136]. The other 
mammalian cell type presented in Figure 6 (~50%) are 
directly related with the tissue intended to bioprint. In the 
near future, we anticipate convergences between mature 
bioprinting technologies and the technologies required to 
generate safe and effective cell sources for clinical use.
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Figure 6. The most frequently reported cells used in bioinks.

Non-animal cells have also been used in bioink 
formulations. Bacterial bioprinting is an emerging field 
that is gaining momentum[137] and will enable exciting 
applications in the coming years. Recent papers illustrate 
the use of bioprinting techniques for the fabrication of 
bacterial biofilms with different functionalities[138-141] or 
the re-creation of complex bacterial communities[66,102,142].

Microalgae[143,144] have also had representation within 
the bioprinting literature. Recent experimental evidence 
shows that the symbiotic coexistence of microalgae and 
mammalian cells in thick bioprinted tissue constructs is 
a feasible alternative for enabling a sustainable supply of 
oxygen within the constructs.

4.2. Hydrogel formulations used in bioinks
Bioinks may consist solely of cells[94,145,146]. However, 
13 of the analyzed documents used cell aggregates or 
cell spheroids as bioinks. Most bioinks are cell-laden 
hydrogels and the hydrogel matrix has a starring role in 
the functionality of the bioink which contributes to the 
success of the bioprinting technology. Hydrogels must 
provide the right environment for living cells while still 
exhibiting the physicochemical properties (i.e., rheology, 
stability, molecular integrity) needed to facilitate their 
processability or manipulation[147]. We identified 156 
different hydrogels and 48 cross-linking methods within 
the analyzed literature. Figure 7 presents the top 10 most 
frequently reported hydrogels and cross-linking methods 
used for bioink formulations.

The most popular combination used in bioink 
formulations is alginate (a carbohydrate extracted from 
brown algae) and its preferred cross-linking agent 
(calcium chloride; CaCl2)

[148]. Alginate[149-151] is an anionic 
carbohydrate-based polymer that cross-links efficiently 
(easily and rapidly) in environments rich in divalent 
cations such as aqueous solutions of CaCl2 or calcium 
sulfate (CaSO4).

[152] The ease and speed of this type of 
cross-linking make alginate a convenient working matrix.

Gelatin methacryloyl (GelMA)[120,153,154] comes in 

second place, followed by gelatin and collagen in third 
and fourth place, respectively. These polymers have a 
common origin, namely collagen from animal tissues 
including mammals[155,156], fish[157], and poultry[158]. As 
a group, they are the most prevalent type of hydrogels 
used in bioprinting applications. GelMA and gelatin 
are simpler versions of collagen, and both are friendlier 
materials to process and handle than collagen when 
formulating bioinks. They are also less costly; for 
instance, a gram of collagen from Sigma-Aldrich costs 
US$ 2360, while a gram of GelMA and gelatin costs US$ 
206 and US$ 0.342, respectively. GelMA is a chemically 
modified gelatin that cross-links upon exposure to 
ultraviolet or visible light in the presence of a suitable 
photoinitiator, such as Irgacure[153,159], lithium phenyl-
2,4,6-trimethylbenzoylphosphinate (LAP)[160,161], or eosin 
Y[162,163], the end result is a solid hydrogel held together 
by covalent bonds[154]. In fact, Irgacure, LAP, and eosin 
Y appear in the top 10 most used cross-linking methods.

Gelatin[164], in contrast, forms physical hydrogels 
in response to low temperatures[165]. In this case, weak 
intermolecular forces between the gelatin chains, rather 
than covalent cross-links, hold the hydrogel together. 
Indeed, temperature occupies the third place in Figure 7B 
as a “cross-linking method” (in this case, no covalent 
or ionic bonds are involved, only weak molecular 
interactions).

A technological advantage of using GelMA instead 
of gelatin is that, while gelatin melts under incubation 
conditions (37°C), a photo-cross-linked GelMA construct 
remains stable[166].

However, neither gelatin nor GelMA conserves 
the tertiary and quaternary structure of collagen, which 
may represent a disadvantage for many applications. 
However, they both preserve the arginine-glycine-
aspartate (RGD) domains (arginine, glycine, and 
aspartate) required for cell anchoring, which is a 
central attribute when designing cell scaffolds for tissue 
engineering[166], as promoting cell anchoring to the bioink 
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matrix is a crucial step for developing artificial living 
tissues. This is not a particular functional characteristic 
of pristine alginate hydrogels, and this establishes the 
main difference between the two most popularly used 
hydrogels for bioinks. Arguably, the key reasons for 
using alginate, GelMA, and gelatin are practicality, 
availability, and cost-effectiveness.

Similarly, practicality, availability, and low 
cost lead to the frequent use of poly(ethylene glycol) 
diacrylate (PEGDA)[167] (a photo-cross-linkable synthetic 
polymer)[168] and agarose (a thermo-sensitive natural 
carbohydrate)[169] in bioink formulations. PEGDA 
and agarose also appear in the top-ten list of printable 
hydrogels. PEGDA hydrogels are amenable to chemical 
functionalization, making them very versatile materials 
for bioinks[168]. The synthetic nature of PEGDA also makes 
it very reliable in terms of batch-to-batch consistency, 
and it is an easily tunable material.

Fibrinogen is a protein amenable to enzymatic 
cross-linking (using thrombin) that renders a stable fibrin 
matrix[113,170]. This combination (matrix and cross-linker) 
contains cell-anchoring motifs similar to those provided 
by gelatin, collagen, and GelMA, making fibrinogen 
suitable for tissue engineering applications. Like GelMA, 
the high commercial cost of fibrinogen (~$205 USD/g) 
may limit its broad use[171,172]. Fibrinogen also has poor 
rheological properties and needs to be combined with 

shear-thinning materials when formulating extrusion 
bioinks[172].

Silk fibroin, an insect-produced protein, also 
holds a spot among the top 10 most used hydrogels 
for formulating bioinks. This is perhaps the most 
innovative material within this list[173,174]. Among its 
attributes, biocompatibility, strength, and rheological 
and mechanical tunability have made this material an 
attractive choice for bioinks.[175]

Hyaluronic acid methacrylate[176,177], a photo-cross-
linkable version of hyaluronic acid, also holds a place in 
the top-ten list. This is not a surprise as hyaluronic acid is 
a major component of the extracellular matrix of cartilage 
and bone, the most bioprinted tissues today[177,178].

The use of enzymes, such as the microbial 
transglutaminase (MTGase)[179], tyrosinase[128], and 
genipin, are also among the top ten list of cross-linking 
methods. These enzymes are used to cross-link protein-
based hydrogels. This analysis reveals that, when 
formulating a bioink, the most important criteria are 
related to the ease of use (practicality), cost, availability, 
and basic biological functionality (i.e., mainly the 
presence of cell-anchoring motifs).

The recent incorporation of recombinant 
proteins[18,180] into the portfolio of materials for bioink 
preparation will be a powerful enabler for customized and 
“smart” bioink engineering (at the molecular level).

Figure 7. The top 10 most frequently reported (A) hydrogels and (B) cross-linking methods for bioink formulations. Colored connectors 
relate hydrogels with their respective cross-linking methods.
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4.3. Composite hydrogels in bioinks
Figure 7 presents the most frequently reported composite 
hydrogels used in bioink formulations: Hydrogel blends 
and hydrogels enhanced with functional additives. From 
the pool of 393 articles analyzed, 263 mention the use of 
composite or hybrid bioinks. We identified 102 materials 
combined in different ways in bioink formulations. A total 
of 213 documents reported the use of hydrogel blends 
(i.e., hybrid matrices containing more than one hydrogel) 
(Figure 8A), while 54 reported the use of functional 
additives (other than hydrogels) within the bioinks 
(Figure 8B). From the group of hydrogel blends, 170 of 
the 213 (80%) were composed of two hydrogels[181,182], 
36 (17%) of three hydrogels[183,184], and 7 (3%) of four 
hydrogels[185,186] (Figure 8).

Figure 9 shows the correlation maps corresponding 
to all hydrogel blends (Figure 9A), and 2–4 hydrogel 
blends (Figures 9B‑D). Table 2 lists the most frequently 
used hydrogel blends, categorized by the number of 
matrices involved. Not surprisingly, the main components 
in all the correlation maps are alginate and GelMA, 
which is consistent with the top ten hydrogels reported 
in Figure 7A. Evident reasons for combining these 
two hydrogels are the facile and rapid cross-linking of 
alginate and the presence of cell-anchoring motifs in 
GelMA. GelMA hydrogels are somewhat recalcitrant 
to cross-linking immediately after extrusion from 
the bioprinting nozzle, and the use of alginate easily 
overcomes this challenge. Very often, alginate is used as 
a temporary template and GelMA as the permanent cell 
scaffolding.[187–190] A filament of an alginate-GelMA blend 
can be ionically cross-linked immediately after extrusion 
to preserve its 3D shape. GelMA can then be covalently 
cross-linked by exposed to light. Finally, the alginate 
matrix can be removed using a Ca2+-chelating agent, such 
as EDTA.[133] This methodology and minor variations of 
it were reported in 22 of the 393 analyzed manuscripts.

For the other composite hydrogels, manufacturability 
and biological functionality are also the main guidelines 
for bioink design. Other criteria are often considered, 
such as the use of reinforcers or sacrificial matrices 
that leave hollow spaces within the hydrogels to mimic 
vascular networks[191-193].

Bioink formulations may also include other 
functional additives, such as biomolecules[194,195], 
particles[151,196], and drugs[197,198] (Table 3). A larger version 
of these correlation maps is presented as supplementary 

Table 2. The most frequently used hydrogel blends categorized by 
the number of matrices involved

Ranking Two 
hydrogels

Three 
hydrogels

Four 
hydrogels

1° Alginate
Gelatin

Fibrin
Gelatin
HA

Gelatin
GelMA
HA
HAMA

2° Alginate
GelMA

Alginate
Chitosan
Fibrin

Alginate
CS-AEMA
GelMA
HAMA

3° Alginate
Collagen 
type 1

Alginate
GelMA
PEGDA

PEGDA
PEGOA
Thiolated
Gelatin 
Thiolated HA

4° Gelatin
Silk 
Fibroin

Alginate
Carboxymethyl
cellulose
Collagen type 1

Collagen
type 1
GelMA
Gellan Gum
PLA

5° Agarose
Collagen
type 1

Alginate
Collagen type 1
Gelatin

Alginate
dECM
PLGA
PVA

Figure 8. The most frequently reported hydrogel blends. (A) Distribution and (B) number of documents of hydrogel blends according to 
the number of matrices used.
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file (Supplementary Figures S1‑S4). Incorporating RGD 
domains to promote cell adhesion is the most popular 
functionalization strategy in this category[199,200]. The 
use of growth factors[121,195], and especially VEGF[201-203], 
is also a frequent strategy for enhancing the biological 
performance of bioinks.

From the pool of articles analyzed, 18 incorporated 
nano- or micro-particles into their bioink formulations for 
different purposes (i.e., to enhance rheological properties, 
immobilize functional molecules, and/or provide 

chemical[125,204], electrical[205,206], and topological[207,208] 
cues). In this category, the most popular choice was 
silicate nanoparticles. These nanoparticles are versatile, 
commercially available in a wide range of sizes at a 
relatively low cost, cytocompatible, and amenable to 
functionalization with basic chemistry methods[209-216].

Bioink formulations can also be designed to 
function as controlled-release matrices for drugs[198,244]. 
From the pool analyzed, seven reports incorporated 
different drugs for different aims, from modeling a drug-

Figure 9. Correlation maps showing the interconnections of hydrogels for bioink formulations in (A) (i) all hydrogel blends, (ii) most 
frequent interconnections in all hydrogel blends; (B) two-hydrogel blends, (C) three-hydrogel blends, and (D) four-hydrogel blends.
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delivery system[245] to conferring antibiotic[197] and anti-
inflammatory[243] activities.

New ingredients have been recently added to 
the repertoire of bioink additives to provide relevant 
functionalities for hydrogel-based inks. Examples are the 
use of a flexuous filamentous plant virus[65] to enhance 
cell attachment and proliferation in the context of 
fabrication of muscle fibers; the incorporation of protease-
degradable cross-linkers to enable cell remodeling[49] and 
oxygen-releasing agents to improve and prolong tissue 
viability[246]

5. Conclusions
This scientometric analysis of the last two decades of 
progress on the use and development of bioinks reveals 
some very clear trends. Most of the analyzed documents 
report the use of simple compositions that fulfill the basic 
requirements of manufacturability and indispensable 
biological performance (cytocompatibility and cell 
adhesion). This is consistent with the current stage of 
development of bioprinting technology. As with any 
emerging technology scenario, bioprinting is naturally 
evolving as users address challenges with increasing 
degrees of difficulty with the available resources. 
However, many of the analyzed documents already 
deal with the development of advanced bioinks. This is 
particularly evident in the papers published in the last 
5 years.

In the future, we anticipate that the scientific reports 
will deal with a broader and even more specialized 
portfolio of bioprinting technologies, hydrogels, additives, 
and cell sources. We expect to witness an evolution in the 
field whereby the parameters that guide the bioink design 

are related to the clinical and market demands (more in 
line with biomedical/clinical needs instead of what we 
can accomplish now).

Bioprinting technology must attain a more advanced 
level before facing its most ambitious challenge: the 
printing of functional tissues and organs (i.e., kidneys, 
livers, brain organoids, and relevant-sized tumors) to 
fulfill the global transplant demands. However, at this 
early stage, bioprinting has already proven useful in 
fabricating 3D human biological models for research and 
development purposes. We envision that this new market 
of reliable biological models will trigger and amplify the 
development of bioprinting and advanced bioinks.
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Table 3. Functional additives used in bioinks

Type of additive Additive Count References

Particles Silicate nanoparticles 6 [167,207,217–220]
Iron oxide nanoparticles 3 [82,151,221]
Bioactive glass particles 2 [222,223]
Other particles 7 [125,196,204–206,208,224]

Biomolecules RGD 14 [199,200,225–236]
VEGF 6 [37,201–203,217,220]
BMP-2 5 [125,237–240]
TGF-b3 4 [125,240–242]

Drugs Rifampin 1 [197]
Daptomycin 1 [197]
Dimethyl-L-oxaloylglycine 1 [198]
Naproxen 1 [243]
Ibuprofen 1 [243]
Atorvastatin 1 [244]
Ropinirole HCl 1 [245]
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